
Conquering Noise With Hardware
Counters on HPC Systems

Marcus Ritter∗, Ahmad Tarraf∗, Alexander Geiß∗, Nour Daoud†, Bernd Mohr†, Felix Wolf∗

∗Technical University of Darmstadt, Department of Computer Science, Germany
†Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Germany

{marcus.ritter,ahmad.tarraf,alexander.geiss1,felix.wolf}@tu-darmstadt.de
{n.daoud,b.mohr}@fz-juelich.de

Abstract—With increasing system performance and complex-
ity, it is becoming increasingly crucial to examine the scaling
behavior of an application and thus determine performance
bottlenecks at early stages. Unfortunately, modeling this trend is a
challenging task in the presence of noise, as the measurements can
become irreproducible and misleading, thus resulting in strong
deviations from the actual behavior. While noise impacts the
application runtime, it has little to no effect on some hardware
counters like floating-point operations. However, selecting the
appropriate counters for performance modeling demands some
investigation. In this paper, we perform a noise analysis on
various hardware counters. Using our noise generator, we add
additional noise on top of the system noise to inspect the
counters’ variability. We perform the analysis on five systems
with three applications in the presence of various noise patterns
and categorize the counters across the systems according to their
noise resilience.

Index Terms—Hardware counters, performance analysis, noise,
high-performance computing, parallel programming

I. INTRODUCTION

In the dawn of the Exascale systems, scientific applications,
as well as the systems they are running on, are increasingly
growing in performance and complexity. To gain a deeper
understanding of the application behavior and to identify early
performance bottlenecks, massive complex analyses are usu-
ally performed, which are often linked to a lot of effort, time,
and costs. A much easier and still effective methodology to
study the scaling behavior and identify application bottlenecks
in an early stage is performance modeling, which has been
wildly used in the HPC domain [1]–[3]. While performance
modeling delivers good insight into the application behavior
and its scalability behavior, a lot of factors can affect the

This work was funded by the Hessian LOEWE initiative within the
Software-Factory 4.0 project. Moreover, this work received funding by
the Federal Ministry of Education and Research (BMBF), funding no.
NHR2021HE, and the state of Hesse (HMWK), funding no. Kapitel 1502,
Förderprodukt 19 NHR4CES as part of the NHR Program. We acknowledge
the support of the European Commission and the German Federal Ministry
of Education and Research (BMBF) under the EuroHPC Programmes DEEP-
SEA (GA no. 955606, BMBF funding no. 16HPC015) and ADMIRE (GA
no. 956748, BMBF funding no. 16HPC006K), which receive support from
the European Union’s Horizon 2020 programme and DE, FR, ES, GR,
BE, SE, GB, CH (DEEP-SEA) or DE, FR, ES, IT, PL, SE (ADMIRE).
Furthermore, this work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 449683531 (ExtraNoise project).

models and thus the quality of the analysis. Besides fac-
tors linked to sudden changes in the application behavior
(e.g., branch condition related to the number of ranks), other
sources, such as noise in its variable forms and occurrences
(see Section II), can also, influence the collected metrics and
thus lead to inaccurate performance models. In fact, examining
the performance of HPC applications in noisy environments
has a long research history [4]–[7]. In general, noise can
induce performance variability, which is the difference be-
tween execution times across repeated runs of an application
in the same execution environment [8]. For example, perfor-
mance variability can be a consequence of the variations in
the execution environment, such as different process-to-node
mappings [5] or thread-to-core mappings on NUMA systems
[8]. Nevertheless, in spite of several attempts, performance
variability is far from being eliminated and will remain an
active research area as several studies have suggested [7]–[10].

One way to increase the accuracy of the performance mod-
els is to utilize hardware counters, as several approaches have
shown [11], [12]. Power and energy estimation using hardware
performance counters already has wider applicability in the
HPC domain [13], [14]. While hardware counters exist on
many systems, choosing the best ones to enhance performance
models can be a challenging task. This becomes an even
more demanding task in the presence of noise, as several of
these counters are vulnerable to system noise. Traditionally,
hardware events such as floating point operations (DP OPS),
as shown in Fig. 1, are known to be resilient against noise,
as the short distributions in the presence (orange) as well as
in the absence (blue) of induced noise show (for a detailed
description, see Section III-F). On the other hand, considering

0 20 40 60 80 100 1000
Relative deviation from mean [%]

time

DP_OPS

Fig. 1. Example showing the relative deviation from the arithmetic mean of
the floating point operations (DP OPS) and the runtime on the CM cluster
for the three benchmarks examined in the paper.

the time, variations exist in both cases, though they are by far
larger in the presence of noise (orange) than in the absence
(blue). But what about the remaining hardware events like
branch/total instructions, TLB misses, instruction/data cache
hits/misses, and many more? Is the observed behavior the
same across different architectures? And which hardware
events are suited for enhancing performance models in noisy
environments? Furthermore, a question that has been already
raised was: Can hardware performance counters be trusted
[15]? Almost two decades later, considering how enhanced,
complex, and huge modern HPC systems have become, there
is a need to investigate the variability of hardware counters
in the era of Exascale systems. Considering that only a few
hardware events are deterministic [16], and that this varies
across architectures, the resilience of the hardware counters to
noise on the HPC systems needs to be examined. This will
allow for the right selection of appropriate hardware events
that not only boost performance models but also allow for the
inclusion of robust metrics into these models, enhancing their
noise resilience which directly leads to more accurate models.
Hence, this paper aims to contribute by:

• Providing an analysis on the reliability of hardware coun-
ters. We analyze the hardware counters using PAPI [17]
and examine all available preset events as well as a set
of native events available on the five systems of different
architectures (see Table I) using three benchmarks.

• Inspecting the variability of the counters by injecting to
the already existing system noise additional noise using
our noise generator NOIGENA to examine the counters’
variability in the presence and absence of generated noise.

• Categorizing the counters across different systems and
providing a user guide on which counters are suitable for
enhancing performance models.

The remainder of this paper is structured as follows: In
Section II, we discuss noise on HPC systems, look at related
work, and introduce NOIGENA, the noise generator used in
our analysis. In Section III, we elaborate on our methodology
for identifying noise-resilient hardware counters, followed by
presenting and discussing the results. Finally, we summarize
our work in Section IV and state our future work.

II. NOISE ON HPC SYSTEM

Noise on HPC systems can have several sources, which
range from intranode (node-level) sources up to internode
(system-level) sources. In the following, we briefly describe
the noise sources, followed by introducing our noise generator.

A. Intranode Noise Sources

On the node level, Operating system (OS) noise represents
a source of noise that manifests itself due to interrupts,
polling, kernel threads, hypervisor, and many more. Operating
systems can use, for example, timer interrupts to check on
various activities periodically. Since each activity has a specific
frequency and different amount of work that must be done,
different timer interrupts can introduce different amounts of
OS noise [18]. Due to its continuous nature, this type of OS

noise can be classified as high-frequency continuous noise
with a short duration. Moreover, the amount of noise is not
negligible, i.e., OS noise can cause application performance
degradation by a factor of two [4]. While the effect of OS
noise is small on a single node (1-2% on average), it can be
dramatic on large clusters, as the probability that at least one
node out of thousands is slowed by some long kernel activity
approaches 1 [19].

OS noise, caused by scheduling (e.g., the kernel swaps an
HPC process out in order to run kernel daemons) and similar
activities, can be classified as low-frequency long-duration
noise [18]. This has been extensively researched in many
studies [4], [19], [20]. Variations in the working conditions
(operating temperature variations, power capping, etc.) can be
another source of intranode noise. While power capping, for
example, is a desired feature to limit the power consumption,
it results in CPU frequency variation, which impacts the appli-
cation execution time and causes performance inhomogeneity
[21]. Aside from the working conditions, hardware variations
(e.g., aging and manufacturing variability) can also be an
intranode noise source. Not only are the hardware components
affected by manufacturing variability [21]–[23] due to the
fabrication process at the beginning of their life span, but
also by hardware aging during their life. As the behavior of
the transistors deviates from the original intended behavior
during the chip lifetime, the chip suffers from performance
degradation and will consequently fail to meet some of its
specifications [24].

Another interesting source of intranode noise is shared
resource contention. Due to the shared resources on a node
like processors, memory, and network, resource contention
can even occur on the node level. In case many background
I/O threads are used to carry out I/O operations, and the
application itself issues several threads to take advantage of
multi-core CPUs, oversubscription can occur if the combined
number of threads is larger than the number of available
hardware threads. This causes interference and leads not only
to resource competition between the background I/O threads
and application threads but also to competition among the I/O
threads themselves [25].

B. Internode Noise Sources

Considering internode noise, several well-known sources
include network contention, parallel file system (PFS) con-
tention, system-level power capping, load imbalance, and
many more. Looking at the same example again, if asyn-
chronous I/O threads are operating at the same time as the
application communication, network contention will occur not
only slowing down the application but also the background
I/O threads, hence, prolonging the impact on other resources
(CPU, memory bandwidth, etc.) as well [25]. Other noise
sources, such as PFS contention and how to reduce it, are
a research field of their own [26]–[28]. Moreover, the inter-
ference caused by resource contention often occurs by design,
as resource sharing is expected to improve system utilization
[8]. Noise sources, such as PFS contention, can be classified

as a high-impact source with irregular patterns. As examining
all sources of noise would by far exceed the scope of this
paper, we limit the scope to noise generated by the OS and
from the shared resources leaving the I/O for future work.

C. Generating Noisy Measurements

To examine the variability and robustness of the hardware
counters under intensive noise, we generate noise in addition
to the noise that is already present in the system. Thus, we
can examine the hardware counters in the presence as well
as in the absence of the injected noise. For that, we use our
newly developed tool called NOIGENA (NOIse GENerator
Application), which will be made publicly available soon
after code restructuring. NOIGENA is composed of several
benchmarks that are run consecutively in a configurable pattern
and time frame in parallel to the underlying tested application
aiming at stressing it with three noise types resulting from
shared resources contention, which are: memory, network,
and I/O. NOIGENA is composed of Stream1, FzjLinkTest2,
and IOR3 benchmarks responsible for memory, network, and
I/O noise, respectively. For this paper, we will only focus on
memory and network noise patterns.

The Stream benchmark is a simple synthetic benchmark
program that measures sustainable memory bandwidth (in
MB/s) and the corresponding computation rate for simple
vector kernels. By configuring the size of the memory, Stream
acts as a memory noise source. The FzjLinkTest program is a
parallel ping-pong test between all possible MPI connections
of a machine. By configuring the number of processes to use,
the message size, and whether to send in serial or parallel
and other configurations, FzjLinkTest acts as a communication
noise source. To control the duration and the type of noise
created by NOIGENA, we use patterns that determine for
how long and with which configuration the benchmarks are
executed while NOIGENA is running. Listing 1 shows such
a configuration pattern. A pattern is defined by a sequence
of noise types each run for a given amount of time with no
noise periods intervening in between to simulate high and
low-frequency noise patterns. Thus, NOIGENA enables us to
simulate the different types of noise an application is exposed
to during its runtime in a real-life scenario. A sequence of
noise can be repeated either infinitely, for a given amount
of time, or randomly. The left pattern in Listing 1 provides
an example of a sequence that repeats until NOIGENA is
terminated, alternately generating two seconds of network
noise followed by two seconds without noise, two seconds
of memory noise, and two seconds without noise. The pattern
on the right generates random noise for a fixed duration.

III. IDENTIFYING NOISE-RESILIENT COUNTERS

Finding hardware events across different systems that are
noise resilient demands deep investigations. Even in strictly

1https://www.cs.virginia.edu/stream/
2https://www.fz-juelich.de/en/ias/jsc/services/user-support/

jsc-software-tools/linktest
3https://sourceforge.net/projects/ior-sio/files/IOR%20latest/IOR-2.10.3/

PATTERN_1:
Sequence:
- REPEATED_NOISE:

REPEAT: inf
Sequence:
- NETWORK_NOISE: 2
- NO_NOISE: 2
- MEMORY_NOISE: 2
- NO_NOISE: 2

PATTERN_2:
Sequence:
- RANDOM_NOISE:

Seed: 53
TIME: 1000
NETWORK_NOISE: 50
NO_NOISE: 10
MEMORY_NOISE: 40

Listing 1. Exemplary configuration patterns used by NOIGENA to determine
the type and the duration (in seconds) of the generated noise. The listing on
the left shows an itself endlessly repeating noise pattern, while the one on the
right generates random noise for a given amount of time.

controlled environments, run-to-run variations can occur [16].
Hence, determining hardware events that are deterministic
across different systems is a challenging task. This task
becomes even more difficult when noise is induced into the
system. This lies in the fact that major sources of non-
determinism are linked to the operating system’s activities,
context switching, hardware interrupts, the performance over-
head of measurements, and the precision of the measuring
tools [29]. Unlike other work in this field, [16], our primary
focus is neither to find deterministic events nor to identifying
causes for hardware counter deviations, but rather to identify
hardware counters that are suitable for enhancing performance
models and thus for examining the scaling behavior of HPC
applications. Moreover, we are interested in finding hardware
counters that are to some extent robust against OS noise
and resource contentions, thus resulting in a small deviation
between run-to-run simulations on the same system. Addi-
tionally, we aim to classify hardware counters across different
systems in regard to their variability and thus usefulness for
performance modeling.

A. PAPI and Hardware Counters

We use PAPI (Performance Application Programming Inter-
face) [30] to access the various performance counters on the
different systems. PAPI provides an interface to hardware per-
formance counters across different architectures through two
kinds of events: native and preset events. While native events
are platform-dependent, preset events are platform neutral and
are mapped to single or linear combinations of the native
countable events. To access the counters, PAPI provides a low-
level as well as a high-level API. Through the years, PAPI has
evolved from monitoring CPU-related events to also include
network cards, graphics accelerator cards, parallel file systems,
and more [31]. Though performance counters find a wide
range of applicability, including performance optimization,
simulator validation and power or temperature estimation, they
are also coupled with a few limitations, including accuracy,
overhead, and determinism [32]. Regardless of which counter
usage mode is employed (statistical sampling or aggregating
event counts), inaccuracy can happen in both, as a results of
the overhead of the counter interfaces, the cache pollution it
causes, the lack of hardware support for precisely identifying
an event’s address, or even from advanced features modern
chips utilize [32]. However, in this paper, we are not concerned

https://www.cs.virginia.edu/stream/
https://www.fz-juelich.de/en/ias/jsc/services/user-support/jsc-software-tools/linktest
https://www.fz-juelich.de/en/ias/jsc/services/user-support/jsc-software-tools/linktest
https://sourceforge.net/projects/ior-sio/files/IOR%20latest/IOR-2.10.3/

with determinism, which is the situation where two identical
runs of the same program result in the same results of the
monitored events but rather with the robustness of the counters
against noise.

To identify noise-resilient counters, we conducted an ex-
tensive analysis investigating all preset events available on
the used evaluation systems, such as the total instructions,
floating point operations, or the total cycles. The Figs. 3-13 in
Section III-F outline the results of our analysis and provide a
complete list of all preset events that we analyzed. As of PAPI
6.0.0.1, 108 preset events exist, though the number of available
events varies on the examined systems listed in Table I. Going
from the top to the bottom order of the evaluation systems
from Table I, the number of available preset events are: 58,
58, 17, 21, and 43. Considering the native events, their number
varies tremendously between the systems. Hence, we selected
a small subset of native counters, such as the PERF hardware
CPU cycles and the PERF hardware instructions, that are
potentially useful for performance analysis. However, due to
the accessibility of preset events across various systems, we are
focused on the preset events and limited the analysis to at most
18 PAPI native events, which are outlined in Section III-F.

TABLE I
LIST OF ALL SYSTEMS AND THEIR HARDWARE USED FOR THE ANALYSIS.

Alias Name System hardware

Jureca JURECA DC
Module, std.
compute nodes

480 nodes, 2x AMD EPYC 7742 CPUs (64
cores), 512 GB DDR4 RAM (3 200 MHz),
InfiniBand HDR100 (100 GBit/s)

ESB DEEP-EST,
Extreme Scale
Booster

75 nodes, 1x Intel Xeon Cascade Lake Silver
4215 CPU (8 cores, 16 threads), 48 GB DDR4
RAM (2 400 MHz), InfiniBand EDR (100 GBit/s)

CM DEEP-EST,
Cluster Module

50 nodes, 2x Intel Xeon Skylake Gold 6146
CPUs (12 cores, 24 threads), 192 GB DDR4
RAM (2 666 MHz), InfiniBand EDR (100 GBit/s)

Jetson OACISS,
Franken-cluster
Jetson ARM64

12x Jetson Tegra TX1, Quad-Core ARM
Cortex®-A57 MPCore, 4 GB 64-bit LPDDR4
RAM, 1 GBit/s ethernet

Cyclops OACISS,
Franken-cluster
Cyclops

2x 20c IBM Power9 CPUs (40 cores, 160
threads), 384 GB of RAM, BNX2 10G Ethernet
NICs, 2x Infiniband EDR (25 GBit/s)

B. Performing Noise Analysis on Hardware Counters

To decide whether a hardware counter is noise-resilient
or not, we investigate how the measured counters’ values
change when repeating the measurements using the exact same
experiment configuration while being exposed to different
levels of noise. The experiment configuration consists of
the used applications’ configuration parameters such as the
problem size and the system configuration, i.e., the resource
allocation. For our analysis, we repeated each experiment
configuration at least five times to observe how the counters’
values change due to different amounts and types of noise.
To gather the measurements, we used PAPI and Score-P [33]
to automatically instrument all kernels of our application
benchmarks using compiler wrapping and then measured the
counters’ values for each of them.

We run NOIGENA simultaneously with our application
benchmarks using a repeating noise sequence to generate the
noise. By doing so it creates a pre-configured amount of noise
until it automatically terminates together with the target appli-
cation. To emulate the conditions on a large-scale HPC system,
we employ different noise patterns to simulate low and high-
frequency noise, but also to distinguish between noise caused
by network congestion or memory effects. Additionally, we
used different noise patterns for each experiment repetition to
maximize the impact of noise on the application measurements
and their divergence between repetitions. Another possible
source of inaccuracy is multiplexing. The operating system
uses multiplexing if there are not enough physical hardware
counters available for the requested counters, which might
result in a certain amount of inaccuracy in the results [32].
To avoid this and to inspect each counter on its own, we only
measure one counter at a time during each experiment run.

To analyze whether the values of a counter change when
a performance experiment with the same configuration is
repeated, we calculate the relative deviation from the measured
arithmetic mean value of the counter in percent (|vi − v̄|)/v̄ ·
100% for all instrumented application kernels individually.
This metric provides a good measure of how much a counter’s
values scatter without noise and when exposed to noise.
Since we use Score-P, we automatically obtain the measured
counters’ values and the runtime for each instrumented ap-
plication kernel per process (MPI rank), OpenMP thread, and
experiment repetition. To calculate the relative deviation from
the arithmetic mean counter value, we first add up the counter
values ui of all threads per MPI rank and application kernel
and then calculate their arithmetic mean ū. This is necessary
as the work done by each thread can vary vastly, which would
lead to huge divergences when calculating the arithmetic
mean for all values without this step. Next, we calculate the
arithmetic mean counter value v̄ for each individual application
kernel and experiment configuration for all its processes and
repetitions using the previously calculated set of arithmetic
means ūi. Finally, we use the previously calculated arithmetic
means ūi = vi and compare them to v̄ to calculate the relative
deviation for all ranks and their repetitions in percent using
the following equation (|vi − v̄|)/v̄ · 100%.

C. Application Benchmarks

For our analysis, we investigated the performance of
three HPC applications: LULESH, MiniFE, and LAMMPS.
LULESH is a proxy app created by the Lawrence Liver-
more National Laboratory to solve a simple Sedov blast
problem with analytic answers—but represents the numerical
algorithms, data motion, and programming style typical in
scientific C or C++ based applications [34]. For our analysis,
we use LULESH 2.0 with OpenMP and MPI support.

MiniFE (also known as HPCCG) is a mini-app that mim-
ics the finite element generation, assembly, and solution for
an unstructured grid problem, which is required by many
engineering applications [35]. It is not intended to be a
true physics problem but sufficiently realistic for performance

analysis, for example, for studying the scalability of competing
systems. For our analysis, we used the optimized OpenMP
code openmp-opt with MPI support.

LAMMPS is a classical molecular dynamics code focusing
on materials modeling [36]. It has potentials for modeling a
large number of physics problems such as solid-state materials
(metals, semiconductors), to model atoms, or more generi-
cally, as a parallel particle simulator [36]. For benchmarking
purposes, LAMMPS features five standard problems that are
widely used for performance analysis. For our experiments,
we use the atomic fluid, Lennard-Jones (LJ) potential with
2.5 sigma cutoff (55 neighbors per atom), and NVE integration
with OpenMP and MPI support as described on the LAMMPS
benchmarks page (https://www.lammps.org/bench.html).

D. System and Software Configurations

For our analysis, we conducted performance measurements
on five different systems ranging from large-scale HPC clusters
to the small-scale portable ARM platform. Today’s systems are
diverse and feature a variety of different CPU architectures as
well as memory, storage solutions, and accelerators. To thor-
oughly investigate the counters noise-resilience, we selected
four of today’s most commonly used computing platforms
for our evaluation which are: Intel, AMD, IBM, and ARM.
Table I lists all systems and their hardware configuration that
were used for the analysis. Due to the different number of
resources each system provides, we adjusted the experiment
configurations accordingly, as shown in Table II.

To compile the application benchmarks and conduct the
measurements, we used PAPI 6.0.0.1 and OpenMP on all
systems. In addition, we used the Intel compiler, ParaStation
MPI, and Score-P 6.0 for ESB and CM. For Jureca, we
used GCC, ParaStation MPI, and Score-P 7.1. Finally, for the
remaining systems, we used GCC, OpenMPI, and Score-P 7.1.

E. Experiment Configurations

To simulate the efficient use of the evaluation systems,
we parallelized our applications and NOIGENA using both

TABLE II
EXPERIMENT CONFIGURATIONS USED FOR THE ANALYSIS.

App System Experiment configuration

M
in

iF
E

CM n = [1, 2, 4, 8], p = n, t = 12p, s = 203p
ESB n = [1, 2, 4, 8, 12, 16, 32], p = n, t = 8p, s = 503p
Jureca n = [4, 8, 12, 16, 20, 24], p = n, t = 128p, s = 203p
Jetson n = [2, 3, 4, 5, 6], p = n , t = 2p, s = 503p
Cyclops n = 1, p = [4, 8, 12, 16, 20], t = 4p, s ≈ 243p

L
U

L
E

SH

CM n = [1, 8, 27], p = n, t = 12p, s = 103p
ESB n = [1, 8, 27], p = n, t = 8p, s = 303p
Jureca n = [1, 8, 27], p = n, t = 128p, s = 103p
Jetson n = 8, p = n, t = 2p, s = 153p
Cyclops n = 1, p = [1, 8, 27, 64], t = p, s = 53p

L
A

M
M

PS

CM n = [1, 2, 4, 8], p = n, t = 12p, s = 203p
ESB n = [1, 2, 4, 8, 12, 16, 32], p = n, t = 8p, s = 203p
Jureca n = [1, 2, 4, 8, 16], p = n, t = 128p, s = 203p
Jetson n = [2, 3, 4, 5, 6], p = n, t = 2p, s = 203p
Cyclops n = 1, p = [4, 8, 12, 16, 20], t = 4p, s = 203p

OpenMP and MPI. For NOIGENA, we additionally map the
used CPU cores such that the execution of the LinkTest
and Stream benchmarks are intervening with the application’s
execution. Furthermore, we used five different infinite noise
patterns with different sequences of noise types and durations,
such as the one shown in Listing 1. As described in Sec-
tionIII-B, we repeat the measurements for each counter and
experiment configuration five times. To increase the amount
of divergence in the measured performance metrics among the
repetitions and simulate the conditions that prevail on a large-
scale HPC system, we created five different noise patterns,
one for each repetition. The following patterns were used for
our analysis. Pattern one: no noise 2 sec, network noise 2 sec,
no noise 2 sec, memory noise 2 sec. Pattern two: no noise 1
sec, network noise 3 sec, no noise 1 sec, memory noise 3 sec.
Pattern three: network noise 4 sec, memory noise 4 sec. Pattern
four: network noise 8 sec, memory noise 8 sec. Pattern five:
no noise 6 sec, network noise 12 sec, memory noise 8 sec. For
the simulation without induced noise, we simply repeated the
measurements five times with the same experimental setup.

Besides the NOIGENA settings, an experiment configura-
tion is determined by the application parameters such as the
problem size s, and the resource allocation, i.e., the number
of computational nodes n, the number of MPI processes p,
and the number of OpenMP threads t. Table II shows the
experiment configurations for each application and system that
we used for the analysis. To investigate the impact of the
resource allocation and the problem size on the counter values,
we conducted experiments using various different values for
n and s. Furthermore, we measured each experiment twice,
once with noise and once without. This enables us to compare
the counters’ values divergence in both scenarios with each
other and the runtime values, providing important insights for
performance analysis. Hence, with k preset hardware counters,
we have performed k × len(n)× len(p)× 2× 5 experiments
on each system per app adding up to a total of 26950 for the
preset events only.

F. Evaluation of the Results and Plot Anatomy

The evaluation results are displayed as relative population
distributions for the relative deviation ((|vi − v̄|)/v̄ · 100%)
for each PAPI preset counter. For each counter, the maximum
value of the counter was used to scale the peak occurrence
of the relative deviation. Fig. 2 shows an example of such a

Counter name

Shading denotes
importance

Extended 0-area

System name

With noise

Without noise

Fig. 2. Anatomy of the relative deviation graphs.

plot. We provide both the results with and without injected
noise (orange lower part and blue upper part, respectively)

https://www.lammps.org/bench.html

0 20 40 60 80 100 1000
Relative deviation from mean [%]

time

time

time

time

time

C
M

E
SB

Ju
r.

C
yc

.
Je

t.

Fig. 3. Distribution plot showing the runtime variations from the arithmetic
mean of the five systems with the three benchmarks from Section III-E. For
figure explanation see Section III-F.

as adjoined distribution plots allowing for direct comparison.
For improved visibility, we extended the values at 0% relative
deviation into the negative area. Note that we only show
callpaths that resulted in more than 1% of the total counter
value. The distribution plots are grouped by similar deviation
behavior and functional unit.

Intuitively, the height of each distribution plot describes
how often the corresponding relative deviation occurs, and the
intensity (alpha) shows the importance of the region to the
overall behavior. We define the importance as the callpath’s
share of the total counted value across all applications per
counter because large values indicate the parts of the appli-
cation that exhibit more of the behavior described by that
counter. Therefore, the heights of a callpath are scaled with
the share of the total counted values to emphasize callpaths
with bigger counter values. The layering of the distribution
plots allows us to represent the overall distribution behavior
while retaining characteristic individual behavior. As a point
of reference, we treated the runtime as a hardware counter and
displayed the distributions in Fig. 3 to show the effects caused
by the injected noise.

Fig. 4. Noise analysis for the floating point counters across the five systems
with three benchmarks. As expected, these counters are noise resilient.

0 20 40 60 80 100 1000
Relative deviation from mean [%]

BR_INS

LD_INS

LST_INS

SR_INS

TOT_INS

BR_CN

BR_MSP

BR_NTK

BR_PRC

BR_TKN

BR_UCN

FUL_CCY

FUL_ICY

TOT_CYC

REF_CYC

BR_INS

LD_INS

LST_INS

SR_INS

TOT_INS

BR_CN

BR_MSP

BR_NTK

BR_PRC

BR_TKN

BR_UCN

FUL_CCY

FUL_ICY

TOT_CYC

REF_CYC

C
M

E
SB

Fig. 5. Distribution plot outlining the relative deviations from the arithmetic
mean of the instructions and cycles for ESB and CN.

G. Discussion and Best Practice Guide

We classified the preset hardware events across the five
systems into categories according to their variations: floating-
point counters (Fig. 4), Intel instruction and cycle counters
(Fig. 5), ARM and IBM instruction and cycle counters (Fig. 6),
stall cycles and AMD instructions (Fig. 7), instruction cache
counters (Fig. 8), L2 (Fig. 9) and L3 (Fig. 10) data cache
counters, L2/L3 total cache counters (Fig. 11), L3 cache
counters for IBM (Fig. 12), unclassified counters (Fig. 13)

For the selected native events, we observed a similar behav-
ior to the corresponding preset events. However, as the number

0 20 40 60 80 100 1000
Relative deviation from mean [%]

BR_INS

INT_INS

LD_INS

LST_INS

SR_INS

TOT_IIS

TOT_INS

BR_CN

BR_MSP

BR_NTK

BR_PRC

BR_TKN

BR_UCN

STL_ICY

TOT_CYC

FXU_IDL

L1_ICH

BR_INS

LD_INS

SR_INS

TOT_IIS

TOT_INS

BR_MSP

TOT_CYC

L1_DCA

L1_DCR

L1_DCW

L1_ICA

C
yc

lo
ps

Je
ts

on

Fig. 6. Distribution plot outlining the relative deviations from the arithmetic
mean of the instructions and cycles for Cyclops and Jetson.

and type of traced events were too different on the systems
(e.g., 18 on the Intel systems, 5 on Cyclops, and 9 on Jureca),
we left out the evaluation figure.

We could confirm that floating-point counters are noise
resilient. Moreover, we have observed that several hardware
events reveal smaller deviations than the time, making them
suitable for performance modeling, though they exhibit larger
variation compared to floating-point operations. Also, several
metrics reveal similar behavior, as the cache hits and misses
across the cache levels. For example, the L1 cache misses
behave similarly to the L2 cache accesses. Analogously, the
same goes for L2 cache misses and L3 cache accesses.
Furthermore, we have seen that the performance counters are
differently affected by noise. We gathered our findings in the

0 20 40 60 80 100 1000
Relative deviation from mean [%]

RES_STL

STL_CCY

STL_ICY

RES_STL

STL_CCY

STL_ICY

TOT_INS

BR_INS

BR_TKN

L1_DCA

C
M

E
SB

Ju
re

ca

Fig. 7. Distribution plot outlining the relative deviations from the arithmetic
mean for all benchmarks of the stall and reference cycles for CM, ESB, and
the instructions for Jureca.

0 20 40 60 80 100 1000
Relative deviation from mean [%]

L1_ICM

L2_ICA

L2_ICH

L2_ICM

L2_ICR

L3_ICA

L3_ICR

L1_ICM

L2_ICA

L2_ICH

L2_ICM

L2_ICR

L3_ICA

L3_ICR

L1_ICM

L2_ICH

L2_ICR

L1_ICM

L2_ICH

C
M

E
SB

Ju
re

ca
C

yc
lo

ps

Fig. 8. Distribution plot showing the relative deviations from the arithmetic
mean of the instruction cache accesses/misses for CM, ESB, Jureca, and
Cyclops.

0 20 40 60 80 100 1000
Relative deviation from mean [%]

L1_DCM

L1_LDM

L1_STM

L1_TCM

L2_TCA

L2_TCR

L2_TCW

L2_DCA

L2_DCR

L2_DCW

L1_DCM

L1_LDM

L1_STM

L1_TCM

L2_TCA

L2_TCR

L2_TCW

L2_DCA

L2_DCR

L2_DCW

L2_DCH

L2_DCM

L2_DCR

TLB_DM

TLB_IM

L1_DCM

L1_LDM

L1_STM

L2_DCR

L2_DCW

C
M

E
SB

Ju
re

ca
C

yc
lo

ps

Fig. 9. Distribution plot illustrating the relative deviations from the arithmetic
mean of the L1/L2 cache accesses/misses for CM, ESB, Jureca, and Cyclops.

best practice guide provided below.
Best Practice User Guide: Under the influence of noise

and independent of the system architecture, the best hardware
counters for enhancing performance models are all counters
measuring either floating point operations or instructions such
as the DP OPS, FP INS, or VEP SP shown in 4.

Intel: The instructions and cycles from Fig. 5 reveal a strong
deviation (95%) for the less important callpaths (low intensity)
and a small deviation for important callpath (high intensity).
Hence, we recommend to still use them, as compared to the
time (Fig. 3). Their variation is by far smaller making them

0 20 40 60 80 100 1000
Relative deviation from mean [%]

L2_LDM

L2_STM

L3_DCR

L3_DCW

L3_TCW

MEM_WCY

CA_CLN

L2_LDM

L2_STM

L3_DCR

L3_DCW

L3_TCW

MEM_WCY

CA_CLN

L2_LDM

L2_STM

L2_LDM

L2_STM

L2_DCM

C
M

E
SB

C
yc

lo
ps

Je
ts

on

Fig. 10. Distribution plot showing the relative deviations from the arithmetic
mean of the L2/L3 data cache accesses/misses for CM, ESB, Cyclops, and
Jetson.

suitable for performance modeling. We recommend avoiding
stall and reference cycles (Fig. 7) as the deviations are relative
large. While the L3 counters as well as counters like TLB DM
are accurate in the absence of noise, they are strongly affected
by it and start to variate significantly (Fig. 11). Thus they
should be avoided for performance modeling.

AMD: The total and branch instruction show a strong
deviation (Fig. 7) when subjected to noise, but still less than
the time. The L2 cache access and misses, TLB DM and
TLB IM show a small deviation (at most 20% divergence).

IBM: In general, for significant callpaths, the deviation
is acceptable (< 30%), but still there is a small number
of high deviations (see Fig. 6). However, instructions such
as BR TKN, BR PRC, LD INS, and LST INS should be
avoided for performance modeling as the deviations are quite
large. The same goes for L3 related counters (see Fig. 12).

ARM: As Fig. 6 shows, the instruction and cycles counters
reveal small deviations. Excepted for the TOT CYC, we
would recommend all for performance modeling.

Counters measuring instruction cache-related values as the
ones shown in Fig. 8 are strongly affected by noise on most
systems. A similar behavior is observed in the L1/L2 data
cache counters from Fig. 9. In contrast, L2/L3 data cache
counters are more robust against noise (see Fig. 10).

0 20 40 60 80 100 1000
Relative deviation from mean [%]

L2_DCM

L2_TCM

L3_DCA

L3_TCA

CA_ITV

CA_SHR

CA_SNP

PRF_DM

TLB_DM

L3_LDM

L3_TCM

L2_DCM

L2_TCM

L3_DCA

L3_TCA

CA_ITV

CA_SHR

CA_SNP

PRF_DM

TLB_DM

L3_LDM

C
M

E
SB

Fig. 11. Distribution plot outlining the relative deviations from the arithmetic
mean of the L2/L3 cache accesses, misses, and requests for CM and ESB.

0 20 40 60 80 100 1000
Relative deviation from mean [%]

L2_DCM

L2_ICM

L3_DCM

L3_DCR

L3_ICA

L3_ICH

L3_ICM

L3_LDM

C
yc

lo
ps

Fig. 12. Distribution plot showing the relative deviations from the arithmetic
mean of the L2/L3 cache accesses/misses on Cyclops.

0 20 40 60 80 100 1000
Relative deviation from mean [%]

TLB_IM

TLB_IM

L3_TCM

L2_ICM

L1_DCW

HW_INT

L1_ICM

C
M

E
SB

Ju
r.

C
yc

lo
ps

Je
t.

Fig. 13. Distribution plot outlining the relative deviations from the arithmetic
mean of counters that could not be categorized for CM, ESB, Jureca, Cyclops,
and Jetson.

IV. CONCLUSION

In this paper, we investigated the noise-resilience of hard-
ware counters using three application benchmarks and five
evaluation systems with diverse hardware architectures. We
examined all available PAPI preset events and a selected
set of native events on these systems and analyzed their
reliability in the presence and absence of injected noise. Our
analysis confirmed the results of previous studies, showcasing
that all counters measuring either floating point operations
or instructions are noise-resilient. Overall, it unveiled that,
independent of the system architecture, noise generally affects
hardware counters. Furthermore, the reliability of many coun-
ters depends significantly on the system architecture. While
the instruction and cycle counters are highly reliable on CM
and ESB, on Cyclops, Jetson, and especially Jureca, they are
much more prone to be influenced by noise. Therefore, our
best practice user guide enables application developers and
researchers aiming to analyze or optimize the performance of
their code to easily identify the hardware counters relevant
for performance analysis for their system architecture. Future
work will focus on generating performance models with the
inspected hardware counters and expand the noise analysis to
include other noise sources, such as I/O contention.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the computing time
provided to them on the high-performance computer Licht-
enberg at the NHR Centers NHR4CES at TU Darmstadt and
the JURECA supercomputer at Jülich Supercomputing Centre
(JSC). Special thanks to Sameer Shende for providing the
authors with access to the clusters of the University of Oregon.

REFERENCES

[1] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling
for systematic performance tuning,” in State of the Practice Reports, ser.
SC ’11. New York, NY, USA: Association for Computing Machinery,
Nov. 2011, pp. 1–12.

[2] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proc. of the international conference on high performance computing,
networking, storage and analysis, 2013, p. 45.

[3] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying
performance bottlenecks of stencil computations using the execution-
cache-memory model,” in Proc. of the 29th ACM on International
Conference on Supercomputing, ser. ICS ’15. New York, NY, USA:
Association for Computing Machinery, Jun 2015, p. 207–216. [Online].
Available: https://doi.org/10.1145/2751205.2751240

[4] F. Petrini, D. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in SC ’03: Proc. of the 2003 ACM/IEEE
Conference on Supercomputing, Nov. 2003, pp. 55–55.

[5] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the
neighborhood: Performance degradation due to nearby jobs,” in SC ’13:
Proc. of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Nov 2013, p. 1–12.

[6] O. H. Mondragon, P. G. Bridges, S. Levy, K. B. Ferreira, and P. Widener,
“Understanding performance interference in next-generation HPC sys-
tems,” in SC ’16: Proc. of the International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov 2016,
p. 384–395.

[7] T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: that is the question,” in Proc. of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. Denver Colorado: ACM, Nov 2019, p. 1–30.

[8] D. A. Nikitenko, F. Wolf, B. Mohr, T. Hoefler, K. S. Stefanov, V. V.
Voevodin, A. S. Antonov, and A. Calotoiu, “Influence of noisy envi-
ronments on behavior of HPC applications,” Lobachevskii Journal of
Mathematics, vol. 42, no. 7, pp. 1560–1570, Jul. 2021.

[9] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on Xeon Phi based Cray XC
systems,” in Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: Association for Computing Machinery, Nov 2017, p.
1–13. [Online]. Available: https://doi.org/10.1145/3126908.3126926

[10] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and
R. Ricci, “Taming performance variability,” in Proc. of the 13th USENIX
conference on Operating Systems Design and Implementation, ser.
OSDI’18. USA: USENIX Association, 2018, p. 409–425.

[11] N. Ding, S. Xu, Z. Song, B. Zhang, J. Li, and Z. Zheng, “Using hardware
counter-based performance model to diagnose scaling issues of HPC
applications,” Neural Computing and Applications, vol. 31, no. 5, pp.
1563–1575, May 2019.

[12] N. Ding, V. W. Lee, W. Xue, and W. Zheng, “APMT: an automatic hard-
ware counter-based performance modeling tool for HPC applications,”
CCF Transactions on High Performance Computing, vol. 2, no. 2, p.
135–148, Jun 2020.

[13] K. O’Brien, I. Pietri, R. Manumachu, A. Lastovetsky, and R. Sakellariou,
“A survey of power and energy predictive models in HPC systems and
applications,” ACM Computing Surveys, vol. 50, Oct 2017.

[14] G. Tsafack Chetsa, L. Lefèvre, J. Pierson, P. Stolf, and G. Da Costa,
“Exploiting performance counters to predict and improve energy perfor-
mance of HPC systems,” Future Generation Computer Systems, vol. 36,
p. 287–298, Jul 2014.

[15] V. M. Weaver and S. A. McKee, “Can hardware performance counters
be trusted?” in 2008 IEEE International Symposium on Workload
Characterization, Sep 2008, p. 141–150.

[16] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and
overcount on modern hardware performance counter implementations,”
in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). Austin, TX, USA: IEEE, Apr 2013,
p. 215–224.

[17] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer, 2010, p. 157–173.

[18] A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla, and M. Valero,
“A quantitative analysis of OS noise,” in 2011 IEEE International
Parallel & Distributed Processing Symposium. Anchorage, AK, USA:
IEEE, May 2011, p. 852–863.

[19] R. Gioiosa, S. A. McKee, and M. Valero, “Designing OS for HPC
applications: Scheduling,” in 2010 IEEE International Conference on

Cluster Computing. Heraklion, Greece: IEEE, Sep 2010, p. 78–87.
[Online]. Available: http://ieeexplore.ieee.org/document/5600318/

[20] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in SC
’08: Proc. of the 2008 ACM/IEEE Conference on Supercomputing, Nov
2008, p. 1–12.

[21] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,
D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda, M. Kondo, and
I. Miyoshi, “Analyzing and mitigating the impact of manufacturing
variability in power-constrained supercomputing,” in Proc. of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. Austin Texas: ACM, Nov. 2015, pp. 1–12.

[22] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, Nov. 2005.

[23] S. Dighe, S. R. Vangal, P. Aseron, S. Kumar, T. Jacob, K. A. Bowman,
J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, V. K. De, and S. Borkar,
“Within-die variation-aware dynamic-voltage-frequency-scaling with op-
timal core allocation and thread hopping for the 80-core TeraFLOPS
processor,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp.
184–193, Jan. 2011.

[24] D. Kraak, M. Taouil, S. Hamdioui, P. Weckx, F. Catthoor, A. Chatterjee,
A. Singh, H.-J. Wunderlich, and N. Karimi, “Device aging: A reliability
and security concern,” in 2018 IEEE 23rd European Test Symposium
(ETS). Bremen: IEEE, May 2018, pp. 1–10.

[25] S.-M. Tseng, B. Nicolae, F. Cappello, and A. Chandramowlishwaran,
“Demystifying asynchronous I/O Interference in HPC applications,” The
International Journal of High Performance Computing Applications,
vol. 35, no. 4, pp. 391–412, Jul. 2021.

[26] O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the
root causes of cross-application I/O interference in HPC storage sys-
tems,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2016, p. 750–759.

[27] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC applications under congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium,
May 2015, p. 1013–1022.

[28] M.-A. Vef, N. Moti, T. Süß, M. Tacke, T. Tocci, R. Nou, A. Miranda,
T. Cortes, and A. Brinkmann, “GekkoFS — a temporary burst buffer
file system for HPC applications,” Journal of Computer Science and
Technology, vol. 35, no. 1, p. 72–91, Jan 2020.

[29] M. Mushtaq, P. Benoit, and U. Farooq, “Challenges of using
performance counters in security against side-channel leakage,” in
CYBER 2020 - 5th International Conference on Cyber-Technologies
and Cyber-Systems, Nice, France, Oct 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02979362

[30] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in Tools for High Performance Computing
2009. Springer, 2010, pp. 157–173.

[31] F. Winkler, “Redesigning PAPI’s high-level API,” University of Ten-
nessee, Tech. Rep. ICL-UT-20–03, 2020.

[32] S. Moore, D. Terpstra, and V. Weaver, Software Interfaces to Hardware
Counters, ser. Chapman & Hall/CRC Computational Science. CRC
Press, Nov 2010, vol. 20102662, p. 33–48. [Online]. Available:
http://www.crcnetbase.com/doi/abs/10.1201/b10509-4

[33] A. Knüpfer, C. Rössel, S. Biersdorff, K. Diethelm, D. Eschweiler,
M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel et al.,
“Score-P: A joint performance measurement run-time infrastructure for
Periscope, Scalasca, TAU, and Vampir,” in Tools for High Performance
Computing 2011. Springer, 2012, pp. 79–91.

[34] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 updates and changes,”
Tech. Rep. LLNL-TR-641973, August 2013.

[35] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[36] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen et al., “LAMMPS-a flexible simulation tool for particle-
based materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications, vol. 271, p. 108171, 2022.

https://doi.org/10.1145/2751205.2751240
https://doi.org/10.1145/3126908.3126926
http://ieeexplore.ieee.org/document/5600318/
https://hal.archives-ouvertes.fr/hal-02979362
http://www.crcnetbase.com/doi/abs/10.1201/b10509-4

	Introduction
	Noise on HPC System
	Intranode Noise Sources
	Internode Noise Sources
	Generating Noisy Measurements

	Identifying Noise-Resilient Counters
	PAPI and Hardware Counters
	Performing Noise Analysis on Hardware Counters
	Application Benchmarks
	System and Software Configurations
	Experiment Configurations
	Evaluation of the Results and Plot Anatomy
	Discussion and Best Practice Guide

	Conclusion
	References

