Dynamic Multi-objective Scheduling of Microservices in the Cloud

Hamid Mohammadi Fard
Technical University of Darmstadt
Darmstadt, Germany
Email: fard@cs.tu-darmstadt.de

Abstract—For many applications, a microservices architec-
ture promises better performance and flexibility compared to
a conventional monolithic architecture. In spite of the advan-
tages of a microservices architecture, deploying microservices
poses various challenges for service developers and providers
alike. One of these challenges is the efficient placement of
microservices on the cluster nodes. Improper allocation of
microservices can quickly waste resource capacities and cause
low system throughput. In the last few years, new technologies
in orchestration frameworks, such as the possibility of multiple
schedulers for pods in Kubernetes, have improved scheduling
solutions of microservices but using these technologies needs
to involve both the service developer and the service provider
in the behavior analysis of workloads. Using memory and
CPU requests specified in the service manifest, we propose a
general microservices scheduling mechanism that can operate
efficiently in private clusters or enterprise clouds. We model
the scheduling problem as a complex variant of the knapsack
problem and solve it using a multi-objective optimization ap-
proach. Our experiments show that the proposed mechanism is
highly scalable and simultaneously increases utilization of both
memory and CPU, which in turn leads to better throughput
when compared to the state-of-the-art.

Keywords-scheduling microservices; cloud computing; multi-
objective optimization; knapsack problem; resource manage-
ment;

I. INTRODUCTION

Early monolithic cloud applications, with a rapid growth
rate, are being replaced by microservice-based applica-
tions [1]. Nowadays, almost all cloud providers offer various
microservice deployment services, as part of their fundamen-
tal services.

Microservices architecture is a progression of service-
oriented architecture. In this approach, an application is
decomposed as a collection of loosely coupled services,
which interact over remote interfaces [2]. Microservices are
tightly dependent on elasticity feature of cloud computing.
Microservices architecture facilitates autoscaling of appli-
cations and considerably decreases cost of outsourcing of
services to public commercial clouds. This is particularly
important for IoT applications on the edge, as discussed in
[3].

Ever-increasing number of microservices and critical need
of realtime execution of these services highlights the prob-
lem of microservices scheduling for both cloud providers

Radu Prodan
Klagenfurt Universitdt
Klagenfurt, Austria
Email: radu.prodan@itec.aau.at

Felix Wolf
Technical University of Darmstadt
Darmstadt, Germany
Email: wolf@cs.tu-darmstadt.de

and service developers [4]. Using microservice calls, in
public clouds, the customers do not pay by an hourly-based,
pay-as-you-go pricing model but they pay only based on the
number of service requests and duration of running services
[5]. Therefore if a service provider can not perfectly utilize
its available resources and provide the best possible response
time to the service calls, all service customer, consumer and
provider would be negatively impacted.

It is quite common to specify memory and CPU requests,
in the service manifest ', in most microservice deployment
frameworks, such as Kubernetes [6]. The ratio between
requested memory and CPU, in various services, could be
completely uncorrelated. Then unilateral attempt to utilize a
single resource (memory or CPU) could cause wasting the
other resource of the cluster nodes. Moreover, we should
notice that for deployment of microservices, resources of in-
dividual nodes can not be aggregated as integrated resources
of cluster. Consequently, resource requirements of services
and resource utilization of nodes should not be considered
independently and we need to consider the impact of each
component on the whole system.

In this paper, using memory and CPU requests specified
for service deployment, we propose a novel scheduling
mechanism that balances memory and CPU utilization of
nodes and increases the utilization of the whole cluster,
which in turn leads to better throughput. Our approach is
simple, fast and very well scalable. The proposed mechanism
is a general approach that can be used by developers
for orchestrating their containers-based microservices (for
instance, using Amazon Elastic Container Service) or can
be used by enterprise cloud providers for orchestration
of serverless microservices (for instance, AWS Lambda).
Moreover, our approach is not bounded only to memory and
CPU and could be applied for other resources (e.g. GPU), if
the orchestrator supports request and limit specification for
those resources in the service manifest.

In our problem, we focus on two critical objectives:
utilization and throughput of cluster. We transform this
problem, to sequence of a complex variant of the knapsack
problem [7] and solve it using a multi-objective optimization
approach. Considering the usual short lifetime and large

Uhttps://kubernetes.io/docs/tasks/configure-pod-container/

scale of microservices in enterprise public clouds, low
latency is a critical need of such scheduling mechanism,
which has been carefully considered in our approach.

Our contribution in this paper is multifold. First, we
proposed a general knapsack problem model that can be ex-
tended for various resource requests specified in the service
manifest. Second, we considered simultaneous utilization of
memory and CPU separately for each node and cumulatively
in the whole cluster. Third, we used least knowledge, in
advance, to dynamically schedule microservices that makes
our approach robust in dynamic production environments.

The rest of the paper is organized as follows. In Section II,
we review the related work and discuss how our approach is
different. We model the problem formally in Section III. In
Section IV, we propose a novel scheduling mechanism that
is evaluated in Section V. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

Scheduling of cloud resources in low level services, such
as laaS, has been extensively studied, in the last decade, e.g.
[8] but less efforts have been devoted to high level services,
such as microservice deployment. Although, almost the main
goal of providers, in all schedulers, is to provide the best
user experience according to the service level agreement
(SLA) but resource utilization is always the objective of
high priority for most providers. Scheduling mechanisms for
different services confront with different challenges. In IaaS,
the providers aim to allocate virtual machines to physical
hosts while in microservice deployment, the providers need
to allocate software services to virtual/physical nodes.

There are several popular frameworks for service orches-
tration, such as Docker Swarm 2, Mesos > and Rancher #
and also there are cloud-specific technologies like Amazon
elastic container service (ECS) ° and Oracle application
container cloud service ® but Kuberenets is the so-called
standard orchestration framework. Kubernetes is governed
by cloud native computing foundation (CNCF) since 2015
and many of available frameworks have been produced based
on that.

Microservices scheduling in orchestration frameworks di-
rectly impacts on the utilization of resources [9]. Improper
scheduling mechanisms of orchestration frameworks can
waste the resources quickly. On the other side, we could not
spend long time to find the optimal solutions for short-life
services. Subsequently, scheduling latency is a vital factor in
such schedulers and scheduling overhead can not be simply
neglected. In the rest of this section, we study some of
valuable researches in domain of microservices scheduling.

Zhttps://docs.docker.com/engine/swarm/

3http://mesos.apache.org/

“https://rancher.com/

Shttps://aws.amazon.com/ecs/
Shttps://docs.oracle.com/en/cloud/paas/app-container-cloud/index. html

A multi-objective scheduling approach in a cloud feder-
ation, proposed by [10], schedules microservices based on
multiple user objectives, such as latency and cost. The final
goal is to reduce the end-to-end latency and data communi-
cation between services of dependent service chains.

There are several network-aware scheduling approaches
in related work, such as [11] and [3]. Network-aware ap-
proaches are particularly useful for running IoT services on
the edge. In such environments, the services and resources
are extensively distributed and considering the network
topology in scheduling decision can prepare large potential
for performance improvement of the system.

The authors of [12] propose a mathematical scheduling
model and multiple classical approaches for scheduling of
microservices in cloud-edge environments. The main focus
of this work is using less general devices for running
microservices.

A meta-scheduler has been proposed in [13] to fairly
schedule the workloads of different users. In this approach,
the scheduler calculates the overall resource demands and
current resource consumption of each user and then consid-
ering the balance in resource consumption of users makes
the final decision.

In [14], using an approximate Markov Decision Process,
the authors propose an energy efficient scheduling by tem-
porarily deactivating optional components of microservices.
They mainly focus on overloaded datacenters and compares
their solution with VM consolidation approach.

To the best of our knowledge, the microservices schedul-
ing mechanisms usually consider single dimensional nodes.
In other words, they mostly do not consider separate re-
sources (e.g. memory and CPU) of nodes, individually in
the scheduling decision. We believe that such scheduling
approaches could waste the resources and decrease utiliza-
tion and throughput of the clusters. Compared to the related
work, our dynamic approach schedules the microservices by
simultaneously considering memory and CPU requirements
of services and memory and CPU capacity of nodes.

III. SYSTEM MODEL

In this section, we formally define platform, workload,
and problem models.

A. Platform Model

We assume a cloud provider dedicates the -cluster
N={ni, ..., ny}, as the set of p connected nodes for
serving microservices deployment. Nodes could include
baremetal, virtual machines or any hybrid of those. Each
node n; € N is bounded by the capacity vector n; =
(MEM , CPU ;), which respectively defines the memory and
CPU limitations of the node.

B. Workload Model

The cloud provider hosts microservice-based applications
of different customers. Each application is a collection
of microservices that are requested dynamically based on
variant arrival distributions. The logics behind the service
calls’ distributions are defined by the autoscaling policies
of applications and therefore are out of the scope of this
research.

The microservice instances/calls constitute a work-
load queue S including m microservices such that § =
[s1, ..., Sq|. Each microservice instance (or simply, ser-
vice) s; € S is characterized by its specification vector
s; = (mem;, cpu;). The tuple presents memory and CPU
requests of the service, respectively. The runtime/lifetime
of each service s; € S on each node n; € N is denoted by
runtime’..

Since there is no direct communication between services,
each service has its own private datastore then the inter-
service relations only define the microservices chains. There-
fore, we do not need to model the inter-service communica-
tion of microservices in our workload model. In other words,
whenever a service invokes another service, the invoked
service is appended as a new entry to the end of the service
queue S.

This workload model could generally cover a broad
range of microservice-based applications hosted on cloud
environments or private clusters, for instance typical web
applications designed based on serverless microservices ar-
chitecture.

C. Problem Model

Our research question is scheduling of the microservices
instances in S to the nodes presented by N. We denote
this scheduling by the mapping function sched : § —— N.
The cloud provider aims to maximize the throughput of
the system, which is reflected by the number of completed
services in a time interval Az. The scheduler algorithm must
be perfectly scalable and practically usable in large scale and
enterprise cloud environments.

We formulate our scheduling problem as sequence of
a complex variant of well-known knapsack problem. The
knapsack problem is a combinatorial problem where a
number of objects, each associated with a value and a
weight, must be packed into a knapsack of specific capacity,
such that the value of the objects within the knapsack is
maximized [15].

Our scheduling problem is a multi knapsack problem,
because there are p nodes n; € N that must be packed
by microservices instances s; € S. As defined in the plat-
form model, each node n; is bounded by two compute
resources, namely memory limitation MEM ; and CPU lim-
itation CPU ;. Then each knapsack has a 2-dimensional ca-
pacity vector including memory and CPU capacities, which
represents the maximum weight that the node can support. In

Z —_—l

=

o

g 7

© S, 5

S)

o 52 3

o 3

S

2 = >

ot t t
o X y

time

Figure 1: Resource utilization in the time interval Af. To
calculate the utilization of the resource in At, we need to
consider the complete runtime for s4 and the partial runtime
for s1, s3 and ss, which are bounded in [t,, #,].

other words, each knapsack must be packed by the services,
with two weights: memory and CPU requests. For packing
the knapsacks, we aim to maximize the profit or value
of each allocation decision based on two objectives: the
average memory utilization and the average CPU utilization
of the cluster, in a time interval A¢, between the starting
time of the system and the call time of the service. In
the evaluation of our scheduler mechanism, in Section V,
we will discuss that the proposed profit function reflects
the throughput of the system, as requested. Consequently,
we modeled the microservices scheduling problem in cloud
as a "Bounded Multi-Dimensional Multi-Objective Multiple
Knapsack Problem”.

To formulate the capacity vector of each node, we need
to distinctly model the utilization of memory and CPU.
Utilization of these two compute resources in a time interval
At are calculated by the following equations.

Z (memypart(runtime;, At)>

{V sp—)nj}

mem_util(nj, At) = MEM, A1

(D

Z (cpul- . part(runtime?7 A t))

{v Si>—>nj}

cpu_util(nj, At)= CPU Al

2)

In these equations, part(runtimeé-, At) returns the part of
runtime of the service s; on the node n; that is placed inside
At. To better understand of the concept, a sample schedule
histogram is represented in Figure 1,

Using equations 1 and 2, we define the average utilization
of cluster. Because of different resource capacity of nodes,
for average utilization of the cluster, we need to calculate the
weighted average memory and CPU utilization of cluster, as
denoted in the equations 3 and 4. To calculate the resources
utilization, we ignored the idle nodes of the cluster, which
have no service running at that time. In Section V, we

discuss how this assumption improves the schedule results.

P
r MEM j-mem_util(nj, At)
mem_util(Af) = = ——— @
MEM;
=1

J

P
Y. CPU;-cpu_util(n;, At)
cpu_util(Ar) = U 7 4)
CPU,
=1

j

The execution time of the service s; allocated to the node
n; is defined as the time difference between submission
time of the service (call time) and its completion time. The
following equation calculates this time by sum of scheduling
latency, waiting time for the node and runtime of the service.

exec_time?- = shced_latencyi + wait_timej» + mntime? (®)]

As discussed, the profit function for making each alloca-
tion decision is defined by a bi-objective vector, as follows.
In Equation 6, At is the time interval between the starting
time of the system and the call time of the service.

profit(si, nj) = (mem_util(At), cpu_util(At)) (6)

Finally, the problem of microservices scheduling in cloud
is transferred to a sequence of bi-objective optimization
problems, as follows:

V si € SAY nj € N maximize profit(s;,n;)
mem; < MEM ;

{V si=nj in t}
cpu; <CPU

{V si—=nj in t}

subject to ¥ time t \ ¥ nj € N

The system model proposed in this section can be gen-
eralized and extended for other resources, such as local
ephemeral storage of containers, accelerator resources, etc.
provided that the orchestration framework supports the re-
source request specification in the service manifest.

IV. LEAST WASTE, FAST FIRST ALGORITHM

In Section III, we observed that our model is a complex
variant of the knapsack problem. The knapsack problem
is NP-complete problem, which has no exact solution in
a polynomial time complexity [16]. Considering our extra
constraints and objectives (see the subsection III-C), our
problem is even more complex.

The scheduling of microservices in large scale is a time-
critical problem that needs fast and efficient allocation deci-
sion. To solve the problem, we propose a greedy approach
called Least Waste, Fast First (LWFF) in Algorithm 1.

First, for choosing the microservices from the service
queue S, we rely on first come first served (FCFS) approach.

° © Dominated solution
@ Pareto solution
s °
E []
= mu 0 ox
5 x
>
S o
£
S mu oy (]
s y
° z
mu L]
z O O
o [}
cu cu cu .
y X z

CPU utilization
Figure 2: Concept of Pareto solutions. Point x dominates
point y (x > y), while mu, > muy and cu, > cu,. Two points x
and z are non-dominated solutions (x 3 z and z 3 x) because
muy, > mu, and cu, < cu;.

Since usually the service queue is a long queue including
tons of microservices, FCFS policy does not load extra
overhead to the scheduling latency. To select the most
adequate node for allocating a service, three phases are
followed: (1) filtering, (2) producing the Pareto set and
(3) choosing the final solution.

In line 7 of the algorithm, the set feasible_nodes is
created that includes all nodes meeting the service require-
ments, such as affinity constraints (feasible_nodes C N). In
continue, the algorithm runs a fast multi-objective compar-
ison based on the profit equation (see Equation 6), for all
nj € feasible_nodes.

In lines 8-12, to allocate a service s; to each node
nj € feasible_nodes, we calculate the utilization of the
whole cluster (see Equations 3 and 4), assuming the service
is assigned to that node. We calculate the profit vector of
each decision in line 10. When all profits are calculated for
all possible schedule solutions, we remove the dominated
solutions from the solution space (lines 13-20).

A schedule solution s; — n, dominates another solution
si — ny and is denoted by s; — n, > s; = ny, if the profit
vector of s; — ny has lower utilization, in both memory and
CPU. If a solution s; — n, can not dominate another solution
s; > ny, we show it by s; > n, % s; — n,. As shown in Figure
2, the non-dominated solutions constitute a set called Pareto
set.

In the next step, in lines 22-26, from the Pareto set
(non-dominated solutions) generated in the previous step,
we choose the solution that has the least execution time and
finally, in line 27, the service is assigned to the chosen host.

V. EXPERIMENTAL EVALUATION

We compared our proposed scheduling with two popular
miscroservices scheduling approaches and also discuss the
quality of LWFF solutions by comparison with the Pareto

Algorithm 1: Least Waste, Fast First (LWFF).

Input: Set of microservices instances: S; Set of cluster nodes: N
Output: Schedule decision: sched : S — N
1 begin

2 start_time < get_time() /* set the starting point =/
3 while S # 0 do
4 si + deqeue(S) /% dequeue the head of S «/
5 current_time « get_time() /* get the wall-clock
time */
6 profits < 0 /* store the profit vectors =/
7 feasible_nodes < {n; € N | n; meets s; requirements}
/+ filtering phase */
8 foreach n; € feasible_nodes do

At < [start_time, current_time+ wail_limeﬁﬂ + rumime“}]
/+ make the time interval */

10 profit(s;, nj) < (mem_util(At), cpu_util(At))

/* calculate the weighted average of

memory and CPU utilization =/

1 profits.append(profit(s;, n;)) /* append the

profit of sj+»n; to the profits list =/

12 end

13 foreach profit(s;, nj) € profits do

14 foreach profit(s;, nx) € profits do

15 if j# kA profit(si, ng) = profit(s;, n;) then

16 profits.remove(profit(si, n;)) /* remove
dominated solutions x/

17 break

18 end

19 end

20 end

21 host < x such that profit(s;, ny) = head(profits)

/% initiate host with the node of first
element in profits list «/

2 foreach profit(s;, nj) € profits do
/*» find the node with shortest execution
time x/

23 if exec_time”/ < exec_time),,, then

24 | host + j

25 end

26 end

27 sched.append(s; — Npogst)

28 end

29 end

solutions achieved by the state-of-the-art in multi-objective
optimization. As follows, we first explain the experimental
setup and then we present and analyze the results.

A. Experimental setup

To evaluate LWFF mechanism, we ran an extensive set of
experiments, using an extension of the order management
application available on GitHub 7. We developed LWFF
algorithm as a web server and tested its scalability using
JMeter 8. We used jMetal [17] library to produce the Pareto
set of schedule solutions by SPEA2 [18], which is a well-
known multi-objective evolutionary algorithms. Inspiring by
the instance types of AWS EC2 °, we generated different
instance templates with various resource flavors, as shown
in Table I.

To have a various combination of problem size, we ran
the experiments in 9 different classes, as depicted in Table

7https://github.com/PacktPublishing/Hands-on-Microservices-with-
Python

8https://jmeter.apache.org/

9https://aws.amazon.com/ec2/instance-types/

Table I: Six node-templates used in the experiments.

type name | memory (GB) | vCPU
t3.nano 0.5 2
t2.micro 1 1

al.medium 2 1
c4.large 3.75 2
cSn.large 5.25 2
m4.xlarge 16 4

Table II: Various problem sizes used in the experiments.

nodes no.
10 | 50 | 200
100 P | P | Pi3
10000 | P31 | P3| P33

services no. per seconds

II. This helped us to study the behavior of our scheduler
regarding variant number of service calls and cluster sizes.

B. Experimental results

In the first part of the experiments, we compared LWFF
with the two common microservices scheduling mecha-
nisms: Spread and Binpack. Spread strategy balances the
cluster nodes by selecting the nodes with the least load
and the goal of Binpack is to maximize the utilization of
nodes. To have a more precise comparison, we implemented
two variants of Spread and Binpack scheduling strategies.
Spread_mem and Spread_cpu aim to balance memory and
CPU utilization, respectively among all nodes of the cluster.
Similarly, two variants of Binpack, namely Binpack_mem
and Binpack_cpu target to fully utilize nodes considering
memory and CPU capacities, independently.

Figure 3 compares the average utilization of memory and
CPU in the cluster, while using Spread, Binpack and LWFF
schedulers. To calculate the average of resource utilization,
as discussed in subsection III-C, we have considered only
active nodes (against the idle nodes), who host at least one
microservice running. As shown in Figure 3a, utilization
of Spread_cpu and Binpack_cpu are lower than the other
algorithms, because both algorithms make the schedule
decision based on CPU utilization and ignore memory
utilization. The same trend can be viewed in Figure 3b for
Binpack_mem and Spread_mem. Although Binpack_mem
in Figure 3a and Binpack_cpu in Figure 3b provide the best
memory and CPU utilization independently but considering
both memory utilization and CPU utilization simultaneously,
LWFF outperforms all competitors. We should notice that
in low traffic scenarios (e.g. P;» and Pj3), the utilization of
cluster is generally low for all scheduling strategies.

We measured the scheduling latency and its impact on
the execution time of services, as depicted in Figure 4.
Figure 4a shows the average latency to achieve the schedule
solutions. We could observe that all competitors have lower
scheduling latency than LWFF but in Figure 4b, we could

Memory utilization (%)

80 4
60
) | | | |
201

B Spread_mem Bmm Binpack_mem s LWFF
Spread_cpu mmm Binpack_cpu

Pii P12 Pi3 Pa Pn Pz Pui Py Pi
Problem size

(a) The average of memory utilization.

CPU utilization (%)

80 41
60 1
ol [1]]] |
20 1

B Spread_mem s Binpack_mem s LWFF
Spread_cpu mmm Binpack_cpu

0 T T
Pii Piz Pi3 Pa Pn P Pni Py Pi
Problem size

(b) The average of CPU utilization.

Figure 3: The comparison of resource utilization of nodes. For better perception of schedule outcome, the utilization has

depicted in separate charts for memory and CPU.

view that the services running by LWFF have considerably
lower execution time. Considering the fact that execution
time is sum of scheduling latency, waiting time and runtime,
clarifies that the schedule solutions by LWFF have lower
waiting time and runtime, which cover higher scheduling
latency of LWFF.

In the next part of the experiments, we measured the
throughput of the cluster. Considering the previous exper-
iments, while LWFF provides better resource utilization
and execution time, then we may implicitly conclude that
the throughput of LWFF is better too. We analyzed this
claim experimentally. In Figure 5, we depicted the average
of throughput for active nodes per second. As shown in
Figure 5, the throughput of LWFF is remarkably higher than
the other algorithms. These results strengthen our previous
results shown in Figure 4b. Higher throughput of LWFF
solutions in Figure 5 and less execution time of services
shown in Figure 4b confirm that the profit function, as
defined in Equation 6, was a proper choice.

The next experiment represents how LWFF tends to fully
utilize the cluster nodes. This is particularly important when
we are using virtual clusters on public clouds, because lower
number of active nodes means less need to launch new
nodes and consequently less monetary cost. In a private in-
house cluster this could also help to consolidate resources
and consume less energy [19]. In Table III, both variants
of Spread have no idle nodes because they tend to use all
nodes to keep the load balance among the cluster. The main
logic behind Binpack is decreasing the number of active
nodes by fully utilize nodes singly. Then we may expect that
the lowest number of idle nodes between Spread, Binpack
and LWFF belongs to Binpack scheduling. But considering
simultaneous memory and CPU utilization, LWFF outper-

forms both Binpack_mem and Binpack_cpu, dramatically.
In continue, we considered the coverage metric [20] to
compare LWFF with SPEA2. The coverage of a set A on
a set B indicates how many members of B are dominated
by the members of A. The precondition to approximate the
Pareto set using SPEA2 in our problem is having static
services in the service queue S. To mimic this condition
and make SPEA2 comparable with LWFF in our dynamic
environment, we assumed three time intervals At = 10,
At =30 and Ar = 60 such that the number of services
have no change in these intervals. Moreover, we configured
SPEA2 to generate 5 Pareto solutions. We assumed two
objectives for the schedule solutions: schedule latency and
throughput. We observed that no Pareto solution estimated
by SPEA2 was able to dominate any of the solutions
provided by LWFF. In other words, the coverage of SPEA2
on LWFF in all scenarios is zero. The main reason behind
this is high time complexity of SPEA2 to approximate
a Pareto set. Although in our experiments, we observed
that some of the Pareto solutions estimated by SPEA2
have relatively lower runtime than the solutions provide
by LWFF but considering the high schedule latency for
approximating the Pareto set in addition to lack of supporting
dynamic microservice environments make such Pareto set
approximation approaches hardly acceptable in the problem
of microservice scheduling. On the other side, as shown in
Figure 6, the coverage of LWFF on SPEA2 is remarkably
high and also the coverage is increasing by growing the
problem size. Consequently, LWFF was able to provide high
quality schedule solutions in a reasonable time latency.

VI. CONCLUSION

In this paper, based on the knapsack problem, we pro-
posed a general model for scheduling of microservices in

200
w
2
>
2 150
3
o
2
< 100 1
°
0)
£
O
(2]
50- u ”
B Spread_mem B Binpack_mem W LWFF
[Spread_cpu s Binpack_cpu
Pu P12 P13 P21 Pn Px3 P Py Pss

Problem size

(a) The average of scheduling latency.

2500 A
g 2000 1
3
£
+ 1500 -
c
o
P~
=
€ 1000
w
500 4
Bmm Spread_mem W Binpack_mem mmm LWFF
[Spread_cpu mmm Binpack_cpu
P11 P2 P13z Pa P P23 P31 Psz P33

Problem size

(b) The average of execution time.

Figure 4: Scheduling latency and its impact on the execution time of services. Scheduling latency is an important factor to
calculate the execution time of microservices, particularly for short life services. Nonetheless, there is no direct correlation

between scheduling latency and execution time.

Table III: The number of idle nodes in the cluster. Whatever this number is higher, we have some unused nodes that can
we turn them off or release them. This means saving money and energy. The data has have been measured in three time
intervals with the length of 10, 30 and 60 seconds, starting from the begin of experiments.

At =10s At =30s At =60s
P11 |Pia [Pi3 | Po1 [Poo [Po3 | P31 | P3o | B33 [Pri [Pro | Pia [Por [P [Po3 | P31 | Pso | P33 [Pui [Pr2 | Pia | Poi | Poo | P | Pai1 | P2 | P33
Spread_ mem (O (O O |O|O|O|O]O]|O0O]|O]O|O|O|O0O]O]|O]O]O[O|O|O0O]O0O]O[O|O|0O]O
Spread_cpu ojojofojofjfojfojojofojojofojojofojojojrojoj{ojfojofojojofo
Binpack_mem| 2 | 23(79/ 0 [0 [15{0 O[O |O |2 |[11|O[O[O|O]O[O[O[O]O]O]O[O0O]O0O]O]|O
Binpack_cpu |2 [27(83]/0 [0 [17/{0 [0 |0 |0 |4 |14/0[0[O0O|0O]O[O0O[O0O][O0O]O]O]O[O0O]O0O]O]|O
LWFF 313119400 1(20(0 (OO0 |7 |18 0]0O(O0O|O0O]O]O]O[O|3]0]O0O|O0O|0O]O0O]O

Figure 5: The average of throughput of active nodes per
second. To do a fair comparison we considered only active
nodes and ignored idle nodes of the cluster.

s LWFF
|
Eagms megms wepms mesms mepms mewms mems

B Spread_mem WM Binpack_mem
Spread_cpu s Binpack_cpu

the cloud. This model can be extended for various resource

requests specified in the service manifest of an orches-

tration framework. We solved the problem using a multi-

Throughput
N

=
L

P13 P21 P22 Pza

Problem size

P12 P31 P32

objective optimization approach. Measuring the throughput,
we experimentally presented that our proposed scheduler
outperforms Spread and Binpack scheduling mechanisms.
Moreover, using the coverage metric, we showed that our
proposed approach provides efficient solutions compared to
the approximated Pareto set generated by SPEA2. As a
next step, we intend to use our scheduling mechanism for
autscaling of microservices in the cloud.

ACKNOWLEDGEMENT

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement No.
785907 (Human Brain Project SGA2) and the Specific Grant
Agreement No. 945539 (Human Brain Project SGA3).

REFERENCES

[1] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual un-
derstanding of microservice architecture: Current and future
directions,” SIGAPP Appl. Comput. Rev., vol. 17, no. 4, p.
29-45, Jan. 2018.

Coverage (%)

Coverage (%)

Coverage (%)

mmm Coverage of LWFF on SPEA2

Pu P2 Pz P Pn P Pu P Py
Problem size

(a) At =10.

mmm Coverage of LWFF on SPEA2

Pu P Pz P Pn P Pu P Py
Problem size

(b) At =30.

mmm Coverage of LWFF on SPEA2

Pu P Pz P Pn Pa Pu P Py
Problem size

(c) At =60.

Figure 6: The coverage of LWFF on SPEA2. The coverage is the percentage of schedule solutions of LWFF, dominating
the solutions estimated by SPEA2. Notice that the coverage of SPEA2 on LWFF is zero, in all problem sizes.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

N. Alshuqayran, N. Ali, and R. Evans, “A systematic map-
ping study in microservice architecture,” in 2016 IEEE 9th
International Conference on Service-Oriented Computing and
Applications (SOCA), 2016, pp. 44-51.

H. M. Fard, R. Prodan, and F. Wolf, “A container-driven
approach for resource provisioning in edge-fog cloud,” in
ALGOCLOUD 2019. Lecture Notes in Computer Science
(LNCS), vol 12041. Springer, Cham., 2020, pp. 59-76.

M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and
M. Villari, “Open issues in scheduling microservices in the
cloud,” IEEE Cloud Computing, vol. 3, no. 5, pp. 81-88,
2016.

P. Rosati, F. Fowley, C. Pahl, D. Taibi, and T. Lynn, “Right
scaling for right pricing: A case study on total cost of own-
ership measurement for cloud migration,” Cloud Computing
and Services Science, p. 190-214, 2019.

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, “Borg, omega, and kubernetes,” Commun. ACM,
vol. 59, no. 5, p. 50-57, Apr. 2016.

S. Martello, “Knapsack problems: Algorithms and computer
implementations,” Wiley-Interscience series in discrete math-
ematics and optimization, 1990.

H. M. Fard, S. Ristov, and R. Prodan, “Handling the un-
certainty in resource performance for executing workflow
applications in clouds,” in 2016 IEEE/ACM 9th International
Conference on Utility and Cloud Computing (UCC), 2016,
pp. 89-98.

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pal-
lickara, “Serverless computing: An investigation of factors
influencing microservice performance,” in 2018 IEEE Inter-
national Conference on Cloud Engineering (IC2E), 2018, pp.
159-169.

D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and
H. A. Chan, “Multi-objective scheduling of micro-services for
optimal service function chains,” in 2017 IEEE International
Conference on Communications (ICC), 2017, pp. 1-6.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

J. Santos, T. Wauters, B. Volckaert, and F. D. Turck, “To-
wards network-aware resource provisioning in kubernetes for
fog computing applications,” in 2019 IEEE Conference on
Network Softwarization (NetSoft), 2019, pp. 351-359.

L. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices
scheduling model over heterogeneous cloud-edge environ-
ments as support for iot applications,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 2672-2681, 2018.

A. Beltre, P. Saha, and M. Govindaraju, “Kubesphere: An
approach to multi-tenant fair scheduling for kubernetes clus-
ters,” in 2019 IEEE Cloud Summit, 2019, pp. 14-20.

M. Xu and R. Buyya, “Energy efficient scheduling of ap-
plication components via brownout and approximate markov
decision process,” in Service-Oriented Computing. Cham:
Springer International Publishing, 2017, pp. 206-220.

N. Kumaraguruparan, H. Sivaramakrishnan, and S. S. Sap-
atnekar, “Residential task scheduling under dynamic pricing
using the multiple knapsack method,” in 2012 IEEE PES
Innovative Smart Grid Technologies (ISGT), 2012, pp. 1-6.

D. Pisinger, “Where are the hard knapsack problems?” Com-
puters & Operations Research, vol. 32, no. 9, pp. 2271 —
2284, 2005.

J. J. Durillo and A. J. Nebro, “jmetal: A java framework
for multi-objective optimization,” Advances in Engineering
Software, vol. 42, no. 10, pp. 760-771, 2011.

E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving
the strength pareto evolutionary algorithm for multiobjective
optimization,” Evolutionary Methods for Design Optimization
and Control with Applications to Industrial Problems, pp. 95—
100, 2001.

A. Corradi, M. Fanelli, and L. Foschini, “Vm consolidation:
A real case based on openstack cloud,” Future Generation
Computer Systems, vol. 32, pp. 118 — 127, 2014.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: A comparative case study and the sstrength pareto
approach,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 257-271, 1999.

