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# Jülich Supercomputing Centre, Forschungszentrum Jülich
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Abstract—To support the development of efficient parallel
codes on cluster systems, event tracing is a widely used technique
with a broad spectrum of applications ranging from performance
analysis, performance prediction and modeling to debugging.
Usually, events are recorded along with the time of their oc-
currence to measure the temporal distance between them and/or
to establish a total event ordering. Obviously, measuring the time
between concurrent events requires a global clock, which often,
however, is not available on clusters. Assuming that potentially
different drifts of local clocks remain constant over time, linear
offset interpolation can be applied postmortem to map local onto
global timestamps. In this study, we investigate the robustness
of the above assumption using different timers and show that
the error of timestamps derived in this way can easily lead
to a misrepresentation of the logical event order imposed by
the semantics of the underlying communication substrate. We
conclude that linear offset interpolation alone may be insufficient
for many applications of event tracing and discuss further
options.

I. INTRODUCTION

Driven by the availability of inexpensive commodity com-

ponents produced in large quantities, clusters now represent

the majority of parallel computing systems, exhibiting a vast

diversity in terms of architecture, interconnect technology, and

software environment. Exacerbated by the advent of multicore

processors, parallel-application development on clusters faces

the challenge of efficiently utilizing an increasingly complex

hierarchy of latencies and bandwidths between cores on single

chips, within SMP nodes, and across the network. This creates

a demand for powerful software tools needed to increase the

productivity of application development and to yield satisfac-

tory runtime performance. However, to cope with cross-cluster

diversity, tool developers can make only little assumptions

with respect to the availability of non-standard features.

One technique widely used by cluster tools is event trac-

ing with a broad spectrum of applications ranging from

performance analysis [1], performance prediction [2] and

modeling [3] to debugging [4]. In particular, event traces

are helpful in understanding the performance behavior of

message-passing applications, since they allow the in-depth

analysis of communication and synchronization patterns. For

instance, the Scalasca toolset scans event traces of parallel

applications for wait states that occur when processes fail to

reach synchronization points in a timely manner, for example,

as a result of unevenly distributed workloads [5].

Usually, events are recorded along with the time of their

occurrence to measure the temporal distance between them

and/or to establish a total event ordering. Typical events being

recorded include sending or receiving messages, entering or

leaving functions, and events related to collective communica-

tion or synchronization. Most commonly, event traces are used

to analyze MPI or hybrid MPI/OpenMP codes [6]. Obviously,

measuring the time between concurrent events necessitates

either a global clock or well-synchronized processor-local

clocks. While some custom-built clusters such as IBM Blue

Gene offer relatively accurate global clocks, most commodity

clusters provide only processor-local clocks that are either

entirely non-synchronized or synchronized only within dis-

joint partitions (e.g., SMP node). Moreover, external software

synchronization via NTP [7] is usually not accurate enough

for the purpose of event tracing. Assuming that potentially

different drifts of local clocks remain constant over time, linear

offset interpolation can be applied to map local onto global

timestamps. In this study, we investigate the robustness of

the above assumption across a range of timer technologies

available on different platforms and show that the error of

timestamps derived in this way can easily compromise the

consistency of the logical event order imposed by message

semantics. We conclude that linear offset interpolation alone

may be insufficient for many applications of event tracing and

discuss further options.

The outline of this article is as follows: After introducing the

basics of processor clocks in Section II, we define the accuracy

requirements of event tracing in Section III. In Section IV, we

evaluate the effectiveness of linear offset interpolation using

a range of timer technologies on different cluster systems

and point out limitations. Then, in Section V, we discuss

further options with emphasis on the retroactive correction
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of timestamps based on logical clocks as a means to remove

residual inaccuracies that cannot be addressed by interpolation.

Finally, we summarize our results in Section VI.

II. PROCESSOR CLOCKS

Processor clocks are used to obtain event timestamps and

can be characterized in terms of their relative offset and drift.

Figure 1 shows two clocks with both an initial offset and

different but constant drifts. However, the rate at which the

offset changes over time (i.e., clock drift) is usually time

dependent. Here, we review the most common clock types,

explain how they can be accessed, and discuss their accuracy.
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Fig. 1. Two clocks with both an initial offset and different but constant
drifts.

Different types of clocks are used to measure and maintain

the processor time. Clocks based on cycle counters use the

processor clock signal to increment an internal counter on

each tick. The step size, which depends on the clock rate,

may change over time, as state-of-the-art power management

may dynamically slow down or accelerate the signal. As a con-

sequence, remote cycle counters are very hard to synchronize

and therefore only useful to compare events happening on the

same CPU chip. In contrast, hardware clocks, which are often

called timestamp counters, use specialized hardware counters.

Based on separate oscillators, their values are incremented

on each tick of the oscillator, and thus, their step size does

not depend on a potentially unstable clock rate. Although a

single hardware clock can provide accurate relative timings,

synchronization among multiple remote hardware clocks is

usually not provided. As a further alternative, software clocks

are realized in the form of user or library functions. Often,

those clocks are implemented entirely in software without any

underlying hardware support. Software-based synchronization

among different software clocks (e.g., via NTP) may guarantee

synchronized time values to a certain degree. Finally, system

clocks are specializations of software clocks and managed by

the operating system (e.g., gettimeofday()). Based on

either cycle counters, hardware clocks, or software clocks,

system clocks maintain the system-local time, which can be

queried by calling a function.

As examples of hardware clocks, we consider IBM’s real-

time clock (RTC), IBM’s time base register (TB), and Intel’s

timestamp counter register (TSC). All these clocks are 64-bit

special-purpose registers. RTC counts seconds and nanosec-

onds, while TB and TSC return the number of ticks counted

since processor reset. In contrast, MPI_Wtime() must be

classified as a software clock that can be used to transparently

query clock values on cluster systems. Open MPI [8], a

widely used open-source MPI library, chooses among a rich

set of implementations for MPI_Wtime() at configuration

time. The default, however, is gettimeofday(). Support

for emerging network timers that can be globally accessed

is in progress. gettimeofday() often relies on network-

based synchronization via NTP [7]. The general idea behind

NTP is to synchronize distributed clocks before reading them.

Distributed clocks query the global time from reference clocks,

which are often organized in a hierarchy of servers. For this

purpose, NTP uses widely accessible and already synchronized

primary time servers. In addition, secondary time servers and

clients can query time information via both private networks

and the Internet. To reduce network traffic, the time servers

are accessed only in regular intervals to adjust the local

clock. Jumps are avoided by changing the drift while leaving

the actual time unmodified. Unfortunately, varying network

latencies limit the accuracy of NTP to about one millisecond

compared to a few microseconds required to accurately trace

MPI applications running on clusters equipped with modern

interconnect technology.

Access to processor clocks is provided either locally or

globally. Global accessibility implies that each processor has

access to the same clock over an interconnection network

within either the entire machine or only within a single

partition (e.g., SMP-node or multicore-chip). Because every

access either takes exactly the same amount of time regardless

of the origin of the request or the exact amount of time is

always known and can be used for local correction, global

accessibility usually guarantees high accuracy. Even though

each access introduces a certain and usually not negligible

overhead, no further synchronization is required, which can

even be counted against the initial overhead. For instance, the

IBM Blue Gene/P system [9] offers a hardware clock that is

globally accessible across the entire machine. In comparison,

local accessibility means that each processor has only access

to its own local clock. Of course, querying local clocks incurs

less overhead because no data transfer over interconnection

networks is required. On the other hand, the synchronization of

remote clocks may create new overhead. Note that, in general,

it cannot be assumed that processor-local clocks within the

same SMP node are perfectly synchronized, as individual chips

may provide their own timestamp counters.

Additionally, we distinguish between non-transparent and

transparent access. Non-transparent access means a clock is

queried directly, with all necessary calculations to yield the

final time value left to the user. These calculations may include

the multiplication with a scaling factor or the mapping onto

a predefined start time. During a transparent clock access, in

comparison, the user queries appropriate software functions

that already incorporate these functionalities.
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III. REQUIREMENTS OF EVENT TRACING

In this section, we formulate requirements distributed clocks

must satisfy to allow the generation of event traces that are

suitable for analyzing parallel applications. We start with ex-

plaining the basic scenario of event trace generation, present a

straightforward method of compensating for missing synchro-

nization among the clocks being used to assign the timestamps,

and discuss limitations resulting from different sources of

inaccuracy.

Before parallel applications can be traced, they usually must

be linked to a tracing library. Instrumentation occurs either

by inserting extra code into the program itself and/or by

linking to wrapper libraries. MPI calls are commonly traced

using PMPI interposition wrappers [10]. Whenever the running

application generates an event, the tracing library takes the

current time and writes an event record to a memory buffer.

After program termination or if necessary already earlier

while the program is still running, the buffer contents is

flushed to disk. Events typically recorded by MPI and/or

OpenMP applications include sending and receiving point-to-

point messages, entering and leaving code regions, or events

related to collective communication or synchronization. To

minimize the intrusion overhead associated with timestamp

creation, the clock is read locally, as querying a remote clock

across the network would consume too much time, not to

mention the inaccuracy that may be caused by an uncertain

clock-reading latency. As a consequence, the timestamps taken

on most cluster nodes stem from insufficiently synchronized

local clocks.

a) Accuracy requirements: The accuracy of most trace

analyses depends on the comparability of timestamps taken on

different processors. Inaccurate timestamps can not only cause

a given interval to appear shorter or longer than it actually was,

but also change the logical event order, which requires that a

message can only be received after it has been sent. This is

also referred to as the clock condition. The clock condition,

which is given in Equation 1, requires that a receive event

occurs at the earliest lmin after the matching send event, with

lmin being the minimum message latency.

trecv ≥ tsend + lmin (1)

To avoid violations of this condition, the error of timestamps

should ideally be smaller than one half of the message

latency. Analogous requirements can be derived for alternative

communication mechanisms such as collective communication

or synchronization by mapping their semantics onto point-

to-point communication. Inaccurate timestamps may lead to

false conclusions during trace analysis, for example, when

the impact of certain behaviors is quantified, or - even more

strikingly - may confuse the user of trace visualization tools

such as VAMPIR [11] by causing arrows representing messages

to point backward in time-line views. Even worse, automatic

trace-analysis tools such as KOJAK [6] that rely on the correct

event order may break when encountering clock-condition

violations.
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(a) Consistent message-passing event trace: The message is
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(b) Inconsistent message-passing event trace: The message is
received before it has been sent.
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the barrier by both threads overlaps.
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(d) Inconsistent shared-memory event trace: The execution of
the barrier by both threads does not overlap.

Fig. 2. Implications of inaccurate timestamps for message-passing (MPI) and
shared-memory (OpenMP) event semantics.

Figure 2 exemplifies the potential implications of inaccurate

timestamps for the semantics of message-passing and shared-

memory events. The correct message-passing event order

shown in Figure 2(a) is violated in Figure 2(b). The two

diagrams show the time lines of two processes exchanging

a message via a send (S) and a receive (R) event. In the

second picture, the measurement suggests that the message

has been received before it has been sent, which, of course, is

impossible. The next two diagrams present a similar case that

may occur in OpenMP programs when writing traces according

to the POMP event model [12]. Shown is the execution of

an OpenMP barrier by two threads involving two different
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Fig. 3. A violation of OpenMP barrier semantics observed on an Itanium SMP node.

event types: entering (E) and exiting the barrier (X). Whereas

in Figure 2(c) the event order is consistent, in Figure 2(d)

one thread leaves the barrier before the other one has entered

it, constituting a clear violation of barrier semantics. As the

example in Figure 3 demonstrates, such violations can indeed

occur in practice. The figure shows the time-line visualization

of an event trace taken from an OpenMP benchmark program

executed with 4 threads on an Intel Itanium node with 4 chips

á 4 cores. As can be seen in the encircled area, thread 1:2

seems to have left the barrier (medium dark or red bars) before

thread 1:3 had a chance to enter it. Besides violations of barrier

semantics, OpenMP applications may also suffer from misrep-

resentations of other happened-before relationships specified

in the POMP event model, such as the rule that all events

belonging a parallel region must be temporally enclosed by

fork and join events.

b) Linear offset interpolation: The most significant de-

viations between non-synchronized clocks result from dif-

ferences in offset and drift. In a simple model assuming

different but constant drifts, the local (i.e., worker) time can be

mapped onto the global time of an arbitrarily chosen master

postmortem via linear offset interpolation based on prior offset

measurements. Offsets between master and workers can be

determined using Cristian’s probabilistic remote clock reading

technique [13]. The master process sends a request to a remote

worker process at time t1, the worker responds by sending

back its current local time t0, which is received by the master

at time t2. Assuming that the two message delays have equal

length, the offset can be calculated according to Equation 2.

o = t1 +
t2 − t1

2
− t0 (2)

Since, contrary to our assumption, real message commu-

nication is prone to irregular delays, the process must be

repeated several times to minimize the delay. Offset values

among participating clocks are measured either at program

initialization [14], [15] or at initialization and finalization [16],

and are subsequently used as parameters of a linear correction

function. Not to perturb the program, offset measurements

in between are usually avoided, although a recent approach

proposes periodic offset measurements during global syn-

chronization operations while limiting the effort required in

each step by resorting to indirect measurements across several

hops [17]. Assuming two measurements, one at he beginning

and one at the end, every remote worker has eventually two

pairs (w1, o1) and (w2, o2) that contain its local worker time

together with the offset to the matching master time when the

two measurements were taken. The master time m can now

be calculated from the worker time t using Equation 3.

m(t) = t +
o2 − o1

w2 − w1

× (t − w1) + o1 (3)

c) Sources of inaccuracy: While the above scheme might

prove satisfactory for short runs, measurement errors and time-

dependent drifts may create inaccuracies and clock-condition

violations during longer runs. Additionally, repeated drift

adjustments caused by NTP may impede linear offset interpola-

tion, as they deliberately introduce non-constant drifts. In gen-

eral, inaccuracies in non-synchronized timestamps often show

up as a result of either unstable clock drifts or measurement er-

rors. Apparently, varying temperature and flexible power man-

agement provided by modern microprocessors may alter oscil-

lation frequencies. As a result, clocks may gradually diverge

as the time progresses. Moreover, insufficient timer resolution

may introduce measurement errors, an effect exacerbated by

OS jitter. Jitter interference is primarily caused by scheduling

daemon processes or handling asynchronous events such as

interrupts on the side of the operating system. Although all

of the above influences may be predictable to some degree,

modeling them correctly will require intimate knowledge of

the underlying hardware and software infrastructure, which is

usually not available to developers of generic cluster tools.

From our perspective, this behavior can therefore be classified

as non-deterministic. Finally, network topology and load may

adversely affect the predictability of message latencies, an

important prerequisite for network-based synchronization. As

messages travel through various stages of the network, the

processing time in each stage may vary depending on the

current network load. Since messages exchanged between the

same pair of locations may take differently long each time,
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error correction based on assumptions about the message

latency remains challenging.

IV. CLOCK EVALUATION

The primary goal of our study is to evaluate the effective-

ness of linear offset interpolation as an instrument for the

postmortem synchronizations of timestamps in event traces of

parallel applications. For this purpose, we conducted measure-

ments using different timers on a selection of typical cluster

architectures:

Xeon cluster: Located at the Center for Computing and

Communication of RWTH Aachen University, the cluster

consists of 62 computing nodes, each with 2 quad-core Intel

Xeon processors running at 3.0 GHz. The computing nodes

communicate primarily through an InfiniBand network.

PowerPC cluster: Located at the Barcelona Supercomput-

ing Center, the cluster (aka MareNostrum) consists of 2560

JS21 blade computing nodes, each with 2 dual-core IBM 64-

bit PowerPC 970MP processors running at 2.3 GHz. The

computing nodes communicate primarily through a Myrinet

network with Myrinet adapters integrated on each server blade.

Opteron cluster: Located at the National Center for Com-

putational Sciences at Oak Ridge National Laboratory, the

cluster (aka Jaguarcnl) consists of 3744 XT3 compute nodes,

each with one dual-core AMD Opteron processor running at

2.6 GHz. Each node is connected to a distinct Cray SeaStar

router through HyperTransport with all the SeaStars arranged

in a 3-D-torus network topology.

In a first step, we measured residual clock deviations after

applying (i) offset alignment only at program initialization

so that all clocks started from zero and (ii) linear offset

interpolation based on offset measurements both at program

initialization and finalization, as described in the previous

section. To reflect varying application runtimes, we performed

short (300 s), medium (1800 s), and long (3600 s) mea-

surement runs. All processes were located on different SMP

nodes. In a next step, we measured the actual frequency

of clock-condition violations in event traces of two realistic

MPI applications. The first application we tested was the

Parallel Ocean Program (POP), which is shipped with the SPEC

MPI2007 1.0 benchmark suite [18]. The second application we

tested was the MPI version of the ASC SMG2000 benchmark, a

parallel semi-coarsening multigrid solver that uses a complex

communication pattern and performs a large number of non-

nearest-neighbor point-to-point communication operations. Fi-

nally, taking the hierarchical structure of modern multicore-

based cluster architectures into account, we tried to estimate

the chances of clock-condition violations in MPI or OpenMP

codes when processes are placed on the same SMP node but

on different chips or on the same chip, as shown in Table I

for the Xeon cluster.

As described in Section III, the error of timestamps should

ideally be smaller than one half of the message latency to

generate traces suitable for parallel-program analysis. Since

messages latencies between cores on a single chip, between

chips on a single SMP node, and between different SMP nodes

TABLE I
XEON CLUSTER: PROCESS PINNING FOR MEASUREMENTS AMONG SMP

NODES, CHIPS, AND CORES.

Process pinning

Inter node
4 nodes
1 process per node

Inter chip
1 node
2 chips per node
1 process per chip

Inter core
1 node
1 chip per node
4 processes per chip

usually differ, we measured the message latency for all these

cases. For the first case, we measured also the collective all-

reduce latency. As Table II shows for the Xeon cluster, the

latency exhibits significant variations depending on the relative

location of processes, a fact that needs to be taken into account

when designing postmortem synchronization algorithms.

TABLE II
XEON CLUSTER: MEASURED MESSAGE AND COLLECTIVE LATENCIES FOR

DIFFERENT MEASUREMENT SETUPS.

mean [µs] std. dev. [µs]

Inter node message latency 4.29 9.80E-04
Inter chip message latency 0.86 4.77E-05
Inter core message latency 0.47 6.94E-06
Inter node collective latency 12.86 1.68E-02

To evaluate the effectiveness of linear offset interpola-

tion, we first measured clock deviations of MPI_Wtime(),

gettimeofday(), and the Intel timestamp counter on

the Xeon cluster during runs of increasing duration after

an initial alignment of offsets. The results are shown in

Figure 4. Obviously, MPI_Wtime() (Figure 4(a)) produces

severe clock deviations of more than 200 µs already after

a relatively short period. Interestingly, the deviation seems

to grow roughly at a constant rate up to a turning point

at which the slope abruptly changes. After this point, the

affected processes continue striding away linearly but at a

much higher rate. gettimeofday() (Figure 4(b)) exhibits

a very similar drift pattern, again showing phases of roughly

constant drift interrupted by sudden drift adjustments – albeit

a little bit more curvy at least in one instance. The changes

are presumably caused by the underlying NTP synchronization,

which periodically corrects the drift to prevent the clocks from

diverging too far. This, of course, is detrimental to linear offset

interpolation, as it deliberately introduces non-constant drifts.

In sharp contrast to the previous two measurements, however,

the Intel timestamp counter (Figure 4(c)) appears to maintain

an approximately constant clock drift even across a very

long period of time. Obviously, hardware clocks seem much

more appropriate when it comes to taking the timestamps of

concurrent events.

Having reached this conclusion, subsequent experiments
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(a) MPI Wtime(): Clock deviations during a short run.
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(b) gettimeofday(): Clock deviations during a medium run.
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(c) Intel’s timestamp counter: Clock deviations during a long run.

Fig. 4. Xeon cluster: Measured clock deviations of different timers during
short, medium, and long measurement runs after an initial offset alignment.
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(a) Xeon cluster: Clock deviations using Intel’s timestamp counter.
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(b) PowerPC cluster: Clock deviations using IBM’s time base reg-
ister.
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(c) Opteron cluster: Clock deviations using gettimeofday().

Fig. 5. Measured clock deviations of two different hardware clocks and
gettimeofday() during long runs after linear offset interpolation.
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Fig. 6. Measured clock deviations after linear interpolation during a short
run on the Xeon cluster using the Intel timestamp counter. The deviations
slightly exceed the latency.

therefore focused on the evaluation of hardware clocks on

different cluster platforms. We conducted tests on the three

clusters with Intel’s timestamp counter, with IBM’s time base

register, and for comparison with gettimeofday() always

using a duration of 3600 s. Figure 5 shows residual clock

deviations after performing linear offset interpolation with an

expected convergence of offsets at the end of the run. As can

easily be seen, linear interpolation already accounts for the

most severe differences in offset and drift, although significant

deviations can still be observed, the highest occurring when

using gettimeofday() on the Opteron system. In fact,

measured deviations exceeded the message latency already af-

ter a few minutes or even earlier, rendering linear interpolation

alone insufficient to guarantee the absence of clock-condition

violations during longer runs. Since shorter runs also use a

shorter interpolation interval, linear interpolation may still be

adequate in those cases, although our results on the Xeon

cluster suggest that even then violations may occur (Figure 6).

To quantify the extent of clock-condition violations in traces

of real applications, we performed experiments with POP and

SMG2000 on the Xeon cluster, each time using 32 processes.

Emulating a realistic scenario, we refrained from using a spe-

cific process pinning. Instead, we kept the default setting and

let the scheduler choose the pinning automatically. Traces were

obtained using the Scalasca toolset, which performs linear

offset interpolation based on offset measurements taken during

MPI_Init() and MPI_Finalize(). We ran POP with the

mref input data set, causing it to execute 9000 iterations in

roughly 25 min. Since tracing the full run would consume a

prohibitively large amount of storage space, we traced itera-

tions 3500 to 5500. This “partial” tracing corresponds to the

recommended practice of tracing only pivotal points of long-

running applications that warrant a more detailed analysis. For

SMG2000, a problem size of 16 × 16 × 8 per process with

five solver iterations was configured. We emulated a longer

run of SMG2000 by inserting sleep statements immediately

before and after the main computational phase so that it was

carried out ten minutes after initialization and ten minutes

before finalization. This corresponds to a scenario similar to

POP, in which only distinct intervals of a longer run are traced

with tracing being switched off in between. For our purposes,

the artificial chronological distance to the offset measurements

on either end of the run adjusted the interpolation interval to

roughly twenty minutes execution time. However, with many

realistic codes running for hours, the execution times of both

POP and SMG2000 in our experiments can still be regarded

as an optimistic assumption.

Figure 7 shows the frequency of clock condition violations

for both applications on the Xeon cluster. The numbers repre-

sent averages across three measurements for each application

because he number of violations varied between runs. The

front row shows the percentage of messages with the order of

send and receive events being reversed, while the back row

shows the fraction of message transfer event in relation to the

total number of events in the trace. We also counted logical

messages that can be derived by mapping collective commu-

nication onto point-to-point semantics. The results underline

our hypothesis that linear interpolation alone is insufficient

to produce traces free of clock condition violations and that

such violations may adversely affect a significant percentage

of message events.

Finally, we examined relative deviations of clocks co-

located on the same SMP node of the Xeon cluster without

any correction, after aligning only initial offsets, and after

applying linear offset interpolation. We distinguished between

processes located on different chips and processes located

on the same chip. In all cases, the deviations we measured

Fig. 7. Xeon cluster: Percentage of messages with the order of send and
receive events being reversed and of message transfer events in relation to the
total number of events for SMG2000 and POP.
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essentially constitute “noise” oscillating around zero with a

maximum difference of roughly 0.1 µs between any two

clocks in our ensemble. One conclusion is that on this system

MPI message semantics can be easily preserved without further

postprocessing of timestamps.

However, as experiments on an Intel Itanium SMP node with

4 chips á 4 cores suggest, on some systems the semantics

of OpenMP constructs can be easily violated: We took traces

from a simple OpenMP benchmark program that executes

a loop whose body contains a single parallel-for construct,

which is a short cut for an OpenMP for construct enclosed

by a parallel region. The tests were conducted with varying

numbers of threads, ranging from 4 to 16. All events were

recorded according to the POMP event model. Neither offset

alignment nor linear offset interpolation was applied to the

timestamps, which were taken using the Intel timestep counter.

Figure 8 shows the fraction of parallel regions exhibiting

clock-condition violations. Again, the numbers represent av-

erages across three measurements for each configuration. The

row in the back gives the percentage of parallel regions with

violations of any kind, while the three rows in the front give

the percentages of parallel regions with specific violations: at

the region entry (i.e., fork event not the first event), at the

region exit (i.e., join event not the last event), and during

the implicit barrier. Notably, when using only four threads,

more than three quarters of the regions (83 %) were affected,

with violations at the region exit occurring most frequently.

However, the fraction of affected regions drops sharply as

the number of threads is increased, with 12 threads causing

only very few violations and 16 threads none at all. OpenMP

synchronization latencies rising with an increasing number of

threads offer a potential explanation. Interestingly, some of

the traces showed violations at the region entry but not at

the exit and vice versa, which may back the assumption that

a more systematic clock deviation can be held responsible.

Unfortunately, the test system did not support the pinning of

individual OpenMP threads to specific cores so that have been

unable to distinguish between inter- and intra-chip effects.

Whether offset alignment or interpolation can alleviate the

errors remains to be evaluated and also depends on the

question to which extent the mapping of threads onto cores

remains stable during the execution of longer programs.

Summarizing the insights we have gained so far, we can

state that linear offset interpolation is insufficient at least for

message-passing and hybrid applications spawning more than

one SMP node. As a consequence, the logical event order

imposed by the semantics of the underlying communication

substrate may be misrepresented. Still lacking more appro-

priate timer technologies such as network clocks on many

cluster systems, we now have to look for alternatives. In the

next section, we therfore review several approaches aiming at

correcting such inconsistencies, most of them usually applied

postmortem.

V. CLOCK SYNCHRONIZATION

Error estimation allows the retroactive correction of clock

values in event traces after assessing synchronization errors

among all distributed clock pairs. First, difference functions

among clock values are calculated from the differences be-

tween clock values of receive events and clock values of

send events (plus the minimum message latency). Second,

a medial smoothing function can be found and used to

correct local clock values because for each clock pair two

difference functions exist. Regression analysis and convex hull

algorithms have been proposed by Duda [19] to determine the

smoothing function. Using a minimal spanning tree algorithm,

Jezequel [20] has adopted Duda’s algorithm for arbitrary

processor topologies. In addition, Hofmann [21] has improved

Duda’s algorithm using a simple minimum/maximum strategy.

Babaoǧlu and Drummond [22], [23] have shown that clock

synchronization is possible at minimal cost if the application

makes a full message exchange between all processors in

sufficiently short intervals. However, jitter in message latency,

nonlinear relations between message latency and message

length, and one-sided communication topologies limit the

usefulness of error estimation approaches.

In contrast, logical synchronization uses happened-before

relations among send and receive pairs to synchronize dis-

tributed clocks. Lamport has introduced a discrete logical

clock [24] with each clock being represented by a monoton-

ically increasing software counter. As local clocks are incre-

mented after every local event and the updated values are ex-

changed at synchronization points, happened-before relations

can be exploited to further validate and synchronize distributed

clocks. If a receive event appears before its corresponding

send event, that is, if a clock-condition violation occurs, the

receive event is shifted forward in time according to the clock

4
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Fig. 8. Intel Itanium SMP node: Percentages of parallel regions in an OpenMP

benchmark program exhibiting clock-condition violations across a range of
thread counts.
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value exchanged. As an enhancement of Lamport’s discrete

logical clock, Fidge [25], [26] and Mattern [27] have proposed

a vector clock. In their scheme, each processor maintains a

vector representing all processor-local clocks. While the local

clock is advanced after each local event as before, the vector

is updated after receiving a message using an element-wise

maximum operation between the local vector and the remote

vector that has been sent along with the message.

Finally, the controlled logical clock (CLC) algorithm [28],

[29] developed by one of the authors retroactively corrects

clock condition violations in event traces of message-passing

applications by shifting message events in time while trying

to preserve the length of intervals between local events.

The algorithm restores the clock condition using happened-

before relations derived from message semantics. If the clock

condition is violated for a send-receive event pair, the receive

event is moved forward in time. To preserve the length of

intervals between local events, events following or immedi-

ately preceding the corrected event are moved forward as well.

These adjustments are called forward and backward amorti-

zation, respectively. Note that the accuracy of the adjustment

depends on the accuracy of the original timestamps. Therefore,

the algorithm benefits from weak pre-synchronization such

as the linear-offset interpolation discussed earlier. Since the

original CLC algorithm takes only point-to-point messages into

account, it has recently been extended to make it suitable

for realistic MPI applications that perform not only point-to-

point but also collective communication [30]. The basic idea

behind this extension is to map collective onto point-to-point

communications by considering a single collective operation as

being composed of multiple point-to-point operations, taking

the semantics of the different flavors of MPI collective opera-

tions into account (e.g. 1-to-N, N-to-1, etc.). Additionally, the

algorithm has been efficiently parallelized so that it can be

applied to traces from large numbers of processes [31].

VI. CONCLUSION

In this study, we have evaluated different options for obtain-

ing event timings when tracing parallel applications on cluster

systems. Because the danger of perturbation complicates offset

measurements in the middle of the run, simple (as opposed to

piecewise) linear offset interpolation has been introduced as

an established instrument used by state-of-the-art tracing tools

such as Scalasca for an initial correction of timestamps and as

a yardstick to assess the appropriateness of timer technologies.

Since software clocks such as MPI_Wtime() or

gettimeofday() often leverage network synchronization

via NTP, which can lead to sudden drift adjustments, hardware

clocks such as IBM’s time base register (TB) or Intel’s times-

tamp counter register (TSC) have been identified as alternatives

with at least approximately constant clock drifts. However, as

a more detailed analysis revealed, even those suffer from drift

deviations that may compromise the accuracy of linear offset

interpolation - especially when the application runs longer

than a few minutes. As a consequence, many traces of MPI

applications spawning multiple SMP nodes of a cluster system

will exhibit violations of the clock condition, potentially

misrepresenting the logical event order imposed by message

semantics and therefore harming further analyses. Evidence of

frequent violations in real codes has been presented.

Moreover, inaccuracies of timestamps within single SMP

nodes in combination with the low latency of shared-memory

synchronization in OpenMP may lead to infringements of

OpenMP semantics on some systems. As our experiments

further indicate, smaller numbers of OpenMP threads tend to

be more easily affected than larger numbers – potentially due

to lower OpenMP synchronization latencies when using only

a few threads.

Obviously, when using hardware clocks, linear offset in-

terpolation can significantly increase the accuracy of timings

when tracing across several SMP nodes, but is still insufficient

when applied in isolation. A viable option for removing

remaining inconsistencies is the CLC algorithm, as it can be

efficiently applied to realistic message-passing traces even at

larger scales. Current limitations, which still need to be ad-

dressed, include the non-observance of shared-memory clock

conditions related to OpenMP constructs and the algorithm’s

inability to account for synchronized clocks within single

SMP nodes. The latter may become important because if the

timestamp of a process is modified in the course of applying

the algorithm, timestamps of processes co-located on the same

SMP node that are close to the modified time may need to be

modified as well.
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