
Noise-Resilient Empirical Performance
Modeling with Deep Neural Networks

Marcus Ritter∗, Alexander Geiß∗, Johannes Wehrstein∗

Alexandru Calotoiu†, Thorsten Reimann∗, Torsten Hoefler†, Felix Wolf∗

∗Technical University of Darmstadt, Department of Computer Science, Germany
†ETH Zürich, Department of Computer Science, Switzerland

{marcus.ritter,alexander.geiss1,felix.wolf}@tu-darmstadt.de
{acalotoiu,htor}@inf.ethz.ch, thorsten.reimann@sc.tu-darmstadt.de

johannes.wehrstein@stud.tu-darmstadt.de

Abstract—Empirical performance modeling is a proven in-
strument to analyze the scaling behavior of HPC applications.
Using a set of smaller-scale experiments, it can provide important
insights into application behavior at larger scales. Extra-P is an
empirical modeling tool that applies linear regression to auto-
matically generate human-readable performance models. Similar
to other regression-based modeling techniques, the accuracy of
the models created by Extra-P decreases as the amount of noise
in the underlying data increases. This is why the performance
variability observed in many contemporary systems can become
a serious challenge. In this paper, we introduce a novel adaptive
modeling approach that makes Extra-P more noise resilient,
exploiting the ability of deep neural networks to discover the
effects of numerical parameters, such as the number of processes
or the problem size, on performance when dealing with noisy
measurements. Using synthetic analysis and data from three
different case studies, we demonstrate that our solution improves
the model accuracy at high noise levels by up to 25% while
increasing their predictive power by about 15%.

Index Terms—Performance analysis, performance modeling,
deep learning, artificial neural networks, high performance
computing, parallel processing

I. INTRODUCTION

The field of high-performance computing (HPC) holds great
potential for answering critical questions of enormous societal
impact such as drug discovery or the prediction of climate
change. Consequently, there is an ever-growing demand for
computing power and bigger systems. However, with the
increasing size of these systems, it becomes more complicated
to exploit their full potential. At the same time, application
complexity is expanding in a similar fashion, requiring a
continuous focus on performance to productively use existing
and future large-scale machines. A powerful way of analyzing
the performance of an HPC application is the use of perfor-
mance models. In general, a performance model provides an
analytical expression of an application’s behavior at different
scales, providing important insights, for instance, related to

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — WO 1589/8-1 and WO 1589/10-1, and
the Spark Grant CRSK-2 190359/1. Calculations were performed on the
Lichtenberg Computing Cluster at TU Darmstadt, the SuperMUC Petascale
System at Leibniz Supercomputing Centre, and the Vulcan Supercomputer at
Lawrence Livermore National Laboratory.

the presence of scalability bugs or the adequacy of a certain
computer system for a given code [1].

Extra-P [2] is an empirical modeling tool that uses linear
regression to automatically generate human-readable perfor-
mance models from performance data, freeing its user from the
burden of laboriously deriving performance models by reason-
ing. To create the performance model of an application, Extra-
P requires a set of small-scale experiments using different
combinations of the application’s execution parameters. Sim-
ilar to other regression-based empirical modeling techniques,
the accuracy of the models created by Extra-P decreases with
an increasing amount of noise affecting the performance mea-
surements. This is because it becomes increasingly difficult
to distinguish signal from noise, especially when dealing with
multiple application parameters [3].

Several studies have already highlighted the effects of noise
on performance [4]–[7]. Chunduri et al. for example report
that execution times of applications on Theta, a Xeon-Phi-
based Cray XC system at Argonne National Laboratory, can
deviate by up to 70% [8]. Consequently, such a high variance
on the measurements drastically affects the accuracy and
predictive power of the created performance models, rendering
it very difficult to analyze the scalability of an application.
Even though this is the case, at the moment there are only
a few options to reduce the amount of noise, one being
to take repeated measurements of an application with the
same combination of execution parameters. Another frequently
used approach is the limitation of the range of discoverable
functions, e.g., to polynomials and/or logarithms [9], [10].
However, these measures are usually not enough when dealing
with high run-to-run variations, especially when modeling
multiple application parameters [3].

In this work, we propose a novel adaptive performance-
modeling technique that combines the advantages of traditional
regression-based modeling with deep learning to substantially
improve noise resilience. First, we apply a heuristic to estimate
the amount of noise in the performance data, distinguishing
between noisy and calm data. If we discover high degrees
of noise, we use domain adaptation to optimize the noise
resilience of a pretrained deep neural network (DNN), utilizing

the gathered noise information, to create accurate performance
predictions for a specific modeling task. Otherwise, we con-
tinue with our purely regression-based method. Using this
approach we are able to discover and analyze the effects of
numerical parameters, such as the number of processes or the
problem size, on performance even when dealing with noisy
measurements. The major contributions of our work are:

• A heuristic noise classification technique that allows
the estimation of the amount of noise in performance
measurements.

• A DNN based empirical modeling technique that can
better cope with noisy measurements, improving Extra-
P’s model accuracy at high noise levels by up to 25%
while increasing predictive power by about 15%.

• Three application case studies that demonstrate the ad-
vantages and inherent limitations of our new approach.

The remainder of this paper is organized as follows. After
reviewing related work in Section II, we provide background
on automated empirical performance modeling in Section III.
We then outline our new modeling approach in Section IV,
followed by an extensive evaluation based on synthetic data
in Section V, quantifying its accuracy and predictive power. In
Section VI, we present three application case studies, demon-
strating the advantages and limitations of our new approach.
Finally, we summarize our results and provide a conclusion in
Section VII.

II. RELATED WORK

Performance models are a very powerful and insightful in-
strument to describe and understand the performance behavior
of an application. In general, there are two ways to derive such
models: analytical and empirical performance modeling.

The main obstacle to analytical approaches is the required
expertise and the amount of effort needed in order to analyze
an entire application [4]. Therefore, several approaches have
attempted to automate the performance modeling process.
PALM [11] and ASPEN [12] analyze application performance
based on source code annotations. Vuduc et al. [13] generate
performance models automatically but require the user to
manually suggest the hypotheses. Hoefler et al. generate multi-
parameter performance models online, though the nature of
their approach limits the size of the search space, adversely
affecting accuracy [14]. In contrast, our method automatically
generates empirical performance models based on a set of
small-scale experiments [3].

In recent years machine-learning methods such as artificial
neural networks have gained increasing popularity in the
area of performance modeling [15]–[21]. Didona et al., for
example, use artificial neural networks to further improve
the robustness of their predictions [15]. Duplyakin et al. on
the other hand use them in order to refine their regression-
based performance models [22]. In contrast, we use a deep
neural network to create a completely new empirical modeling
approach. We then adaptively switch between our old and
the new DNN based modeling technique depending on the
measurement data. Other approaches focus on generating

models for a very specific purpose, such as learning and
predicting the performance of applications based on their input
parameters [23], [24], rather than providing a generic solution.

Performance variability, the difference between execution
times across repeated runs of an application in the same
execution environment, is a challenge that most researches
have to face when analyzing the performance of applications
on HPC systems [4]–[8], [25], [26]. In general noise im-
poses a major challenge for regression-based multi-parameter
modeling, as it simultaneously affects all target variables,
masking their actual impact on performance [27]. Siegmund
et al., for example, use stepwise linear regression to learn
a performance-influence model function from a sample set
of measured application configurations, providing accurate
performance predictions in scenarios with no or only very
little noise on the measurements [28]. While their method
has a smaller computational overhead than ours, it depends
on the assumption that performance behavior is deterministic.
Consequently, different runs of the same application config-
uration that lead to largely different performance behavior
will negatively affect model accuracy. Our approach, on the
other hand, automatically adjusts to the modeling task at
hand, ensuring accurate results also for noisy measurements.
Carrington et al. is another example for a function fitting
approach that provides accurate performance predictions for
scientific applications, also requiring less computational over-
head than our approach [10]. However, both methods do not
consider large amounts of system noise as a factor in their
evaluation. In general the comparison to other function fitting
approaches is non-trivial, as they are often fundamentally
different. Siegmund et al., for example, create one performance
model per application, whereas we create one model per
application kernel. Therefore, directly comparing cost and
accuracy of the two methods is not possible.

A commonly used option to address noisy measurements
in empirical performance modeling is the limitation of the
discoverable functions to polynomials and/or logarithms [1],
[9], [10]. Other frequently applied methods are the repetition
of performance measurements with the same combination
of execution parameters, and the use of a more represen-
tative value for modeling such as the median or minimum.
However, when dealing with high run-to-run variations in
combination with multiple application parameters these mea-
sures are often not enough [3]. Another option to analyze
application performance in spite of noise is an estimation
based on system peak-performance metrics, as suggested by
the roofline methodology [29]. Using the peak floating-point
performance they are able to analyze the performance of any
given arithmetic kernel on any given processor architecture.
Though, in comparison to our method it does not allow an in-
depth analysis of application performance at different scales
based on the configuration parameters. Duplyakin et al. [22]
use Gaussian process regression (GPR) [30] to increase the
noise resilience of their modeling approach, while sacrificing
some of their predictive power. In contrast, our novel adaptive
modeling technique offers increased noise resistance without

sacrificing predictive power or model accuracy.

III. BACKGROUND

Our approach builds upon Extra-P [2], a tool that automat-
ically creates performance models from a set of small-scale
experiments. Each experiment represents a different configura-
tion of an application determined by its execution parameters.
A performance model is a function that describes how the
performance of a program, expressed in terms of a metric such
as execution time, changes, as execution parameters, such as
the input problem size or the number of processes, change.
The performance measurements in the set of experiments
reflect this change, such that Extra-P can discover and return
the underlying function. A central concept of Extra-P is the
performance model normal form (PMNF), which is shown in
Equation 1. The PMNF rests on the observation that the com-
plexity of algorithms used in parallel applications is usually a
combination of polynomial and logarithmic expressions. While
other behaviors are theoretically possible, they are rarely found
in practice.

fm(x1, . . . , xm) =

h∑
k=1

ck ·
m∏
l=1

x
ikl

l · log
jkl
2 (xl) (1)

With the help of the PMNF, Extra-P expresses the effect of
a number of parameters x1, . . . , xm on performance as a sum
of terms consisting of products of polynomial and logarithmic
expressions [31]. However, we set a limit of one term per
parameter to find the simplest explanation for the underlying
performance behavior, similar to the bias–variance trade-off
in machine learning. To generate a performance model, a
search space of possible model hypotheses is generated by
instantiating Equation 1 with different exponents (i, j) chosen
from the set E, which is shown in Equation 2. Just like the
function terms, the exponents (i, j) are determined by the
complexity classes that are found in real-life algorithms and
applications [1]. Terms with exponents such as x8 rarely exist
in practice and are therefore not included in the standard set E.
We then calculate the coefficients ck of the hypothesis using
linear regression. Finally, the best model is identified using
cross-validation, choosing the hypothesis with the smallest
symmetric mean absolute percentage error (SMAPE) [3]. The
PMNF can be interpreted as a prior introduced into the model-
ing process to counter the effects of imperfect measurements,
forcing Extra-P to disregard unlikely outcomes.

E =

({
0,

1

4
,
1

3
,
1

2
,
2

3
,
3

4
, 1,

3

2
, 2,

5

2

}
× {0, 1, 2}

)
∪
({

5

4
,
4

3
, 3

}
× {0, 1}

)
∪
({

4

5
,
5

3
,
7

4
,
9

4
,
7

3
,
8

3
,
11

4

}
× {0}

) (2)

For modeling, Extra-P requires at least five experiments
per considered execution parameter, reflecting different values
of this parameter, while the values of all other parameters
remain fixed [3]. Henceforth, we call this special combination
of the different execution parameter values of an experiment
measurement points. Furthermore, Extra-P requires at least one
additional experiment with a measurement point outside these

sequences, to decide whether the effect of the parameters is
additive (independent) or multiplicative (compounded).

Depending on the target system, it can be difficult to distin-
guish between signal, the influence of the different parameters
on performance, and noise. Noise or performance variability,
describes the variation of an execution metric, such as runtime,
across repeated runs of an application in the same execution
environment using an identical configuration. Typical causes
of performance variability are node-level effects, such as OS
noise, dynamic frequency scaling, or system-level effects, such
as network and file-system congestion in the presence of
concurrently running jobs [7]. To counter the perturbation
caused by noise, each experiment (performance measurement)
must be repeated several times, five repetitions being sufficient
in most scenarios [3]. A higher number of repetitions can
help to increase noise resilience, though only to a certain
degree. Nevertheless, with each additional model parameter,
the effect of noise becomes more pronounced. If the noise is
high enough, our current countermeasures, the PMNF-based
prior and the use of the median of the measurement repetitions,
no longer suffice.

A possible solution to this problem is the use of deep
neural networks. One can think of the problem as a standard
classification task, with the input of the DNN being the set
of performance measurements and the output being a function
hypothesis. To recreate the function search space, each class
represents a possible combination of terms and exponents that
build a function hypothesis. Deep neural networks in particular
have shown to be more robust to noise, and adapt to many
different circumstances when trained appropriately [32], [33].
Therefore, a DNN should be an ideal choice for building a
noise-resilient performance modeler.

IV. APPROACH

Below, we introduce the idea of adaptive performance
modeling. After looking at the process as a whole, which is
depicted in Figure 1, we first explain the noise classification
module, which estimates the amount of noise present in our
performance measurements and subsequently decides which
approach (DNN vs. regression) should be used for modeling.
Second, we review the necessary preprocessing steps of the
measurement data that are required by the DNN modeler.
Third, we show how the DNN uses this data to create
performance models. Finally, we explain how we make use of
transfer learning to help our DNN approach adjust to different
types of application parameters, measurement configurations,
and noise levels.

A. Adaptive performance modeling

One can imagine the adaptive modeler as a black box,
with the performance measurements as the input and an
automatically generated performance model as the output. In
more detail, the adaptive modeler consists of five different
components: the noise estimation module, the preprocessing
module, the DNN performance modeler, the transfer learning

Performance
measurements

IV-B Noise
estimation

IV-C
Preprocessing

Predict
exponents

Compute
coefficients

Performance
model

Select best
model

Performance
model

Generate train-
ing data

Train DNN

Low
noise?

Regression
modeler

Performance
model

Retrained
DNN

No

Yes

IV-E Transfer learning

IV-D DNN performance modeler

IV-A Adaptive performance modeler

Decision

Activity

Input/Output

Legend

Fig. 1: Flowchart outlining the basic adaptive performance modeling process. The letters (IV-A) reference the paragraphs of
the approach where the associated components of the adaptive modeler are described in detail.

module, and our old regression-based performance modeler,
henceforth simply called regression modeler.

The first step of the modeling process is the noise estima-
tion. Therefore, the noise module analyzes the performance
measurements using our heuristic range-of-relative-deviation
strategy and estimates the noise level.

Second, we need to decide when to use which modeling
technique. While the DNN modeler produces much better
results at high noise levels, the regression modeler achieves
better results at low noise levels. Therefore, we combine both
solutions, creating an adaptive approach that adjusts to the
properties of the modeling task at hand. If the estimated noise
level is smaller than a certain threshold, the regression modeler
is used in addition to the DNN modeler. Since the threshold for
selecting the modelers depends on several factors, such as the
number of parameters and the modeling task, we conducted
an in-depth analysis of the relationship between noise and
model accuracy of both approaches. Using the results of this
analysis we identified the intersections between their accuracy
functions to determine the correct thresholds for switching off
the regression modeler.

In the third step of the modeling process, the input data
is preprocessed. Since performance measurements differ for
each modeling task, the input data must be normalized and
converted into a format that can be understood by the neural
network.

Fourth, depending on the estimated amount of noise either
only the DNN or both of the approaches are used for modeling.
In scenarios with high levels of noise, it is necessary to switch
off the regression-based modeler to further improve predictive
power. Whereas the DNN attempts to improve extrapolation,
the regression modeler focuses on optimally fitting the model
to the measurement data, leading to inaccurate predictions
outside of the measuring range. In each case, a new training
data set is generated using the previously gathered noise and

measurement information. We then use domain adaptation
to optimize the pretrained generic neural network for the
specific properties of the modeling task at hand. Subsequently,
the retrained network is employed to predict the exponents
of the performance function, followed by the determination
of the coefficients using linear regression and the available
measurement data.

Finally, we select the best performance model by evaluating
the results of both modeling approaches against each other.
Using cross-validation and the SMAPE metric we identify the
model that fits the data best, thus receiving the final outcome
of the adaptive performance modeling process. In case only
the DNN modeler was used this step is obsolete, as its output
already represents the best model that could be found.

B. Noise estimation

In general, performance measurements can be regarded as
a statistical process, however, identifying the specific distribu-
tion of performance variations/noise is quite challenging, as
it depends on the execution environment and the choice of
execution parameters. Since we repeat each measurement at
most five times [3], we cannot determine the distribution in
practice. Therefore, we follow the principle of indifference and
rely on the simplifying assumption that the noise distribution
is uniform, a good enough approximation of any non-uniform
distribution, considering the small number of samples we have.

To determine the amount of noise, i.e., the noise level,
we view the measurements as a sequence of M independent
uniformly distributed random variables VP for 1 ≤ P ≤ M ,
one per experiment. For each measurement point P we repeat
the measurement rep times, resulting in the values vP,s for
1 ≤ s ≤ rep, which lie within the noise-level around the actual
value. Furthermore, we define v̄P as the mean of all samples
vP,s from VP . We use the relative deviation (Equation 3) of
the variables vP,s to measure the level of noise. We group

all relative deviations into a set DV and derive the range of
relative deviation heuristic shown in Equation 4.

rd(vP,s) =
vP,s − v̄P

v̄P
(3)

rrd(DV) = max (DV)−min (DV) (4)

The idea of the heuristic, which is directly based on the
relative deviation, is to counteract the common problem that
the relative deviations of the measurements for a specific
measurement point does not span across the entire noise range.
Since the mean value often does not correspond to the actual
value, this leads to an off-center shift of the relative deviation
compared to the actual value. Furthermore, not all relative
deviations are shifted to the same side or by the same amount.
Consequently, the combined relative deviation is much closer
to the actual noise level than any relative deviation of the
corresponding measurement point alone. Using the range of
relative deviation we can estimate the level of noise in a set
of performance measurements with an average prediction error
of only 4.93%.

C. Preprocessing

Before we can use the performance measurements as an
input to the DNN modeler, we first have to preprocess
the raw measurement data, consisting of the tuples (P, v),
each composed of one measurement point P (x1, x2, . . . , xm),
which is defined by the set of application execution parameters
considered for the performance analysis, plus the measured
value v, a performance metric such as runtime. First, we have
to solve the problem of varying measurement points. Even
though most applications’ execution parameters are fairly sim-
ilar, usually describing the number of processes and the size of
the simulated domain, their values can vary greatly. In an ex-
emplary scenario, an application could be run with a different
number of processes x1, where x1 = (32, 64, 128, 512, 1024)
represents a set of possible parameter values for x1, re-
sulting in the measurement points P (x1) which are: P (32),
P (64), P (128), P (512), and P (1024). However, another
application might require the number of processes to be
scaled cubically, as it is the case for Kripke [34], e.g.,
x1 = (8, 64, 512, 4096, 32 768), resulting in the measurement
points P (x1): P (8), P (64), P (512), P (4096), and P (32 768).
The same applies, of course, to measurement points with
several parameters P (x1, . . . , xm) such as P (x1, x2), where
x1 = (8, 16) and x2 = (10, 20), resulting in the measure-
ment points: P (8, 10), P (8, 20), P (16, 10), and P (16, 20).
To solve the problem of varying measurement points, we
enrich the values v for each tuple (P, v) with an implicit
position information by dividing them by the elements of their
respective measurement point P , resulting in the tuples (P, v̂),
v̂ = v � P = (v/x1, . . . , v/xm). This information helps the
network to adjust to application-specific characteristics.

Second, we have to solve the problem of a variable number
of measurement points. System features such as memory size
or the core count often restrict the choice of an applications’

execution parameters, also affecting the number of experi-
ments that can be conducted per parameter. This leads to a
varying number of measurement points that are available for
modeling. To solve this problem, we simply limit the number
of inputs for the neural network to the interval [5, 11] ∩ N,
masking unused inputs with zero. As previously described
in Section III, we need at least five different values per
execution parameter where all other parameter values are
constant. Furthermore, we define the maximum number of
values per parameter to be eleven. In practice, this is more than
enough, as often seven values are already too expensive to be
measured. For Kripke [34], e.g., one would require a system
with more than 2 097 152 processes to conduct measurements
with seven different parameter values.

Finally, we have to map the tuple (P, v̂) of measured values
for each measurement point to the input layer of the neural
network. Since the number of possible measurement points
is unbounded, they cannot be mapped one-to-one to the net-
work’s input layer. Instead, we dynamically group the tuples
(P, v̂) by their positions P (xl) and map the value v̂l of each
group to one input neuron, such that one neuron represents
an entire range of possible measurement points, rather than
only one specific position. To group the input values, we first
normalize the positions P (xl) of each measurement to the
fixed interval [0, 1], so that the position information becomes
independent of the range and scale of the measurement se-
quence. Next, we sample the measurements at the following
normalized positions (1

64 ,
1
32 ,

1
16 ,

1
8 ,

2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

7
8 , 1) using

a process similar to nearest-neighbor interpolation, however,
each value can be sampled only once. Each sampling position
maps directly to one input neuron that represents one group
and gets the measurement value v̂l of that group as input.

D. DNN performance modeler

In order to use a DNN to predict the performance behavior
of a parallel application, we formulate the problem of identify-
ing a performance function for an application kernel, based on
empirical measurement data, as a standard classification task
from the domain of machine learning. For each parameter that
needs to be modeled the resulting function has exactly one
term ck · xikl

l · log
jkl
2 (xl). To create a performance model, we

need to identify the correct exponents and coefficients for each
of these terms. Therefore, we use a neural network to predict
the exponents (all at once) of each term using classification.
Based on the function search space, which is defined by the
PMNF and the set of exponents E (see Equation 1 and 2), there
is only a limited number of possible exponent combinations,
limiting the number of classes the DNN has to predict to 43.

To create a performance model, first, the exponents for
each function term are classified. Subsequently, the network’s
top three classification results are used to construct a set
of performance hypotheses based on the PMNF, which is
straightforward as the output of the network is the probability
distribution of the classes. Next, the function’s coefficients
are determined using regression. Finally, we choose the best
hypothesis using cross-validation and the SMAPE metric.

In order to develop multi-parameter models, we first model
the effects of each parameter on performance separately. We
then create a new multi-parameter search space by combining
the single-parameter hypotheses with each other, testing all
possible additive and multiplicative combinations. Finally, we
choose the best model, again using cross-validation and the
SMAPE metric.

One may wonder why we do not use a machine learning-
based regression approach instead of the classification. This is
because a regression approach would need to predict several
dependent target variables at the same time. Furthermore, this
would lead to a tremendous increase of the exponent search
space, since they can no longer simply be selected from a
predefined set. Thus, solving such a multi-target regression
problem would be much more complicated than the classifi-
cation problem favored by us. For the classification, we use
a feed-forward deep neural network, with an input layer (11
neurons, one per available measurement points), five hidden
layers (2 × 1500, 750, 2 × 250 neurons), and one output layer,
all dense. The hidden layers use the hyperbolic tangent as an
activation function, while the output layer has 43 neurons (as
many as target classes) and uses a softmax function to predict
the 43 classes, i.e., possible exponent combinations.

We train the neural network (using AdaMax) with synthetic
data by instantiating the PMNF from Equation 1 with random
exponents from Equation 2 and coefficients uniformly sampled
from the interval [0.001, 1000]. Additionally, we add a term
ν that represents a random noise level on the measurements
masking performance behavior. The amount of noise n is
generated in the interval n ∈ [0, 100%] using the uniform
distribution, where n = 10% equals a deviation of ±5% from
the actual value. After creating a set of synthetic performance
functions of the form f1(x1) = c0 + c1 · xi1 logj

2(x1) + ν,
we generate a random set of measurement points for each
of them. To imitate realistic application scenarios and pa-
rameters, we generate random sequences of measurement
points that are either linear, small linear, small exponential,
or uniformly distributed. Possible parameter-value sets for the
measurement points are for example: x1 = (4, 8, 16, 32, 64);
x1 = (10, 20, 30, 40, 50); or x1 = (8, 64, 512, 4096, 32 768).
Finally, we simulate the repetition of experiments, a commonly
used method to reduce the amount of noise in the conducted
performance measurements by sampling up to five values per
measurement point and compute their median value.

E. Transfer learning

As previously described, we train our DNN with synthetic
data, imitating realistic application scenarios. However, due to
the complexity of the classification task, which is determined
by the number of classes, the varying measurement points,
their variable number, and the noise level, it is still difficult to
achieve optimal results for specific modeling tasks. Ideally,
one would train a network designed to tackle one specific
modeling problem. However, this would not only be very
complicated, but also costly and time-consuming. Therefore,
we apply domain adaptation [35], a specialized form of

transfer learning, to optimize a pretrained neural network for
the modeling task at hand, enabling our DNN to create good
performance models even in the presence of high amounts
of noise without requiring any user input. Transfer learning
describes the idea of using knowledge learned from solving
one problem for solving a different but related problem [36].
For example knowledge that was acquired from modeling the
performance of an application could be useful for learning how
to model another application. Domain adaptation, is a more
specialized form of transfer learning, describing the ability
to apply the same algorithm trained in one or more source
domains to a different but related domain [35]. These domains
always have the same feature space but different distributions.
For our modeling example, this means that every modeling
task has parameters, parameter values, measurement points,
etc., but their values are usually always different, i.e., the
learning task itself is not changing, though the networks input
values are. Domain adaptation is especially useful to us, as
we have more training data available for the first training task,
pretraining the DNN for a variety of modeling scenarios. Thus,
a few examples are enough to quickly learn a generalizing
representation for the second training task, retraining the DNN
for the modeling problem at hand.

To apply the domain adaptation to our approach, we gen-
erate a new synthetic training data set based on the properties
of the modeling task at hand. This includes among others,
the amount of noise in the performance measurements, the
number of parameters, the measurement points, and their
quantity. Then we simply retrain our DNN using the created
data set to learn a generalizing representation for this specific
modeling task. Thus, our approach automatically learns to
adapt to all kinds of modeling scenarios. In order to achieve the
best possible results we always use domain adaptation before
modeling. Concretely, this means that we retrain our DNN for
each modeling task, the downside being an overall increased
modeling time caused by the time required for retraining the
DNN. Although the increase in modeling time is quite signif-
icant, it is negligible compared to the gain in accuracy and
predictive power. A detailed discussion of the computational
overhead of the adaptive modeling technique, as well as a
detailed explanation of how we use domain adaptation to
optimize the model quality for a real-life application can be
found in the application case studies in Section VI.

V. SYNTHETIC EVALUATION

To evaluate our novel adaptive modeling technique in com-
parison with the regression modeler, we conduct an extensive
synthetic data analysis. Therefore, we analyze both modeling
techniques in terms of their two key aspects: model accuracy
and predictive power. We define model accuracy as the per-
centage of correct performance models for the test data set. It
can be easily calculated by dividing the number of correct
models by the number of total modeling tasks in the test
set. To determine whether a model is correct, we compare
it with its synthetic baseline and examine if the distance d
between the lead exponents (the exponents with the biggest

4 8 16 32 64 128 256 512 1024

10
20
30
40
50
60
70
80
90

P+
1

P+
2

P+
3

P+
4

Evaluation points P+
Training / modeling

points P (x1, x2)

Parameter x1 (e.g., number of processes)

Pa
ra

m
et

er
x
2

(e
.g

.,
pr

ob
le

m
si

ze
)

Fig. 2: Performance experiments required for one and two-
parameter analysis. The solid black circles represent a list of
measurement points P (x1) using the parameter-value set x1
that would be sufficient to generate a single-parameter model
for parameter x1. All circles represent the measurement points
required for a two-parameter model describing how x1 and x2
affect performance. The solid diamonds are the measurement
points reserved for evaluation.

overall impact on performance) is smaller as or equal to 1
4 ,

1
3 , or 1

2 . This means for example that if the lead exponent
distance of a model is smaller or equal to 1

4 we account it
as correct for this accuracy bucket. In general, the smaller
the lead exponent distance of a model, the more accurate it
describes the performance behavior found in the measurement
data. We define the predictive power of a model as the ex-
trapolation accuracy for a measurement point that lies outside
the range used for modeling (see Figure 2). To determine the
extrapolation accuracy we compare the prediction result of
the created model with its synthetic baseline and calculate
the percentage error. We then calculate the median percentage
error over all models created for the synthetic test data set
using four different evaluation points P+ that have not been
used for modeling. The smaller the median percentage error,
the higher is the extrapolation accuracy of the created models.
Thus, we can determine and compare the predictive power of
both modeling approaches.

For each evaluation we generate 100 000 test functions
by instantiating the PMNF from Equation 1 with uniform
independent and identically distributed random coefficients
ck ∈ [0.001, 1000] and random exponents ikl and jkl, selected
from Equation 2. We then evaluate both modeling techniques
for each function in the resulting test-set for 5m measurement
points, where m = 1, 2, 3 is the number of parameters.
Since in practice most applications do not have more than
three parameters influencing performance, for this analysis we
focus on scenarios where m ≤ 3. Additionally, we simulate
the repetition of experiments by sampling five values v per
measurement point P and compute their median value. The
parameter-value sets x1, . . . , xm for the measurement points
P (x1, . . . , xm) for each parameter xl are drawn from a
variety of different series (e.g., x1 = (4, 8, 16, 32, 64) or
x2 = (10, 20, 30, 40, 50)) to simulate different types of appli-
cation parameters. Furthermore, we generate four additional
measurement points P+ = (P+

1 , . . . , P
+
4), which are not

included in this training data set (see Figure 2), to evaluate

the predictive power of the created models. The coordinates
for these are selected by continuing each sequence xl (e.g.,
x+
1 = (128, 256, 512, 1024)). In order to analyze the noise

resilience of our new approach, we apply a wide range of dif-
ferent noise levels n = 2%, 5%, 10%, 20%, 50%, 75%, 100%
using the uniform distribution, where n = 2% is equal to up
to ±1% of divergence from the actual value.

A. Model accuracy

One parameter: Figure 3(a) shows that both modeling
approaches reach a very high accuracy for low noise levels
n ≤ 10%, with more than 95% of the models being correct.
With an increasing amount of noise n ≥ 10% the adaptive
modeler begins to outperform the regression-based approach,
improving the accuracy by up to 22% at 100% of noise for
d ≤ 1

4 . Even though it becomes more and more difficult
to identify the correct lead exponents, the adaptive modeler
significantly improves the number of correct models for all
accuracy buckets.

Two parameters: Again both modeling approaches reach a
very high accuracy for low levels of noise n ≤ 10%, with
more than 90% of the models being correct. As expected,
when dealing with one additional parameter, the results are
overall slightly less accurate than before, which also leads to
an increase in the differences between the accuracy buckets.
Nevertheless, as shown by Figure 3(b), the accuracy improve-
ment achieved by the adaptive modeler has increased to 25%
at 100% of noise for d ≤ 1

4 .
Three parameters: With the addition of another parameter

the modeling accuracy is decreasing again. As shown in Fig-
ure 3(c) it becomes much harder to predict the lead exponents
for high levels of noise n ≥ 10%, especially within d ≤ 1

4 .
Overall the results of the adaptive modeler are much more
consistent and trustworthy, as it predicts over 65% of the
models correctly within d ≤ 1

2 over the entire range of noise.
The 99% confidence intervals of all percentages of correct

model data deviate at most 2% (in absolute terms) from the
reported model accuracy values.

B. Predictive power

One parameter: The results of the single-parameter analysis
in Figure 3(d) show that for low noise levels n ≤ 10%,
the prediction error of both approaches is very low, ranging
between 0.17% and 1.31%. Consequently, the performance
predictions for the evaluation points P+ are all very accurate.
For high levels of noise n ≥ 20%, the adaptive modeler clearly
outperforms the regression-based approach at the evaluation
points P+

2 , P+
3 and P+

4 that are farther away from the training
data set. For 50% of noise, the adaptive modeler reduces the
prediction error from 18.06% to only 7.2% for P+

4 by about
a factor of two. This trend continues for the following noise
levels and evaluation points. The 99% confidence intervals for
the median relative errors for m = 1 are within 5% of relative
deviation from the reported predictive power.

Two parameters: The results of the evaluation in Figure 3(e)
show that the prediction error of both modeling approaches is

2 5 10 20 50 75 100
0

20

40

60

80

100

Noise [%]

M
od

el
ac

cu
ra

cy
M

od
el

s
[%

]

(a) m = 1

2 5 10 20 50 75 100
0

20

40

60

80

100

Noise [%](b) m = 2

2 5 10 20 50 75 100
0

20

40

60

80

100

Noise [%](c) m = 3

d ≤ 1
4

d ≤ 1
3

d ≤ 1
2

regression

adaptive

2 5 10 20 50 75 100

100

101

102

Noise [%]

Pr
ed

ic
tiv

e
po

w
er

M
ed

ia
n

re
la

tiv
e

er
ro

r
[%

]

(d) m = 1

2 5 10 20 50 75 100

100

101

102

Noise [%](e) m = 2

2 5 10 20 50 75 100

100

101

102

Noise [%](f) m = 3

P+
1

P+
2

P+
3

P+
4

regression

adaptive

Fig. 3: Comparison of the model accuracy and predictive power of the regression and adaptive modeler for different numbers
of parameters m = 1, 2, 3 and noise levels n = 2%, 5%, 10%, 20%, 50%, 75%, 100%. The Figures (a), (b), and (c) outline the
percentage of models where the distance of the lead exponents d is smaller as or equal to 1

4 , 1
3 , or 1

2 when compared to the
synthetic baseline. The smaller the distance, the more accurate the performance model. The Figures (d), (e), and (f) show the
median relative prediction error in percent for the four evaluation points P+ when compared to the synthetic baseline. The
higher the error the lower the predictive power of the models.

still very low for small amounts of noise, ranging between
1.55% and 2.02% for P+

4 . For noise levels n ≥ 10%
the adaptive modeler performs increasingly better than the
regression-based approach reducing the prediction error for
the evaluation point P+

4 from 32.2% to 15.13% for n = 50%,
from 45.9% to 24.43% for n = 75%, and from 54.6% to
28.1% for n = 100%. Again this corresponds to an overall
reduction by about a factor of two. The 99% confidence
intervals of the reported median relative errors for m = 2
deviate at most 12.5%, for P+

1 and P+
2 they are within 7.4%

of relative deviation from the reported predictive power.

Three parameters: For three parameters the prediction error
is, as expected, generally higher than before. Furthermore, the
results in Figure 3(f) show that with each additional parameter
it becomes increasingly difficult to predict the performance for
each evaluation point. While analyzing the results one has to
consider that the measurement points chosen for evaluation are
scaled multiple times over three dimensions (depending on the
number of parameters), and are therefore far away from the
training data set. Consequently, as shown in Figure 2, predict-
ing the performance for P+

4 is a much more difficult task than
for P+

1 . Having said this, for low levels of noise n = 10% the
prediction error is still quite small, reaching between 6.36%
and 8.93%. For high levels of noise the prediction error of both
techniques rises quickly, though compared to the regression-
based approach the adaptive modeler reduces the prediction
error from 57.46% to 41.39% for n = 50%, from 79.31%
to 57.18% for n = 75%, and from 93.18% to 69.46% for

n = 100% of noise for P+
4 . The 99% confidence intervals of

the reported median relative errors for m = 3 are within 5%
of relative deviation from the reported predictive power.

VI. APPLICATION CASE STUDIES

In the following section, we present three application case
studies, Kripke, FASTEST, and RELeARN, that highlight the
advantages and disadvantages of our solution. Similar to the
synthetic evaluation, we analyze both modeling approaches in
terms of their model accuracy and predictive power. Though,
this time we define accuracy as a grade of closeness for
specific models when comparing to a theoretical baseline. For
the predictive power, we still apply the same definition as
in Section V, however, using only one evaluation point per
application. Furthermore, we use our heuristic strategy and
analyze the amount of noise in the performance measurements
to better understand how the noise level affects the predictive
power of the models. Finally, we examine the computational
overhead of the adaptive modeler by comparing the amount
of time both approaches need to model the main kernels of
each application. Since the application or kernel runtime is
particularly affected by noise, for the entire analysis we focus
on modeling this performance metric.

However, before we analyze the performance of our novel
modeling technique, we first provide a detailed explanation of
how we use domain adaptation to improve model quality in a
real-life scenario using Kripke as an example.

As previously introduced, the following notation
P (x1, . . . , xm) for a measurement point is subsequently

used to describe the points that are either used for the model
creation or evaluation of the application case studies. Here,
each xl describes a parameter of the respective case study
and xl represents a set of values for a specific parameter xl,
that is, the parameter values used for the experiments of a
case study. Furthermore, the use of xl in combination with a
measurement point, for example P (x1, x2), indicates that the
parameter values from the set x1 of parameter x1 are used to
represent several measurement points at once.

Kripke is an open-source 3D Sn deterministic particle
transport code, designed to explore how different data lay-
outs, programming paradigms, and architectures affect the
implementation and performance of discrete-ordinates trans-
port [34]. The performance measurements were conducted
on Vulcan, an IBM BG/Q system at Lawrence Livermore
National Laboratory, covering three execution parameters: the
number of processes x1, the number of direction-sets x2, and
the number of energy groups x3, the latter both influencing
the problem size. In total, we have done 750 experiments
with 150 measurement points and five repetitions each. To
collect these measurements, we varied the parameter values
of x1 = (8, 64, 512, 4096, 32 768), x2 = (2, 4, 6, 8, 10, 12),
and x3 = (32, 64, 96, 128, 160). For modeling, we use all
experiments except for the ones with x2 = 12 (i.e., 625 in
total), while for evaluation we use the measurement point
P+(x1 = 32 768, x2 = 12, x3 = 160).

FASTEST is a tool for the simulation of flows in com-
plex three dimensional configurations [37]. We measured
its performance on SuperMUC, a petascale system at Leib-
niz Supercomputing Centre, covering two execution param-
eters: the number of processes x1 and the problem size
per process x2. We measured its performance by vary-
ing x1 = (16, 32, 64, 128, 256, 512, 1024, 2048) and x2 =
(8192, 16 384, 32 768, 65 536, 131 072), repeating each mea-
surement five times. To create the models, we use two lines
of five measurement points for each parameter where the
other parameter is constant. To model the effects of x1
on performance, we use five measurement points P (x1, x2),
where x1 = (16, 32, 64, 128, 256) and x2 = 131 072.
To model the effects of x2 on performance, we use an-
other five points P (x1, x2), where x1 = 256 and x2 =
(8192, 16 384, 32 768, 65 536, 131 072). As these two lines of
points overlap each other at P (x1 = 256, x2 = 131 072)
in total we use nine measurement points for modeling. To
evaluate our model we use the measurement point P+(x1 =
2048, x2 = 8192).

RELeARN simulates the rewiring of connections be-
tween neurons in the brain [38]. We measured its per-
formance on Lichtenberg, a compute cluster at Technical
University of Darmstadt, considering two execution param-
eters: the number of processes x1 and the problem size
x2, represented by the number of neurons to be simu-
lated. By varying x1 = (32, 64, 128, 256, 512) and x2 =
(5000, 6000, 7000, 8000, 9000) we measured its performance
for 25 different configurations with two repetitions each.
For modeling, we again use two lines of five measurement

points per parameter where the other parameter is constant.
In total, we use nine measurement points for modeling,
these are: P (x1, x2), where x1 = (32, 64, 128, 256, 512) and
x2 = 5000 for x1, and P (x1, x2), where x1 = 32 and
x2 = (5000, 6000, 7000, 8000, 9000) for x2. This time the
measurement points overlap at P (x1 = 32, x2 = 5000). Fi-
nally, to evaluate the created models, we use the measurement
point P+(x1 = 512, x2 = 9000).

A. Transfer learning

As described in the approach in Section IV our DNN
modeler is pretrained using a variety of different realistic
application scenarios. To optimize the model accuracy and
predictive power of a specific modeling task or application
even further, we use domain adaptation to retrain the neural
network, which is used to identify the correct function terms
and their exponents. To allow a better understanding of this
procedure, we provide a detailed explanation using Kripke as
an example.

The first important step prior to the retraining procedure
of the network using domain adaptation is the estimation of
the noise level affecting the performance measurements using
our range-of-relative-deviation heuristic. Then we preprocess
the input data, which means we analyze the measurements
to obtain all information that is important for retraining
and modeling. This includes the number of parameters, the
parameter-value sets, the measurement points and their mea-
sured values. In the case of Kripke we identified a mean
noise level of 17.44 % on the performance measurements. Fur-
thermore, we have three configuration parameters x1, x2, x3
with the parameter-value sets x1 = (8, 64, 512, 4096, 32 768),
x2 = (2, 4, 6, 8, 10, 12), and x3 = (32, 64, 96, 128, 160),
representing 150 measurement points. Using this information
we create a new data set for retraining the network based
on the specific properties of Kripke, i.e., we generate a fixed
amount of synthetic training samples per class that can be
predicted by the DNN. Therefore, we use the same number
of parameters, measurement points, and parameter-value sets
as in our Kripke experiments. When generating the synthetic
measurement values we additionally add a random noise level
based on the range identified in the Kripke measurements,
here [3.66, 53.67]%. Depending on the modeling task at hand
we also simulate measurement repetitions. In this case, we
simulate up to five repetitions per measurement point. The
resulting training data set is then used to retrain the previously
trained generic network. The required retraining time depends
on the number of training epochs and the size of the data set,
determined by the number of samples per class. In general,
the more epochs and the larger the sample size per class, the
more accurate the results, but at the same time the retraining
time and the computational overhead is increasing. Usually, we
use one retraining epoch and a sample size of 2000 per class.
Finally, the retrained network is used by the DNN modeler
to predict the pair of exponents using the preprocessed input
data.

Kripke
(6 kernels)

FASTEST
(20 kernels)

RELeARN
(5 kernels)

0

20

40

60

80

22.28

69.79

7.12
13.45 16.23

7.12

M
ed

ia
n

re
la

tiv
e

er
ro

r
[%

]

regression

adaptive

Fig. 4: Comparison of the median relative prediction error
in percent between the regression and the adaptive modeler
for modeling the performance-relevant kernels of the case
studies. The error bars show the 99% confidence intervals of
the reported median relative error.

B. Model accuracy

For Kripke, the kernel SweepSolver is of special interest
to us because it encapsulates the physics simulated by the
application. As the name implies, it solves the simulated
problem using an MPI-based parallel sweep algorithm [34].
Due to the nature of the algorithm, the performance of the
Sn solver should be determined by the number of processes
x1, group sets x3, zone sets (which we did not consider), and
direction sets x2 [34]. Therefore, we expect an approximate
runtime behavior similar to O(x2 ·x4/53 +x

1/3
1 +x

4/5
3) [31]. In

fact, the model created by both of our approaches 8.51+0.11 ·
x
1/3
1 · x2 · x4/53 is very similar to this theoretical expectation,

the only difference being the missing additional term for x4/53

and additive term combination.
For RELeARN we focus on analyzing the connectivity

update, a function that updates the connections of the
simulated neurons, dominating the asymptotic complexity of
the computation. From the literature we expect an approximate
runtime behavior of O(x2 log2

2(x2) + x1) [38]. The result of
the adaptive modeler −2216.41 + 325.71 · log2(x1) + 0.01 ·
x2 log2

2(x2) reflects this expectation almost one to one, the
only minor inaccuracy being that it predicts log2(x1) instead
of x1. The result of the regression modeler −284.32 + 5.42 ·
log2

2(x1) + 3.53 · 10−3 · x2 log2(x2) on the other hand is less
accurate, predicting both functions terms incorrectly.

For FASTEST there are no theoretical performance expec-
tations or analytical models, thus we can not analyze its model
accuracy.

C. Predictive power

For analyzing the predictive power of both modeling ap-
proaches, we only consider the performance relevant kernels
of each case study, meaning the ones that contribute more than
one percent to the overall application runtime. This restriction
is necessary as many small kernels show huge performance
variance and therefore disproportionately negatively affect the
median relative prediction error. Figure 4 shows the results
of the prediction analysis. For Kripke, the regression modeler
achieved an average median relative prediction error of 22.28%

Kripke
(Vulcan)

FASTEST
(SuperMUC)

RELeARN
(Lichtenberg)

0

50

100

150

N
oi

se
n

[%
]

R
an

ge
of

re
la

ti
ve

de
vi

at
io

n

nmax = 53.67

nmax = 160.26

nmax = 0.67
n̄ = 17.44

n̄ = 49.56
n̄ = 0.65

ñ = 6.21 ñ = 26.20 ñ = 0.64
nmin = 3.66 nmin = 7.51 nmin = 0.64

maximum nmax
mean n̄
median ñ
minimum nmin

Fig. 5: Noise-level distributions of the performance measure-
ments of the application case studies.

for all six performance relevant kernels. In comparison, the
adaptive modeler’s prediction error is only 13.45%, a reduction
of 8.83%. In the case of FASTEST, the adaptive modeler
reduces the prediction error by 53,56% from 69.79% to only
16.23% for the considered 20 kernels. Finally, for RELeARN
both modelers produced the exact same result, a prediction
error of 7.12%.

D. Noise analysis

Using our heuristic strategy we analyzed the amount of
noise and its distribution on all performance measurements
of Kripke, FASTEST, and RELeARN. We found that the
noise levels for all applications are more or less uniformly
distributed, but we cannot say with certainty which distribution
really exists, since five measurements per-application config-
uration are too few samples to statistically prove a certain
type of distribution. Figure 5 shows the distribution of the
different noise levels on the performance measurements of the
application case studies, indicating the average n̄, median ñ,
minimum nmin, and maximum nmax noise levels in percent.
For RELeARN we found only minimal amounts of noise
in the measurements, ranging between nmin = 0.64% and
nmax = 0.67%. The absence of noise explains why the
adaptive modeler was not able to achieve an improvement
in prediction power compared to the regression modeler. In
the case of Kripke, we measured an average noise level of
n̄ = 17.44%. Furthermore, the levels of noise are much more
diverse, ranging between nmin = 3.66% and nmax = 53.66%.
However, high noise levels occur only rarely. For FASTEST,
we found an even higher amount of noise in the measurements,
ranging between nmin = 7.51% and nmax = 160.27%. With
an average noise level of n̄ = 49.56%, FASTEST is most
affected among all case studies and shows why the adaptive
modeler was able to improve the predictive power of the
models by 45%.

E. Computational overhead

As one might expect, the improved predictive power of
the adaptive modeler does not come for free, but at the
expense of an overall increased modeling time. This is owed
to the retraining of the DNN whenever we apply domain
adaptation to optimize the pretrained network for a specific
modeling task. Figure 6 shows a comparison of the amount

Kripke
(14 kernels)

FASTEST
(584 kernels)

RELeARN
(14 kernels)

100

101

102

103

0.95
1.89 1.32

61.99
102.42 85.66

Ti
m

e
t

[s
ec

]
regression

adaptive

Fig. 6: Comparison of the amount of time t in seconds required
by the regression and adaptive modeler for modeling the main
kernels of the application case studies. The error bars show
the 99% confidence intervals of the reported time.

of time t in seconds that is required by both approaches to
model the main kernels of each case study. For Kripke the
adaptive modeler is about 65 times slower than the regression-
based approach, taking roughly 61.99 seconds to create all
models. In the case of FASTEST, it performs slightly better,
being only about 54 times slower. Finally, for RELeARN
the adaptive modeler is again about 64 times slower, taking
85.66 seconds to model all kernels. As expected for a larger
number of kernels, the overall modeling time for FASTEST
is higher than for the other applications. Though, the number
of modeled kernels actually has only a small influence on
the total modeling time. In reality, most of the time required
for modeling is spent on retraining the DNN, where the
computational overhead for retraining is increasing/decreasing
with the diversity of the noise levels found in the performance
measurement. Therefore, the higher diversity of noise levels
in the FASTEST measurements (see Figure 5) explains the
overall increased modeling time. Considering that conducting
the performance measurements required for modeling usually
takes at least days, the shown overall increase in modeling time
is negligible compared to the improved predictive power.

VII. CONCLUSION

Our adaptive approach can effectively reduce the impact of
noise on the creation of empirical performance models that
describe the effects of numerical execution parameters, such
as the number of processes or the problem size, improving
both their accuracy as well as their predictive power. While
linear regression performs extremely well on data with low
noise, the DNN shows significantly better results at high noise
levels. With our heuristic noise estimator as the decision-
maker, the adaptive modeler combines the best of both worlds,
applying each method when its advantages are used best.
The synthetic evaluation shows that our solution surpasses the
regression-based approach’s model accuracy by up to 25%
while improving the predictive power by about 15%. In a
real-life scenario, our solution performed even better, lowering
the average extrapolation error for the CFD code FASTEST
from more than 62% down to only 16%, thus increasing the
predictive power of the created performance models by 46%.

REFERENCES

[1] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
SC ’13: Proc. of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, paper 45.

[2] “Extra-P – automated performance-modeling tool,” www.scalasca.org/
software/extra-p.

[3] M. Ritter, A. Calotoiu, S. Rinke, T. Reimann, T. Hoefler, and F. Wolf,
“Learning cost-effective sampling strategies for empirical performance
modeling,” in Proc. of the 2020 IEEE 34th International Parallel and
Distributed Processing Symposium. IEEE, 2020, pp. 884–895.

[4] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing
supercomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in SC ’03: Proc. of the 2003 ACM/IEEE
conference on Supercomputing. ACM, 2003, paper 55.

[5] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the in-
fluence of system noise on large-scale applications by simulation,” in
SC ’10: Proc. of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2010.

[6] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud: Observing, analyzing, and reducing variance,” Proc. of the
VLDB Endowment, vol. 3, pp. 460–471, 2010.

[7] T. Patki, J. J. Thiagarajan, A. Ayala, and T. Z. Islam, “Performance
optimality or reproducibility: That is the question,” in SC ’19: Proc.
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2019, paper 77.

[8] S. Chunduri, K. Harms, S. Parker, V. Morozov, S. Oshin, N. Cherukuri,
and K. Kumaran, “Run-to-run variability on Xeon Phi based Cray XC
systems,” in SC ’17: Proc. of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2017, paper 52.

[9] S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson, “Measuring empirical
computational complexity,” in Proc. of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering. ACM, 2007,
pp. 395–404.

[10] L. Carrington, A. Snavely, and N. Wolter, “A performance prediction
framework for scientific applications,” Future Generation Computer
Systems, vol. 22, no. 3, pp. 336–346, February 2006.

[11] N. R. Tallent and A. Hoisie, “Palm: Easing the burden of analytical
performance modeling,” in ICS ’14: Proc. of the 28th ACM international
conference on Supercomputing. ACM, 2014, pp. 221–230.

[12] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language for
performance modeling,” in SC ’12: Proc. of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2012, paper 84.

[13] R. Vuduc, J. W. Demmel, and J. A. Bilmes, “Statistical models for
empirical search-based performance tuning,” International Journal of
High Performance Computing Applications, vol. 18, no. 1, pp. 65–94,
February 2004.

[14] A. Bhattacharyya, G. Kwasniewski, and T. Hoefler, “Using compiler
techniques to improve automatic performance modeling,” in PACT ’15:
Proc. of the 2015 International Conference on Parallel Architecture and
Compilation. ACM, 2015, pp. 468–479.

[15] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing perfor-
mance prediction robustness by combining analytical modeling and ma-
chine learning,” in ICPE ’15: Proc. of the 6th ACM/SPEC International
Conference on Performance Engineering. ACM, 2015, pp. 145–156.

[16] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in PPoPP ’07: Proc. of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel
programming. ACM, 2007, pp. 249–258.

[17] F. Nadeem, D. Alghazzawi, A. Mashat, K. Fakeeh, A. Almalaise,
and H. Hagras, “Modeling and predicting execution time of scientific
workflows in the grid using radial basis function neural network,”
Cluster Computing, vol. 20, pp. 2805–2819, 2017.

[18] R. Neill, A. Drebes, and A. Pop, “Automated analysis of task-parallel
execution behavior via artificial neural networks,” in Proc. of the 2018
IEEE International Parallel and Distributed Processing Symposium
Workshops. IEEE, 2018, pp. 647–656.

www.scalasca.org/software/extra-p
www.scalasca.org/software/extra-p

[19] J. J. Thiagarajan, R. Anirudh, B. Kailkhura, N. Jain, T. Islam, A. Bhatele,
J.-S. Yeom, and T. Gamblin, “PADDLE: Performance analysis using a
data-driven learning environment,” in Proc. of the 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium. IEEE, 2018,
pp. 784–793.

[20] P. Neumann, “Sparse grid regression for performance prediction using
high-dimensional run time data,” in Euro-Par 2019: Parallel Processing
Workshops, ser. Lecture Notes in Computer Science. Springer, 2020,
pp. 601–612.

[21] P. Jamshidi, N. Siegmund, M. Velez, C. Kästner, A. Patel, and Y. Agar-
wal, “Transfer learning for performance modeling of configurable
systems: An exploratory analysis,” in ASE 2017: Proc. of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing. IEEE, 2017, pp. 497–508.

[22] D. Duplyakin, J. Brown, and R. Ricci, “Active learning in performance
analysis,” in Proc. of the 2016 IEEE International Conference on Cluster
Computing. IEEE, 2016, pp. 182–191.

[23] E. Ipek, B. R. De Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in European Con-
ference on Parallel Processing. Springer, 2005, pp. 196–205.

[24] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of inference and learning for performance
modeling of parallel applications,” in PPoPP ’07: Proc. of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel
programming. ACM, 2007, pp. 249–258.

[25] K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to OS interference using kernel-level noise injection,” in
SC’08: Proc. of the 2008 ACM/IEEE Conference on Supercomputing.
IEEE, 2008.

[26] A. Maricq, D. Duplyakin, I. Jimenez, C. Maltzahn, R. Stutsman, and
R. Ricci, “Taming performance variability,” in OSDI’18: Proc. of the
13th USENIX conference on Operating Systems Design and Implemen-
tation. USENIX Association, 2018, pp. 409–425.

[27] J. Gillberg, P. Marttinen, M. Pirinen, A. J. Kangas, P. Soininen,
M. Ali, A. S. Havulinna, M.-R. Järvelin, M. Ala-Korpela, and S. Kaski,
“Multiple output regression with latent noise,” The Journal of Machine
Learning Research, vol. 17, no. 1, pp. 4170–4204, 2016.

[28] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in ESEC/FSE 2015:
Proc. of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 284–294.

[29] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[30] A. McHutchon and C. E. Rasmussen, “Gaussian process training with
input noise,” in NIPS’11: Proc. of the 24th International Conference on
Neural Information Processing Systems. Red Hook, NY, USA: Curran
Associates Inc., 2011, pp. 1341–1349.

[31] A. Calotoiu, D. Beckinsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz,
and F. Wolf, “Fast multi-parameter performance modeling,” in Proc. of
the 2016 IEEE International Conference on Cluster Computing. IEEE,
2016, pp. 172–181.

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[33] M. L. Seltzer, D. Yu, and Y. Wang, “An investigation of deep neural
networks for noise robust speech recognition,” in Proc. of the 2013 IEEE
international conference on acoustics, speech and signal processing.
IEEE, 2013, pp. 7398–7402.

[34] A. J. Kunen, T. S. Bailey, and P. N. Brown, “Kripke-a massively
parallel transport mini-app,” Lawrence Livermore National Lab (LLNL),
Livermore, CA (United States), Tech. Rep., 2015.

[35] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
ser. Adaptive computation and machine learning. MIT Press, 2016.

[36] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research
on machine learning applications and trends: algorithms, methods, and
techniques. IGI global, 2010, pp. 242–264.

[37] M. Kornhaas, M. Schäfer, and D. Sternel, “Efficient numerical sim-
ulation of aeroacoustics for low mach number flows interacting with
structures,” Computational Mechanics, vol. 55, pp. 1143–1154, 2015.

[38] S. Rinke, M. Butz-Ostendorf, M.-A. Hermanns, M. Naveau, and F. Wolf,
“A scalable algorithm for simulating the structural plasticity of the
brain,” Journal of Parallel and Distributed Computing, vol. 120, pp.
251–266, 2018.

