
Satellite Collision Detection using Spatial Data
Structures

Christian Hellwig∗, Fabian Czappa∗, Martin Michel†, Reinhold Bertrand†‡, Felix Wolf∗
∗ Technical University of Darmstadt, Department of Computer Science, Germany

† Technical University of Darmstadt, Institute of Flight Systems and Automatic Control, Germany
‡ European Space Agency ESA/ESOC

hellwig.christian@gmx.de, {fabian.czappa, felix.wolf}@tu-darmstadt.de
michel@fsr.tu-darmstadt.de, reinhold.bertrand@esa.int

Abstract—In recent years, the number of artificial objects in
Earth orbit has increased rapidly due to lower launch costs
and new applications for satellites. More and more governments
and private companies are discovering space for their own
purposes. Private companies are using space as a new business
field, launching thousands of satellites into orbit to offer services
like worldwide Internet access. Consequently, the probability of
collisions and, thus, the degradation of the orbital environment
is rapidly increasing. To avoid devastating collisions at an early
stage, efficient algorithms are required to identify satellites
approaching each other. Traditional deterministic filter-based
conjunction detection algorithms compare each satellite to every
other satellite and pass them through a chain of orbital filters.
Unfortunately, this leads to a runtime complexity of O(n2). In
this paper, we propose two alternative approaches that rely on
spatial data structures and thus allow us to exploit modern
hardware’s parallelism efficiently. Firstly, we introduce a purely
grid-based variant that relies on non-blocking atomic hash maps
to identify conjunctions. Secondly, we present a hybrid method
that combines this approach with traditional filter chains. Both
implementations make it possible to identify conjunctions in a
large population with millions of satellites with high precision
in a comparatively short time. While the grid-based variant is
characterized by lower memory consumption, the hybrid variant
is faster if enough memory is available.

Index Terms—parallelization, spatial data structures, conjunc-
tion detection, orbit, space safety, space debris

I. INTRODUCTION

In recent years, the number of satellites in Earth’s orbit
has increased rapidly. While the past decades have been
characterized by the use of space mainly by government
agencies or military and single commercial operators, lower
launch costs and new business applications have led to an
increased number of new satellite operators. The largest
private operator to date is SpaceX1 deploying so-called mega-
constellations to enable worldwide satellite-based internet.
SpaceX has already sent several thousand Starlink satellites
into orbit and has submitted applications for at least 30,000
more [1]. Other operators like Planet Labs2 use a large fleet
of nearly unmaneuverable CubeSats—small satellites with
standardized sizes and interfaces to generate commercial Earth
observation data with a near-global coverage and minimum

1https://www.spacex.com
2https://www.planet.com

revisit-time. These two examples show the rapidly changing
satellite population, especially in low Earth orbit (LEO), which
creates new challenges for satellite operators to ensure safe
and efficient operations. Figure 1 shows this evolution in terms
of artificial objects sent into low Earth orbit compared to the
beginning of the space age in the 1960s.

Fig. 1: Evolution of the number of payloads launched into
the low Earth orbit (height of perigee hp between 200 km and
1750 km) by mission funding [2].

With every satellite launched, the number of objects in space
increases. Besides the satellite itself, this includes, for example,
parts of the launcher and mission-related objects, like clamps,
shell structures, or bolts, which are released into the orbital
environment. Moreover, satellites at their end of life or in case
of malfunctions significantly contribute to the growing space
debris problem if a correct de-orbiting could not be achieved.

To date, space surveillance sensors can track more than
30,000 objects larger than approximately 10 cm in Earth’s
orbit [2]. About 5000 of these objects are operational satellites,
of which around 1800 have been launched just in 2021 [3]. With
new sensors that will be put into operation in the following
years, the extension of the catalog to more than 1,000,000
traceable objects is expected [4]. Based on simulations and
in situ measurements, the number of untrackable objects (too
small) is expected to be around 130 Million [5].



A collision of these objects with other satellites or debris
could lead to a chain reaction. Even with the smaller objects,
each collision creates more debris, increasing the likelihood
of further collisions [6]. Such a development would have
enormous negative consequences for space operations’ safety
and economy. Previous incidents, like the collision of the
Chinese satellite Yunhai 1-02 with the remains of a Russian
rocket in March 2021, show the severity of this risk [7].

Therefore, it is essential to detect conjunctions, i.e., satellites
coming close to each other or existing debris objects, at an
early stage and initiate suitable collision avoidance maneuvers.
Due to the increased number of objects in Earth’s orbit, current
deterministic algorithms for conjunction detection are reaching
their limits. As these algorithms typically perform a pairwise
comparison of the orbits of all objects in space (”all-on-
all”), the process results in the consideration of a quadratic
number of satellite pairs. The resulting pairs of satellites are
then successively excluded through a series of filters, which
improves the actual runtime but does not solve the fundamental
problem of quadratic complexity.

In this paper, we propose two approaches that rely on
spatial data structures to overcome the quadratic number of
comparisons and exploit parallelization methods. We first
introduce a purely grid-based variant relying on non-blocking
atomic hash maps to identify conjunctions. Additionally, we
present a hybrid method that combines this idea with classical
orbital filter chains.

Both implementations allow for identifying conjunctions
in a large population with millions of objects (satellites or
debris particles—the implementation can deal with both) in a
comparably short amount of time with high precision. While
the grid-based variant is characterized by lower memory
consumption, the hybrid variant is faster if enough memory is
available. Overall, we see our contribution as the following:

• Implementation and validation of an orbital conjunction
detection algorithm using spatial data structures.

• Implementation that achieves a maximum speed up of 19x
for the grid based variant and a maximum speed up of
14x for the hybrid variant with respect to a single thread.

• Implementation of a GPU Kepler Solver.
• While the complexity does not improve in the worst case,

we see an improvement from quadratic to linear time
complexity in the best case. For the average case, we
remain in the same general complexity class, however,
we see a significantly better scaling behavior.

II. RELATED WORK

Contrary to classical N-body simulations that calculate
the gravitational forces between the objects, e.g., sub-atomic
particles or celestial bodies, we can neglect the forces between
the simulated objects due to the high speed of the objects in
comparison to their masses. This simplification, however, also
disqualifies us from using well-established auxiliary methods
such as the Barnes–Hut algorithm [8] for the Fast Multipole
Method [9].

Software tools for all-on-all conjunction detection appli-
cations are typically based on topological methods, spatial
partitioning, or a combination of both [10] [11]. Topological
methods usually encompass a series of sequential filters that
compare the orbits and positions of the individual objects
and successively exclude object pairs that cannot generate a
conjunction [12]. The apogee/perigee filter takes the farthest
(apogee) and nearest point (perigee) of an orbit and compares
the range between with the respective range of all other
objects, excluding those as potential collision pairs that do
not overlap [13]. The orbit path filter further reduces the
number of object pairs by calculating the minimal distance
between the two orbits. The pairs are excluded if this distance
is larger than a predefined threshold, which considers several
orbit and position uncertainties [13]. Several other geometric
filters have been defined to further reduce the number of
relevant pairs [14]. By calculating the true anomaly window
around the intersection line of the two orbits, it is possible
to apply a time filter that takes the actual position of the two
objects into account. It excludes all object pairs that are not in
these windows simultaneously and can, therefore, not generate
a conjunction [15]. The sieve method [16] and smart sieve
method [17] include an additional set of filters that compares
the propagated Cartesian coordinates of two objects at two
different points in time and derives if the trajectories overlap
between these two points.

Volumetric approaches are typically used in long-term
simulations [11] [18] [19], employing spatial partitioning for
the statistical analysis of conjunctions. For the Flux-based
approach [20], the space is divided into several “bins”, and the
intersections of each orbit with these volumes are calculated.
Therefore, each object can be assigned to multiple volumes with
a specific probability based on the residence period. The spatial
object density in each volume can be derived for statistical
analysis. The Cube-method [21] divides the space into quadratic
volumes and uses randomized object positions on their orbits
to fill the volumes. Unlike the previously presented filters,
the volumetric approaches have a runtime complexity linear
in the number of objects. However, they can not be used
to generate deterministic conjunctions due to the stochastic
approaches and are not suited for the simulation of large satellite
constellations [22].

For better performance of the conjunction detection process,
several concepts for parallelization have been examined, which
are based on slicing the time span of the simulation [23],
dividing the object population [24], or the parallel application
of independent filter steps [25]. GPU-based approaches have
been mainly used to accelerate the propagation of the satellite
position [26] [27] or in the context of conjunction detection to
adapt the classic filter chains [28].

Two alternative approaches for conjunction detection are
presented in [29] and are based on Kd-trees and spatial hashing.
For the first approach, the minimum and maximum positions
of the satellites in their orbit are calculated and inserted into
the Kd-tree so that all overlapping satellites can be determined.
Alternatively, spatial hashes are derived from the extreme values



so that satellites likely to overlap can be identified. However,
both methods have their drawbacks. Building the Kd-tree for
every step is tedious, so they use relatively few time steps
and can produce a lot of false positives, requiring more filters
afterward and thus cannot be used alone. Their spatial hashing
method also uses large time steps and needs a correcting
bounding box containing all possible grid cells, which they try
to trim down. These operations involve expensive computations,
which slows their approach down significantly.

Spatial data structures are used to speed up simulations in
nearly every discipline. Primarily used in computer graph-
ics [30] [31], it also sees uses in areas such as surgery
planning [32], particle packing [33], land surveillance [34]
and other geosciences [35], and many more.

When implementing spatial data structures such as grids,
concrete memory representation often matters. For sparsely-
filled grids, hash maps are a good choice as they require a
memory footprint that is only a constant factor larger than
the actual filling. Combining hash maps with parallelism is a
broad subject, for example, with CUDA [36] [37], MPI [38],
or general multi-threading of the CPU [39].

III. APPROACH

In orbital conjunction detection, we are interested in the
so-called Point of Closest Approach (PCA) and the Time of
Closest Approach (TCA). A PCA is a local minimum of the
distance between two satellites in orbit, and the TCA is the
time when the PCA occurs. On the one hand, a satellite pair
can have multiple PCAs and TCAs depending on their orbits
and the simulated period. On the other hand, the PCAs of some
pairs might be so large that they are not relevant, as there is
no actual risk of collision.

Each pair of satellites—regardless of how far apart the
satellites are—has at least one point where they are closest on
their orbits. As the objects are subject to constant perturbing
forces, and, therefore, their orbits are constantly changing, the
exact positions of both satellites are unknown to the operators
and Space Situational Awareness (SSA) data providers. The
magnitude of the uncertainty depends on the time and the
accuracy of the individual objects’ last position measurements
by SSA-sensors or on-board systems and could be estimated
during the orbit determination process. The goal of a typical
conjunction screening scenario is to identify all potential
collisions between the objects, which will then be further
analyzed by the operator as part of a more detailed subsequent
conjunction assessment process. During the screening phase
we use a uniform screening threshold, which size should
include the largest typical uncertainties. All encounters with a
minimal distance below this threshold are considered for further
assessment, while those above are discarded (see Figure 2), as
a risk of collision could be ruled out due to the large distance.

Our approach for the screening phase uses a spatial data
structure—a grid that subdivides the simulation space into sub-
spaces (cells) of equal height, width, and length, depending on
the screening threshold—to speed up the conjunction detection.
We insert the satellites into the grid in parallel and thus know

when to check whether a conjunction between two satellites
occurs. However, because we do not know the satellite’s
exact position inside the cell, we also check all 33 − 1 = 26
neighboring cells. This covers the cases where two satellites
are close to each other but in different cells. In this paper, we

D
is

ta
n

ce
 b

et
w

ee
n

 
Sa

te
lli

te
s

Time

Threshold

Fig. 2: Distance between two satellites over a period of time.
The blue dots symbolize the local minima at which the satellites
come closest to each other. The blue dashed line corresponds
to a screening threshold under which a conjunction should be
detected. The time of a local minimum is a TCA. The distance
at this point is the respective PCA.

present two variants, one is based exclusively on the grid and
a hybrid variant that uses the grid as a filter before examining
the satellites with classical orbital filters, e.g., checking if
orbits are coplanar. Both sample the total simulation period in
equidistant steps, insert the satellites into the grid, and check
for conjunctions. If the grid-based variant identifies a pair of
satellites that might cause a conjunction, they are examined
in detail to find their PCA and TCA. This variant requires
comparably small grid cells to avoid having to check too many
pairs. In turn, this requires propagating the position on the
orbit in small steps so that no satellite skips boxes during the
simulation. The hybrid variant passes all identified pairs to
the classical orbital filtering methods. The additional checks
reduce the number of pairs we have to examine for their PCAs
and TCAs, so we sample less frequently. Consequently, this
allows us to use larger cells. However, it has to check more
pairs per sample step, effectively trading time for space.

Both conjunction detection implementations share three
major steps. However, the hybrid variant requires an additional
step for the orbital filters. The structure of our approach is as
follows:

1) Memory allocation to store the initial satellite position
data, the grid structures, and results (once at the start).

2) Parallel propagation of the satellite positions, parallel
insertion into the grid, and parallel identification of
potential colliding satellite pairs.

3) (Hybrid variant only) Application of the orbital filters to
reduce the number of potentially colliding pairs.

4) Determination of the TCAs and PCAs.

A. Grid

A grid is a simple spatial data structure that divides a geo-
metric space into uniform cells (see Figures 3a and 3b). It suits
the problem of detecting conjunctions in space well because



all objects have the same size (approximately; compared to
the size of a cell). We calculate the cell size by considering
the worst-case scenario for our method. It occurs when two
satellites are at the edge of their cell, but the two cells are
not neighbors, such that they are separated slightly more than
the screening threshold (see Figure 4a). In the next sampling
step (see Figure 4b), the actual undercut of the threshold that
would occur is skipped (see Figure 4c). To circumvent this,
the cell size gc (in km) is based on the screening threshold
d, the typical speed of a satellite in LEO (7.8 km/s), and the
seconds between the samples sps:

gc = d+ 7.8 · sps (1)

𝑦

𝑥

(a) For n = 4 objects we have to perform 4 · (4−
1)/2 = 6 collision tests to check all (unordered)
pairs of objects.

𝑦

𝑥

(b) The space is divided into cells. We can easily
determine that two objects overlap, while the other
two are far apart. Thus, we reduce the number of
collision tests from 6 to 1.

Fig. 3: Collision detection example with and without spatial
partitioning.

1) Insertion of Satellites: Depending on the memory avail-
able, we can calculate several sample steps simultaneously.
Each step is considered separately and requires its own grid,
however, the insertion of the elements into this grid is easily
parallelizable. For doing so, a thread propagates a satellite along
its orbit based on the Kepler elements. We have divided the
simulation space into Euclidean space rather than by respective
Kepler elements, so the thread needs to convert the position
into the usual three-dimensional Cartesian coordinates. Lastly,
the thread calculates the grid cell based on the Cartesian
coordinates and inserts the satellite therein. Consequently, the
grid cells must be able to handle more than one satellite.

2) Conjunction Detection: After all elements have been
inserted into the grid, we perform the actual conjunction

detection, where we can check each cell in parallel. Whenever
a cell is not empty, each satellite within the cell makes up a
pair for further conjunction detection with every other satellite
in that cell or the 33−1 = 26 neighbor cells. We save all pairs
employing the satellites’ ids and the sampling step. This helps
to prevent considering possible conjunctions twice (from the
point of view of both satellites), however, it allows multiple
conjunctions at different sampling steps. The purely grid-based
variant calculates the PCA and TCA for each such pair. The
hybrid variant passes these pairs to the classical orbital filters
for processing and only then calculates the PCAs and TCAs.

B. Complexity

For the complexity analysis of our approach, we look at the
number of times two satellites have to be checked for their
PCA and TCA. As is often the case with auxiliary methods, our
approach shares the same worst-case complexity as the previous
algorithm. If all satellites were simultaneously at the same point
in space, both the grid-based and hybrid variants would have
to compare every satellite with every other one, resulting in
quadratic complexity. This, however, does not occur in practice:
Even though a few orbits are populated by a larger number
of satellites (geostationary orbit, Sun-synchronous orbit), the
positions of the individual satellites are distributed across this
orbit, such that a conjunction is highly unlikely. In the extreme
case of a catastrophic fragmentation event, the generated space
debris objects will start at one point in space. But even then
they will immediately spread across the orbit due to different
initial velocities and be distributed over the whole orbital shell
due to perturbing effects on their orbit.

However, in the best case, all satellites are far away from
each other. This way, every grid cell is occupied by at most
one satellite, resulting in zero calculations of PCA and TCA.
Thus, our approach has linear complexity (each satellite still
has to be inserted), whereas a naive examination of all pairs
would have quadratic complexity.

For the average case analysis, we use some approximations.
Firstly, we assume that all satellites have near-circular orbits,
i.e., their eccentricity is close to zero. Secondly, we assume
that satellites with close orbits traverse the same number of
cells per orbital period. Figure 5 shows a 2D visualization of
our following argument. The satellite orbits have a relative
high eccentricity to showcase the maximum number of orbit
intersections.

We pick a sequence of increasing radiuses: r0, r1, . . . , rk,
along which we divide the simulation space. That is, we
consider the hollow spheres S1, . . . , Sk, where Si has inner
radius ri−1 and outer radius ri. The total number of satellite
pairs we have to check is the sum of the satellite pairs
over all hollow spheres, where we ignore inter-hollow sphere
pairs (using the first approximation). Now, we assign all
satellites to a particular hollow sphere based on the height
of their orbit, splitting the total number of satellites n into
n = n1+n2+ · · ·+nk. Within a hollow sphere, two satellites
can produce at most two conjunctions per orbital period (we
ignore co-orbiting objects; for orbits, the Earth is always at



> 𝑑

(a) At time t0, the satellites are
located at the outer edge of the
middle cell. They are slightly further
apart than the screening threshold
d.

> 𝑑

(b) At time t1, the satellites are
again at the outer edge of the middle
cell. They are again slightly further
apart than the screening threshold
d.

< 𝑑

(c) Between the time points t0
and t1, the distance between the
satellites was below the screening
threshold d. However, due to a too
large time step this point in time
was skipped.

Fig. 4: Worst case analysis within a grid over two time steps. Both satellites are at the edge of a cell and the cells are not
neighboring cells.

a b

c d

Fig. 5: This illustrates the hollow spheres from the arguments
in Section III-B as 2D cuts. For better visibility, the satellites’
orbits are red dashed ellipses. Within a hollow sphere, two
nearly circular orbits can intersect at most twice because the
earth lies in one of the focal points. Sorting the orbits into their
respective hollow spheres shows that there are two intersections
in b, two in d, and none in a and c.

a focal point [40]). As the satellites are in only one grid cell
at a time, we can give a bound on the number of a satellite’s
conjunction per orbital period as 2 · ni · b−1

i . Here bi is the
number of grid cells on a satellite’s orbit in Si (if the radiuses
are close enough, this can be considered a constant using the
second approximation).

In total, the average number of pairs we have to check per
simulation step is in O(

∑
i=1..k ni·(2·ni·b−1

i )). This shows that

the number of possible conjunctions still grows quadratically
within a hollow sphere with the number of satellites. However,
we can ignore all pairs of satellites that reside in different
hollow spheres, and we utilize the spatial location of the
satellites within each hollow sphere to further reduce the
number of conjunctions.

IV. IMPLEMENTATION

In this section, we highlight different aspects of our imple-
mentation. We give details for the implementation of the grid
and how we propagate the satellites, and, for all determined
pairs, how we calculate their PCA and TCA. Furthermore, we
provide the associated code as open source.

A. Grid

Several factors influence the underlying data structure we
use to represent the grid. The two most significant factors
are the geometric space we need to simulate and the number
of objects within the grid. The simulation space must be at
least (85,000 km)3 to represent the entire space up to the
geostationary orbit. At the same time, there are only a few
artificial objects that we need to keep track of, compared
to the extremely large size of this space. Therefore, simple
data structures like a three-dimensional array where each item
corresponds to a grid cell are not practical. In principle, such
a grid representation would fit into memory, however, it is
important to note that we have to consider multiple sampling
steps. As a single grid reflects only one point in time, it is
desirable to calculate as many grids as possible in parallel.
For this reason, such memory-intensive representations are
unsuitable. Furthermore, if we used three-dimensional arrays,
we had to erase the content for every iteration.

Memory sparse representations like compressed sparse
matrices or hash maps are more suitable because they only
store non-empty cells. Thus, no storage place is wasted by
the abundance of empty cells. However, they come at the
downside of a higher computational cost when inserting



elements. Nevertheless, grids (e.g., in the form of hash maps)
are superior to data structures such as octrees or Kd-tree. These
must be recreated each time an object moves, requiring higher
computational cost at each iteration.

We use a fixed-size hash map as the underlying data structure
because the assembly of a grid with sparse matrices can only
be done iteratively. Thus, we can quickly calculate the memory
location using a hashing procedure. A remaining disadvantage is
that memory coalescing techniques no longer function optimally
due to the hashing. These techniques bundle memory accesses
of closely located memory cells to ensure maximum bandwidth.
However, hashing makes it unlikely that two neighboring cells
will be adjacent in memory. Thus, the memory throughput
is limited. Fortunately, the bandwidth of modern hardware is
very high, so we prefer the hash map implementation over
compressed sparse matrices.

1) Construction: We use the fast MurMur33 hash for
calculating the position of a grid cell. To ensure that the value
range of the slot does not exceed the size of the hash map,
apply the modulo operation to the hash value as well.

The simplest method to resolve a collision in the hash map
is linear probing. If a collision occurs, a new index is created
by incrementing the last calculated index si(x) of the key x
by one and applying the modulo operation with the size of the
hash map M to prevent that indices are larger than the hash
map’s capacity:

si+1(x) = si(x) + 1 mod M (2)

Linear probing generally fills every memory location of the
hash map, however, by doing so it dents so form cluster—long
chains of occupied slots. Such a cluster increases the insertion
time because the recalculation of the hash map position has to
be done frequently.

We rely on atomic operations to ensure thread-safe access to
the hash map. Each slot of the hash map consists of a pair of
the key from which the slot was calculated and corresponding
additional fields representing the data. As a memory location
can never be truly empty, we use the maximum of a 64-bit
value as a unique value that indicates an empty slot. The entire
memory area of the hash map is initialized with this value at
the beginning to threat the whole hash map as empty.

2) Insertion: When inserting a satellite into the grid, we
use the atomic compare-and-swap (CAS) operation to check
whether the slot is empty and to replace it with a new value if
this is the case. After indicating that this memory location is
now occupied, we set the value within the slot to the satellite
in question. If, however, the slot is not empty, the check will
fail and return the stored key. If this key indicates another grid
cell, we encountered a hash collision and calculate a new slot
with linear probing. Otherwise, we have found another satellite
within the same cell. We build a singly-linked list of satellites
within one cell, that is, an entry of a satellite contains, among
other things, the satellite’s identifier, the satellite’s position,
and a pointer to the next entry (possibly null). See Figure 6

3https://github.com/aappleby/smhasher

for a depiction of the hash map and its entries. Each satellite
produces exactly one of these entries, so we can allocate them in
advance and just set the pointers to the next entry dynamically.

Hash Set

Slot Satellite entry

0 0xFFF…

1 0xA

… …

n 0xFFF…

[0xA] 
Satellite entry

Key Value

Slot 1

Id 10

Next 0xB

Coordinates 9042…

[0xB] 
Satellite entry

Key Value

Slot 0xFFF…

Id 42

Next 0xFFF…

Coordinates 9041…

Fig. 6: Partially filled hash set. The entry at slot 1 points to
a satellite entry that represents the content of a grid cell by
means of a singly linked list. To build up the linked list, each
satellite entry contains a next field that points to further satellite
entries.

3) Conjunction Detection: We examine all non-empty slots
of the hash map in parallel for the conjunction detection. We
calculate the individual cell’s position for each such slot, look
at all satellites from the neighboring cells and extracting their
Euclidean positions. Afterward, we insert all pairs of satellites
with at least one satellite in the original cell combined with
the sampling step in one conjunction hash map. In the hybrid
variant, we pass these pairs to the orbital filters to further
reduce the possible conjunctions. Then, we calculate the PCAs
and TCAs of each (remaining) pair.

B. Propagation

The satellite propagation describes the determination of the
future position of a satellite, which uses the Kepler elements.
These six values (semi-major-axis, eccentricity, inclination,
longitude of the ascending node, argument of perigee, true
anomaly) describe the shape and the position of an orbit, as
well as the position of a satellite (see Figure 7 and Figure 8).
The future position of the satellite is determined by the
computationally intensive recalculation of the true anomaly as
a function of time.

In our implementation, we use a modified version of the high-
performance Contour Kepler solver [43]. The provided CPU
C++ code4 in the associated publication of the Contour Kepler
solver is designed to compute several true anomalies for a
single satellite. Due to the computation of many true anomalies,
the reference implementation reuses partial computations. On
a graphics card, it makes sense that each individual thread
can calculate a true anomaly on its own. By splitting the
reference implementation into independent parts, these partial
calculations are no longer available. We can compensate for
this by either recalculating these values at each calculation
of the true anomaly or by precalculating the reusable parts
independently once and then storing them in the global graphics
memory. As we have to perform this calculation for each
satellite at each time step, we store the data in memory.

4https://github.com/oliverphilcox/Keplers-Goat-Herd



Apogee Perigee

Satellite

𝑟

𝑎 𝑎𝑒

𝑎(1 − 𝑒2)

𝐹2 𝐹1
(Earth)

𝑓

Fig. 7: Orbital elements in an elliptical orbit of a satellite. The
semi-major axis a is the largest diameter of the ellipse. F1 and
F2 are the focal points. In the focal point F1 lies the earth as
the central body. The position of the satellite is determined
by the angle of the true anomaly f and the distance between
satellite and focal point F1. Apogee and perigee describe the
farthest and closest point to the central body. The ratio between
the semi-major axis and the distance between the focal points
is called eccentricity e (adapted from [41]).

𝑍

𝑌

𝑋 Ω

𝑟

ω

𝑓

𝑖

Perigee

Ascending node

Satellite orbitFrist point
of aries

Earth‘s
equatorial

plane

Earth

Earth‘s north polar axis

Fig. 8: Representation of the orbital elements in the three-
dimensional (X-, Y -, Z-axis) geocentric equatorial system.
The angle f corresponds to the true anomaly. The orientation
of the orbital plane to the Earth is defined by three angles
Ω, ω, and i. Ω is the angle between first point of aries and
ascending node. ω is the angle between ascending node and
the perigee. i is the vertical tilt of the ellipse (adapted from
[42]).

C. PCA and TCA Calculation

The conjunction detection based on the grid (and possibly the
orbital filters) produces pairs of satellites together with a time
stamp. We calculate the PCA and TCA for each such pair to
detect if an actual conjunction occurs. For this, we rely on the
Brent optimization algorithm [44] that combines a golden-
section search’s reliability with an interpolation method’s
performance. We utilize the reference implementation provided
by the Boost5 library. The different pairs are independent, so
we can check them all in parallel.

5https://www.boost.org

For the grid-based variant, we know the sample time at
which both satellites were close. We use this time step as the
center (c) of an interval I , having radius t, i.e., I = [c−t, c+t].
Here, t is the time it takes the slower of both satellites to cross
two cells, which we can calculate simply by using the velocity
vector at that time step. Accordingly, we use Brent’s search on
the interval I to determine the minimum distance of the two
satellites’ positions. However, if this search finds a minimum
at the end of the interval I , this might not actually be the local
minimum. In fact, the local minimum might be just beyond
the border of the interval, so we check a little further, and if
this is indeed the case, we discard the pair (the minimum will
be found when considering the neighboring interval).

For the hybrid variant, we distinguish between coplanar and
non-coplanar pairs. The orbital filters determine the interval
to search in for non-coplanar pairs. For the coplanar ones, the
procedure is the same as for the grid-based variant.

V. EVALUATION

To demonstrate the superiority of our approach over tradi-
tional orbital filter chains, we performed several benchmarks
with a realistic synthetically-generated satellite population and
a screening threshold of 2 km, which is a typical for a rough
screening process. We do this to examine the scalability of our
approach, both in terms of time and memory consumption.

We performed most of the benchmarks on a Windows 10
system. For better comparability, we test both a CPU implemen-
tation accelerated with OpenMP6 and a GPU implementation
with CUDA7. We use a numba8 JIT accelerated single-threaded
Python implementation that uses traditional filter chains as a
baseline consideration, referring to this variant as legacy [45].
We also test our implementation on a RedHat 8.6 system with
two high-end CPUs. This way, we hope to provide a better
comparison on a hardware level. Table I shows the benchmark
system configuration.

A. Data Generation

We used synthetically-generated orbit data to perform the
measurements for a large set of satellites. This data was partially
derived from the database of real operational satellites in early
2021 [46]. We employed a bivariate kernel density estimate
to model the distribution and relationship between the semi-
major axis and the eccentricity (see Figure 9). The other
orbital parameters are distributed uniformly at random (see
Table II). To mimic typical use-cases for orbit simulations with
conjunction detection (see Chapter I), we have generated several
satellite populations with sizes between 2000 and 1,024,000.

B. Parameterization

Fixed-size hash sets/maps require a prior size estimation—so,
we need to consider the memory consumption. In particular,
within the spatial data structures, we have to calculate how

6https://www.openmp.org/
7https://developer.nvidia.com/cuda-toolkit
8https://numba.pydata.org/



System Property Values

Operating System Windows 10
GPU name NVIDIA RTX 3090
GPU CUDA cores 10496
GPU base clock 1.4 GHz
GPU memory 24 GB GDDR6X
CPU name AMD Ryzen 9 5950X
CPU cores 16
CPU threads 32
CPU base clock 3.4 GHz
System memory 64 GB DDR4
Operating System RedHat 8.6
CPU name 2x Intel Xeon Platinum 9242
CPU cores 2x 48
CPU threads 2x 48
CPU base clock 2.3 GHz
System memory 384 GB DDR4

TABLE I: We use two different systems for benchmarking
to allow better comparability between a high-end CPU and a
high-end GPU.

Fig. 9: Bivariate distribution function generated from the real
satellite data between the semi-major axis and the eccentricity.
A high satellite concentration is shown in red at a semi-major
axis of about 7000 km and an eccentricity of 0.0025. The
concentration becomes weaker with increasing deviation of the
concentration point outward, which is shown in yellow, green
and finally blue.

Kepler Element Value Range

Semi-major axis From distribution
Eccentricity From distribution
Inclination 0− π
Right-ascension of ascending node 0− 2π
Argument of perigee 0− 2π
(Mean anomaly) 0− 2π
True anomaly From mean anomaly

TABLE II: Value ranges of the Kepler elements used to generate
the artificial satellite population.

many samples and grids we can process in parallel before
running out of memory.

We can calculate the maximum number of samples p if
we subtract the fixed allocations consisting of the satellite
information as, the Kepler solver data ak, and the conjunction
hash map ach from the free memory m and divide the result
by the resources needed per grid. For each grid instance, we
need a hash map agh and the elements to represent the singly
linked list al:

p =
m− as − ak − ach

agh + al

In addition, we can calculate the total number of samples o that
we need to process for each satellite. It is equal to the quotient
of the simulated time span t in seconds and the seconds per
sample sps, which corresponds to the step size that is made in
the time domain.

o =
t

sps

By dividing the total number of samples that we need to process
by the number of calculation steps that fit into memory at once,
we can calculate the number of computational rounds rc that
are required to process all samples:

rc =
o

p

while the satellite information as, the Kepler solver data ak, and
the number of elements of the singly linked list al obviously
correspond to the number of satellites n multiplied with the
corresponding data structure size.

The size of the grid hash set can also be defined easily. Each
satellite must be inserted exactly once, so the hash set must
have at least as many slots. However, the hash function can
produce collisions (that have to be resolved by linear probing).
We use twice the number of satellites as slots to mitigate the
number of hash collisions and break up long clusters.

Compared to the grid hash set, the growth of the conjunction
hash map behaves differently. The number of elements stored
in it is not known in advance. Instead, the size depends on
several factors like the number of satellites, the grid cell size
or the seconds per sample, and the simulation period.

To determine the optimal size, we created an empirical
model for the grid-based and the hybrid variant using Extra-
P9 [47] and embedded it in the application. The estimated
models for the grid-based variant (see Equation 3) and the
hybrid variant (see Equation 4) show that the estimated number
of conjunctions c′ is mainly composed of the product of the
number of satellites n, the simulated time span t and the
screening threshold d:

c′ = 2.32 · 10−9 · n2 · s 4
3 · t · d 7

4 (3)

c′ = 2.14 · 10−9 · n2 · s 5
3 · t · d (4)

To ensure that the size is not too small, we ensure that at
least 10,000 elements fit into the conjunction hash map. Like
the grid hash map, the conjunction hash map needs additional
space to allow fast insertion, so we double the number of slots.
In addition, the number of conjunctions varies strongly as it
depends on the properties of the satellite population. Thus, we
treat the Extra-P–model more as a base size assumption, and
accordingly, we double the hash map size again.

c = max(c′; 10, 000) · 2 · 2

The actual memory consumption of the hash map gch can
now be calculated from c and the size of the data structure:

gch = c · 16B

9https://github.com/extra-p/extrap



We can decrease the number of elements in the conjunction
hash map, and thus the required memory, by either adjusting the
simulation period or adjusting seconds per sample parameter.

We automatically reduce the second per sample for the
hybrid variant until a parallelization factor p is obtained, which
corresponds approximately to 512. This equals the number of
CUDA threads that can be used in a single block of the grid
conjunction detection kernel function.

C. Benchmarks

Figure 10 shows the runtime of the two new conjunction
detection methods on CPU and GPU for different-sized satellite
populations compared to the legacy variant. The GPU variants’
timings include all necessary calculation steps, including
memory allocation and CPU/GPU data transfer operations.
These take up about 3 % of the total time on average.

The results show that the hybrid GPU variant is the fastest
among all tested variants. At a small number of 2000 satellites,
it is about eight times faster than the legacy variant (see
Figure 10a). As the number of satellites increases, the hybrid
method can extend the performance advantage compared to the
legacy variant even further. The test with 64,000 satellites is
675 times faster (see Figure 10b). Thus, the collision detection
for 64,000 elements takes, on average, 1.15 s.

Compared to the grid-based GPU variant, the legacy method
slightly outperforms it at 2000 satellites (see Figure 10a).
However, at 4000 satellites, the grid-based GPU method is
already approximately 30 % faster. Like with the hybrid GPU
variant, the advantage increases significantly with the number
of satellites. At 64,000 elements, the grid-based variant is, on
average, about 43 times faster than the legacy variant but 15
times slower than the hybrid GPU implementation. From 8000
satellites on, the performance of the CPU variant of the hybrid
method surpasses the legacy method. It halves the time that
the legacy variant needs. The grid-based CPU variant can only
outperform the legacy variant late at 32,000 satellites.

It is also worth mentioning that the CPU variant of the
hybrid method is faster than the grid-based GPU variant for
16,000–64,000 satellites. Therefore, it is well suited to process
a medium number of satellites if no graphics card is available.

For a higher number of satellites, the measurements show that
both GPU variants are superior to the CPU implementations.
As with the small population, the hybrid GPU implementation
performs best. On average, 1,024,000 objects are processed
in 3 min. The grid-based GPU variant beats the hybrid CPU
variant at 128,000 satellites and can further expand its lead
with an increasing number of satellites.

However, the difference in speed between the hybrid GPU
and grid-based GPU implementation becomes increasingly
smaller as the hybrid variant requires significantly more mem-
ory. For 512,000 and 1,024,000, the algorithm automatically
adjusts the seconds per sample parameter. Thus, for 512,000
satellites, the parameter is set from nine to four, and for
1,024,000, it is set from nine to one to fit the conjunction hash
map into the graphics memory. While at 256,000 elements

2,000 4,000 8,000
Number of Satellites

0

10

20

30

40

To
ta

l T
im

e 
(s

)

0.
4 1.
7

7.
3

6.
6

11
.3

21
.8

15
.7 17

.4

26
.9

0.
6 1.
0 2.
13.
1

3.
1 3.
4

21
.1

15
.9

16
.1

0.
1

0.
1

0.
1

Legacy
Grid-based CPU (AMD)
Grid-based CPU (Intel)
Grid-based GPU
Hybrid CPU (AMD)
Hybrid CPU (Intel)
Hybrid GPU

(a) For a small number of objects, the legacy variant (green,
left) already shows its super-linear scaling. Our proposed
methods, both on the GPU and CPU, show linear speed up
or less due to the comparably large overhead.

16,000 32,000 64,000
Number of Satellites

0

200

400

600

800

To
ta

l T
im

e 
(s

)

28
.9

11
8.

9

77
7.

8

45
.3 96

.9

28
1.

6

44
.6 87

.8

21
9.

4

4.
3

8.
8 18
.0

4.
4

6.
4 13
.1

16
.7

18
.7

22
.7

0.
2

0.
5

1.
2

Legacy
Grid-based CPU (AMD)
Grid-based CPU (Intel)
Grid-based GPU
Hybrid CPU (AMD)
Hybrid CPU (Intel)
Hybrid GPU

(b) For populations between 16,000 and 64,000, the legacy
variant continues its super-linear scaling, while our proposed
variants start to show their scalings as well. The grid-based
CPU variant (blue/grey, second/third to left) is notably slower
than the hybrid CPU variant and both their GPU counterparts.

128,000 256,000 512,000 1,024,000
Number of Satellites

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

To
ta

l T
im

e 
(s

)

10
00

.1 26
24

.2

59
21

.4

12
66

8.
9

59
0.

4

15
01

.7 34
81

.0

73
09

.7

36
.7

99
.1

25
6.

2

61
2.

4

42
.3

11
2.

6

29
6.

2 14
58

.9

39
.2

75
.8

19
1.

4

90
8.

5

3.
1

10
.8

30
.7

20
0.

6

Grid-based CPU (AMD)
Grid-based CPU (Intel)
Grid-based GPU
Hybrid CPU (AMD)
Hybrid CPU (Intel)
Hybrid GPU

(c) For a number of satellites which would exceed the capabilities
of the legacy variant, both GPU variants outperform the CPU
variants. Most notable is the performance degradation of the
hybrid GPU variant (yellow, right) from 512,000 to 1,024,000
satellites. At this point, the available memory limits the number
of steps we can process in parallel.

Fig. 10: Runtime of the grid-based CPU, hybrid CPU, grid-
based GPU, hybrid CPU, and legacy variant for different sized
satellite populations.



the hybrid variant was still nine times faster than the grid-
based implementation, the advantage decreased. At 512,000
elements, the factor is only eight. At 1,024,000 satellites, the
hybrid implementation is only three times faster.

The hybrid implementation performs much better than the
grid-based one between the two CPU variants. The higher
number of calculations executed in the grid-based variant slows
down the process significantly. Additionally, the hybrid CPU
variant benefits from the large system memory. As a result, the
hybrid CPU variant can process 1,024,000 Satellites 8 times
faster than the grid-based CPU variant. We also see that the
high-end Intel-CPU system outperforms the AMD-CPU from
16,000 satellites onward. This does not surprise: For a relative
small number of objects, the faster clock speed of the AMD
CPU has a higher impact than the additional cores of the
Intel CPU. However, with a growing number of satellites, the
additional cores outweigh their slower clock speed.

1) Relative Time Consumption: Regarding the relative time
consumption of the different variants, all variants spend most
of their time with the actual conjunction detection (CD; see
Section IV-A3). The second most time is spent in the insertion
into the grid (INS; see Section IV-A2). The hybrid GPU variant
spends 68 % in CD, 21 % in INS, and 9 % determining if orbits
are coplanar. For the hybrid CPU variant, the numbers are 87 %
in CP, 9 % in INS, and 3 % determining if orbits are coplanar.
The grid-based variants do not perform the coplanarity check,
so the GPU variant spends 72 % of the time in CD and 26 %
in INS. The CPU variant spends 92 % in CD and 7 % in INS.

The time for insertion into the hash map in the GPU variants
varies strongly with the number of collisions and thus the hash
map fill level. The median is about 20 % for INS and about
6 % for CD.

2) CPU Thread Impact: An evaluation of the grid-based
CPU variant and the hybrid CPU variant using the AMD
CPU shows that the grid-based variant benefits more from
an increasing number of threads than the hybrid variant. The
grid-based variant achieves a maximum speedup of 19, while
the hybrid variant achieves a maximum speedup of 14 with 32
threads. Accordingly, the maximum efficiency with 32 threads
is 59 % for the grid-based variant and 44 % for the hybrid
variant.

3) CPU–GPU Comparability: We turn to comparing the
thermal design power (TDP) of the hardware components for
evaluating which is the most efficient. The AMD CPU has a
TDP of 105 W, the Intel CPUs have a TDP of 350 W each, and
the NVIDIA GPU has a TDP of 350 W. This shows that the
GPU is more efficient than both test systems with CPUs—the
Intel CPUs have a higher energy consumption while still taking
more time and the AMD CPU takes consistently more than 7x
as long as the GPU (comparing the same variants respectively).

D. Accuracy

After assessing the performance of our approach, we now
turn to validating the proposed methods in terms of accuracy,
i.e., comparing the number of found conjunctions between the
legacy variant and our implementations. For this, it is crucial

to note that we have to differentiate between the conjunctions
detected (whenever two satellites come too close to one another)
and possibly colliding pairs because our variants sometimes
produce multiple conjunctions for the same pair due to the
smaller time steps. Our approaches all perform excellently,
with the CPU and GPU implementations producing the same
number (for the grid-based and the hybrid variant, respectively).
For example, looking at the population of 64,000 satellites, the
legacy variant identifies 17,184 conjunctions, the grid-based
variant produces 17,264, and the hybrid variant 17,242. The
hybrid variant finds all the colliding pairs of the legacy variant
(and 30 more), while the grid-based variant misses 5 pairs
and produces 35 more. The 5 missing conjunctions in the
grid-based variant are exclusively edge cases where the Brent
optimization algorithm stops searching for the minimum too
early. In these cases, the conjunctions are at most 50 m above
the 2 km threshold and therefore do not inherent any increased
risk of collision. Adjusting the search algorithm would make it
possible to find these conjunctions. However, as described, such
minor deviations are acceptable in a fundamentally inaccurate
system and, therefore, not of further relevance. Looking at
the population of 1,024,000 satellites, the grid-based variant
produces 4,418,979 conjunctions, while the hybrid variant
produces 4,413,087 ones; the results for the other population
sizes are all comparable.

E. Parallelism Trade-Off

In our implementation, data parallelism is preferred over
functional parallelism because today’s GPU architectures are
particularly well-designed for this type of parallelism. That is,
in our case, the data is a tuple consisting of satellite information
and future times.

On the GPU, we use one thread per tuple to propagate
the satellite position and insert it into the grid as there are no
dependencies between different ones. Furthermore, we calculate
as many points in time in parallel as fit into the memory (see
Section V-B). Thus, we maximize the data parallelism until no
further positions can be computed temporarily due to memory
limitation. We use the same procedure on the CPU, except
that a thread is responsible for propagating and grid-inserting
multiple tuples.

VI. CONCLUSION

In this paper, we have shown that it is possible to significantly
speed up the process of orbital conjunction detection using
spatial data structures. We developed two conjunction detection
variants based on spatial data structures to circumvent the
quadratic number of (satellite) orbit comparisons. The grid has
proven to be a suitable data structure since the objects do not
show significant differences in size concerning the cell size. To
map a geometric space up to the geostationary orbit, we used
hash sets and hash maps as a compromise between memory
and performance.

The benchmarks for both presented variants show that the
conjunction detection using the grid-based and the hybrid
variant is superior to the conventional conjunction detection



in terms of performance and memory consumption. While it
is not possible with the legacy variant to calculate more than
64,000 satellites on our system with 64 GB RAM, one million
objects are not yet the limit for the grid-based and the hybrid
variant on the graphics card.

Our presented variants make it possible to examine all objects
in space that can be tracked in the near future for possible
conjunctions and thus increase space safety. As for the possible
future extensions, we have noted that memory usage is the
current limiting factor—using multiple GPUs would solve this
problem to some degree. Furthermore, improving the portability
of the code—for example, using AMD HIP or OpenMP target
offloading—would make our approach applicable in more
use cases. Lastly, exchanging parts of the algorithm, like
GPU-specific faster/more fine-tuned hash methods or other
propagators instead of the Kepler Contour solver, might increase
the performance and precision.

ACKNOWLEDGMENTS

This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project, by the European Space
Agency within the project Rules4CREAM, ESA Contract No.
4000131551/20/NL/BJ/va, as well as by the Federal Ministry
of Education and Research (BMBF), funding no. NHR2021HE,
and the state of Hesse (HMWK), funding no. Kapitel 1502,
Förderprodukt 19 NHR4CES as part of the NHR Program. We
acknowledge the support of the European Commission and the
German Federal Ministry of Education and Research (BMBF)
under the EuroHPC Programme DEEP-SEA (GA 955606,
BMBF funding no. 16HPC015), which receives support from
the European Union’s Horizon 2020 programme and DE, FR,
ES, GR, BE, SE, GB, CH.

The authors gratefully acknowledge having conducted a part
of this study on the Lichtenberg high-performance computer of
TU Darmstadt. Furthermore the authors would like to thank the
team of the ESA Space Debris Office for the useful discussions
and their support.

REFERENCES

[1] J. Foust. (2021) Spacex launches starlink satellites and expands
international service. [Online]. Available: https://spacenews.com/
spacex-launches-starlink-satellites-and-expands-international-service/

[2] ESA, “Esa’s annual space environment report,” ESA/ESOC, Darmstadt,
Tech. Rep., 2021.

[3] J. McDowell, “Space activities in 2021,” 2022. [Online]. Available:
https://planet4589.org/space/papers/space21.pdf

[4] M. A. Stevenson, M. Nicolls, I. Park, and C. Rosner, “Measurement
precision and orbit tracking performance of the kiwi space radar,” in Proc.
of 2020 Advanced Maui Optical and Space Surveillance Technologies
Conference (AMOS), 2022.

[5] ESA, “Space environment statistics,” 2022. [Online]. Available:
https://sdup.esoc.esa.int/discosweb/statistics/

[6] D. J. Kessler and B. G. Cour-Palais, “Collision frequency of artificial
satellites: The creation of a debris belt,” Journal of Geophysical Research:
Solid Earth, vol. 83, no. A6, pp. 2637–2646, 1978.

[7] Mike Wall. (2021) Space collision: Chinese satellite got whacked
by hunk of russian rocket in march. [Online]. Available: https:
//www.space.com/space-junk-collision-chinese-satellite-yunhai-1-02

[8] J. Barnes and P. Hut, “A hierarchical o (n log n) force-calculation
algorithm,” nature, vol. 324, no. 6096, pp. 446–449, 1986.

[9] L. Greengard and J. Strain, “The fast gauss transform,” SIAM Journal
on Scientific and Statistical Computing, vol. 12, no. 1, pp. 79–94, 1991.

[10] E. Kerr and N. Sánchez Ortiz, “State of the Art and Future Needs in
Conjunction Analysis Methods, Processes and Software,” in Proc. of 8th
European Conference on Space Debris, 2021.

[11] J. Radtke, S. Mueller, V. Schaus, and E. Stoll, “LUCA2 - An enhanced
long-term utility for collision analysis,” in Proc. of 7th European
Conference on Space Debris, 2017.

[12] J. Woodburn, V. T. Coppola, and F. Stoner, “A description of filters
for minimizing the time required for orbital conjunction computations,”
Advances in the Astronautical Sciences, vol. 135, 2010.

[13] F. R. Hoots, L. L. Crawford, and R. L. Roehrich, “An analytic method
to determine future close approaches between satellites,” Celestial
Mechanics and Dynamical Astronomy, vol. 33, no. 2, 1984.

[14] J. Radtke, S. Flegel, J. Gelhaus, M. Möckel, V. Braun, C. Kebschull,
C. Wiedemann, H. Krag, K. Merz, and P. Vörsmann, “Revision of
Statistical Collision Analysis for Objects Inside of Satellite Constellations,”
in Proc. of 64th International Astronautical Congress (IAC 2013), 2013.

[15] J. Woodburn and D. Dichmann, “Determination of Close Approaches
for Constellations of Satellites,” in Mission Design & Implementation
of Satellite Constellations, ser. Space Technology Proc., J. C. Ha, Ed.
Dordrecht: Springer Netherlands, 1998, vol. 1, pp. 337–345.

[16] L. M. Healy, “Close conjunction detection on parallel computer,” Journal
of Guidance, Control, and Dynamics, vol. 18, no. 4, pp. 824–829, 1995.

[17] J. R. A. Rodrı́guez, F. M. M. Fadrique, and H. Klinkrad, “Collision
Risk Assessment with a ‘Smart Sieve’ Method,” in Proc. of the Joint
ESA-NASA Space-Flight Safety Conference, ser. ESA SP, B. Battrick,
Ed. Noordwijk: ESA Publications Division, 2002.

[18] B. Bastida Virgili, “DELTA (Debris Environment Long-Term Analysis),”
in Proc. of 6th International Conference on Astrodynamics Tools and
Techniques (ICATT), 2016.

[19] H. G. Lewis, “DAMAGE: A dedicated geo debris model framework,” in
Proc. of 3rd European Conference on Space Debris 2001, 2001.

[20] H. Klinkrad, “Collision risk analysis for low Earth orbits,” Advances in
Space Research, vol. 13, no. 8, pp. 177–186, 1993.

[21] J. C. Liou, D. J. Kessler, M. Matney, and G. Stansbery, “A New Approach
to Evaluate Collision Probabilities Among Asteroids, Comets,and Kuiper
Belt Objects,” in Lunar and Planetary Science Conference, ser. Lunar
and Planetary Science Conference, S. Mackwell and E. Stansbery, Eds.,
Mar. 2003, p. 1828.

[22] H. G. Lewis, S. Diserens, T. Maclay, and J. P. Sheehan, “Limitations
of the cube method for assessing large constellations,” in Proc. of 1st
International Orbital Debris Conference (IOC 2019), 2019.

[23] E. R. George, “A High Performance Conjunction Analysis Technique for
Cluster and Multi-Core Computers,” in Proc. Advanced Maui Optical
and Space Surveillance Technologies Conference (AMOS 2011), 2011.

[24] V. T. Coppola, S. Dupont, K. Ring, and F. Stoner, “Assessing satellite
conjunctions for the entire space catalog using cots multi-core processor
hardware,” Advances in the Astronautical Sciences, vol. 135, 2010.

[25] B. Abernathy, D. Surka, S. Harvey, and M. O’Connor, “The CAOS-D
Architecture for Conjunction Analysis,” in Proc. of Infotech@Aerospace
2011, 2011, p. 1434.

[26] F. Schrammel, F. Renk, A. Mazaheri, and F. Wolf, Efficient Ephemeris
Models for Spacecraft Trajectory Simulations on GPUs. Springer
International Publishing, 08 2020, pp. 561–577.

[27] M. Möckel, High performance propagation of large object populations
in earth orbits. Berlin: Logos Verlag Berlin GmbH, 2015.

[28] M. Fehr, V. Navarro, L. Martin, and E. Fletcher, “The Process of
Parallelizing the Conjunction Prediction Algorithm of ESA’s SSA
Conjunction Prediction Service using GPGPU,” in Proc. of 6th European
Conference on Space Debris 2013, 2013.

[29] I. A. Budianto-Ho, C. Alberty, R. Scarberry, S. Johnson, and R. Sivilli,
“Scalable Conjunction Processing using Spatiotemporally Indexed
Ephemeris Data,” in Proc. of 15th Advanced Maui Optical and Space
Surveillance Technologies Conference (AMOS 2014), 2014.

[30] C. Ericson, Real-time collision detection. Crc Press, 2004.
[31] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, “Efficient bvh construction

via approximate agglomerative clustering,” in Proceedings of the 5th
High-Performance Graphics Conference, ser. HPG ’13. ACM, 2013, pp.
81—-88. [Online]. Available: https://doi.org/10.1145/2492045.2492054

[32] M. Rincon-Nigro, N. Navkar, and N. Tsekos, “Gpu-accelerated interactive
visualization and planning of neurosurgical interventions,” Computer
Graphics and Applications, IEEE, vol. 34, pp. 22–31, 05 2014.

[33] S. Raschdorf and M. K. Clausthal, “Loose octree : a data structure for
the simulation of polydisperse particle packings,” 2009.



[34] R. Jaljolie, P. Van Oosterom, and S. Dalyot, “Spatial data structure and
functionalities for 3d land management system implementation: Israel
case study,” ISPRS International Journal of Geo-Information, vol. 7, no. 1,
2018. [Online]. Available: https://www.mdpi.com/2220-9964/7/1/10

[35] “Chapter 3 - spatial data structures,” in Geographic Information
Systems for Geoscientists, ser. Computer Methods in the Geosciences,
G. F. Bonham-Carter, Ed. Pergamon, 1994, vol. 13, pp. 51–82.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780080424200500080

[36] D. Jünger, C. Hundt, and B. Schmidt, “Warpdrive: Massively parallel
hashing on multi-gpu nodes,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018, pp. 441–450.

[37] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dynamic hash
table for the gpu,” in 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2018, pp. 419–429.

[38] D. Tsukamoto and T. Nakashima, “Implementation and evaluation of
distributed hash table using mpi,” in 2010 International Conference on
Broadband, Wireless Computing, Communication and Applications, 2010,
pp. 684–688.

[39] T. Maier, P. Sanders, and R. Dementiev, “Concurrent hash tables: Fast
and general(?)!” ACM Trans. Parallel Comput., vol. 5, no. 4, feb 2019.
[Online]. Available: https://doi.org/10.1145/3309206

[40] D. Xue and J. Li, “Collision criterion for two satellites on Keplerian
orbits,” Celestial Mechanics and Dynamical Astronomy, vol. 108, no. 3,
pp. 233–244, 2010.

[41] D. A. Vallado and W. D. McClain, Fundamentals of astrodynamics
and applications, 4th ed., ser. Space technology library. Hawthorne:
Microcosm Press, 2013.

[42] H. D. Curtis, Orbital mechanics for engineering students, 1st ed., ser.
Elsevier Aerospace engineering series. Amsterdam: Elsevier/Butterworth-
Heinemann, 2008.

[43] O. H. E. Philcox, J. Goodman, and Z. Slepian, “Kepler’s goat herd: An
exact solution to kepler’s equation for elliptical orbits,” Monthly Notices
of the Royal Astronomical Society, 2021.

[44] R. P. Brent, “An algorithm with guaranteed convergence for finding a
zero of a function,” The Computer Journal, vol. 14, no. 4, pp. 422–425,
01 1971. [Online]. Available: https://doi.org/10.1093/comjnl/14.4.422

[45] S. Burgis, L. Rohrmüller, M. Michel, and R. Bertrand, “Simulation
of satellites and constellations for the assessment of collision
avoidance operations,” CEAS Space Journal, 2022. [Online]. Available:
https://doi.org/10.1007/s12567-022-00471-y

[46] Celestrak.com, “Tle list of active satellites as of 2021 apr 08 22:06:03
utc,” 2021. [Online]. Available: https://celestrak.com/NORAD/elements/
active.txt

[47] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver,
CO, USA. ACM, November 2013, pp. 1–12.


