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Abstract. When a spacecraft is released into space, its initial condition
and future trajectory in terms of position and speed cannot be precisely
predicted. To ensure that the object does not violate space debris mit-
igation or planetary protection standards, such that it causes potential
damage or contamination of celestial bodies, spacecraft-mission design-
ers conduct a multitude of simulations to verify the validity of the set
of all probable trajectories. Such simulations are usually independent
from each other, making them a perfect match for parallelization. The
European Space Agency (ESA) developed a GPU-based simulator for
this purpose and achieved reasonable speedups in comparison with the
established multi-threaded CPU version. However, we noticed that the
performance starts to degrade as the spacecraft trajectories diverge in
time. Our empirical analysis using GPU profilers showed that the appli-
cation suffers from poor data locality and high memory traffic. In this
paper, we propose an alternative data layout, which increases data local-
ity within thread blocks. Furthermore, we introduce alternative model
configurations that lower both algorithmic effort and the number of mem-
ory requests without violating accuracy requirements. Our experiments
show that our method is able to accelerate the computations up to a
factor of 2.6.

Keywords: GPU · simulation · profiling · astrodynamics.

1 Introduction

In space mission design astrodynamics simulations are instrumental in deter-
mining the probabilities of spacecraft and space debris trajectories. At the point
of release or in-orbit failure, the position and speed of the object as well as the
properties (e.g. surface reflectivity) are only known to the mission architects only
with a certain precision. Hence, Monte-Carlo simulations containing thousands
of object samples are conducted in during the mission preparation phase. Based
on the results, the team will choose a nominal separation state or trajectory
that satisfies the rules of the current planetary protection and space-debris mit-
igation guidelines. For instance, during the BepiColombo mission [2], currently
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being flown to Mercury by the European Space Agency (ESA), the upper stage
of the Ariane 5 launcher places the mission spacecraft into the desired transfer
orbit before release. After the required passivation of the upper stage to pre-
vent further break-up, this object becomes space debris and it is not allowed to
impact e.g. Mars or return to near-earth space by a certain probability.

To verify cases like this, the European Space Agency (ESA) has recently
designed a tool called cudajectory to run such simulations on CUDA-capable
devices and achieved a speedup ranging from 1.9× to 10.5× in comparison with
established multi-threaded solutions on CPUs [5]. However, we found out that
the GPU implementation can benefit from further improvements.

To accelerate such highly parallelizable simulations, we analyze the state of
the art and suggest alternative methods to gain performance without violating
accuracy requirements. The simulations are typically performed using numerical
integration methods, such as the Runge-Kutta-Fehlberg 78 scheme [3]. The use
of variable step integration methods is extremely efficient for spacecraft trajec-
tories, since the step size can vary from days in interplanetary space to only
seconds, when the object moves very close to a celestial body. In such numer-
ical integration methods, the equations of motions are implemented, and force
or acceleration models are used. One of these models is the ephemeris model,
which we will focus on in this paper since its performance is often bound by
memory. The ephemeris model provides the position of the celestial bodies at a
given epoch/time and allows us to derive the gravity field affecting the spacecraft
trajectory. For the trajectory of a single object being calculated, the simulation
will sequentially go through the ephemeris calculations as the simulated time
progresses. However, when different spacecraft or object samples are simulated
in parallel, this is no longer the case. Even if the samples have the same initial
time, which is not the case in all problems, the integration steps can have differ-
ent lengths. Thus, each simulated object requires the positions of the celestial
objects at a different epochs. In a different problem to be investigated a space-
craft failure shall be simulated along the nominal flight path and thus already
the initial epochs of all samples are different. Such initial difference or diver-
gence during the integration process leads to different sets of data requested
by the ephemeris routines, overloading the on-chip memory, which indeed re-
sults in register-spilling. Therefore, memory bandwidth becomes a bottleneck
and decreases the overall performance tremendously.

In this paper, we propose an alternative data layout for the ephemeris data.
This new data layout improves data locality. The ephemeris data is restructured
from a memory layout optimized for sequential processing to a layout more
suitable for parallel processing. We increase the likelihood that the required
ephemeris data is available in the caches for several threads running on the
GPU, thus preventing threads from stalling. Additionally, we were able to shrink
the ephemeris model while maintaining the required accuracy. First of all, some
celestial bodies may exert forces small enough to be disregarded. Then, planetary
systems can be handled as a single body adding a small error. Lastly, a different
type of function can be used to approximate the movement of these bodies.
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Originally, Chebyshev polynomials [4, 12] with a degree between 6 to 14 were
being used in ephemeris models. However, previous experiments [6, 15] already
demonstrated that cubic splines are more memory efficient and straightforward
while providing reasonable accuracy. Such optimizations reduce the algorithmic
effort and the number of data requests, thus improving data locality. In essence,
this paper makes the following major contributions:

– A novel data-locality aware data structure to hold ephemeris model data
– A method for balancing the trade-off between simulation accuracy and speed

In the remainder of the paper, we first provide background on the spacecraft
trajectory simulation using GPUs. Then, in Section 3, the effect of alternative
model configurations is analyzed to identify further case-dependent optimiza-
tions, followed by an evaluation in Section 4. A concise review of related work is
presented in Section 5. Finally, we conclude the paper in Section 6.

2 Background on Astrodynamic Simulations

When objects in space are passivated, the point in time, position, and speed are
only known with a certain precision. For in-orbit failures, however, the problem
is more random as they can occur at any point during the mission. In addition
other uncertainties can occur, e.g. the surface reflectivity of an object and thus
the solar radiation pressure acting on will depend on the future attitude of the
S/C and the properties can also be determined only with a specific accuracy
prior to launch. Tiny deviations of the state parameters can lead to a significant
difference in the trajectory after years and decades of space travel. Therefore, the
Monte-Carlo method [7] is applied beforehand to generate a set of sample states
and propagated forward in time to generate their trajectory path. Depending
on the case, these samples may be located around an initial guess, as presented
in the first picture of Figure 1, or along a specifically planned and controlled
trajectory. Once a sufficient amount of such samples (often up to hundreds of
thousands) is simulated for an appropriate period, we can produce a meaningful
probabilistic result from the predicted trajectories, such as impact probability
to a specific celestial body.

2.1 cudajectory : ESA Tool for Trajectory Simulations on GPUs

A spacecraft trajectory can be simulated step by step using numerical integration
methods. Within each step, the change in position and velocity of the spacecraft
is calculated by applying a physics model. ESA developed an in-house tool called
cudajectory [5], solely designed to simulate the trajectories of a set of initial
spacecraft states, a.k.a samples. The tool parallelizes the trajectory simulations
by starting one GPU thread per sample, as described in Figure 1. They are
numerically integrated until every simulation of a sample reaches the end of
a fixed simulation period or collides with a celestial body. The Runge-Kutta
method [8] of seventh order is used for step-wise integration, and the eighth
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Fig. 1: Example of the main aspects of a collision analysis of space debris after sepa-
ration. In a first step samples are generated, which need to be propagated in time in
a second step and the results need to be analyzed in a third step. The second part of
this process is implemented by cudajectory.

order is added via the Fehlberg method [3] to apply dynamic step-size control.
Here, each step contains 13 evaluations of the ordinary differential equation
(ODE) on eleven different points in time. Each ODE evaluation applies the
physics model, which includes routines to calculate gravitational forces, solar
radiation pressure, and collision detection regarding the nearby celestial bodies.
All of these calculations require the position of one or more celestial bodies at
the current time, retrieved from an ephemeris model.

An ephemeris is a collection of models and values that can describe the
position and velocity of astronomical objects over specific periods. Releases from
the Jet Propulsion Laboratory (JPL) are known to be the most accurate models
nowadays, and the applied data format (Type 2 ) is widely used in the industry
[10,11]. These models contain functions of time returning the three-dimensional
cartesian position of a body. Chebyshev polynomials are the method of choice
for high-precision orbit approximation (See Figure 5) as they are best suited in
terms of accuracy, interpolation error, and applicability [12]. For each body, a
series of polynomials of fixed interval length and polynomial degree is provided
to approximate its orbit over the simulated period. Only the coefficients of each
polynomial will be stored in program memory, which are applied during position
calculations.

DE432 is the latest release by JPL [4] and serves as a baseline during our
research. It covers eleven major celestial bodies and planetary systems of the
solar system, where the center of mass (barycenter) is used to include moons.

2.2 State-of-the-Art Performance

Experiments show that the current implementation of cudajectory can be about
10× faster than established multi-threaded CPU solutions on different types of
input samples and physics models. However, we noticed that one major perfor-
mance bottleneck of cudajectory happens for samples at very different points
of simulation time [5]. The step sizes applied during the samples for the Bepi-
Colombo case range from several seconds to almost nine days. In the main im-
plementation, GPU threads are divided into fixed groups called warps in CUDA
terms, each executing in parallel. When the range of the timestamps within a
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Fig. 2: Distribution of the time difference between the simulation epoch at each in-
tegration step within warps of the BepiColombo case example. The maximum range
observed difference was 2352 days within a warp. A difference of 0 days indicates that
all threads can use the same ephemeris data block.

warp increases due to different start times or dynamic step size control, the
threads require different sets of ephemeris polynomials to calculate the position
of a specific celestial body. These differences in time can be significant as de-
picted in Figure 2. If not all data can be made available the whole warp stalls
until all of these polynomials have their coefficients data ready. Therefore, when
this situation occurs the memory traffic is immensely increased and leads to
significant performance degradation.

3 Efficient Ephemeris Formats and Configurations

We analyze the original record-based ephemeris data format on GPUs and pro-
pose an alternative data format to improve performance. This format stores the
polynomial data in a different order and offers the opportunity to apply cu-
bic splines instead of the current Chebyshev polynomials. Finally, we present
additional ways to reduce algorithmic effort, as well as data requirements.

We profiled the performance of the BepiColombo case, running 420,000
threads packed in 13,125 warps on a Tesla V100 using the Nvidia Visual Pro-
filer [14]. The results showed that 95.7% of the memory traffic is linked to local-
memory instructions. This is a strong hint to the existence of excessive register
spilling, as this memory space can not be utilized manually. Instead, the program
automatically includes such instructions to spill and reload the register data. We
also identified a high execution efficiency of over 98%, indicating almost no pro-
cessor idle time. However, such a large fraction of executed instructions is likely
linked to register spilling, which reduces the overall efficiency. To alleviate the
register spilling, the overall memory traffic must be reduced. Therefore, we ap-
ply a different data alignment and memory access pattern, which helps us to
improve data locality.



6 F. Schrammel et al.

Fig. 3: Two caching examples for DE432 data stored in record-based format, where
e.g. the first record spans from S0 to P0. We depict data of polynomials for the Sun
(Si), the Earth (Ei), Jupiter (Ji) and Pluto (Pi). Multiple polynomials of the same
body are loaded in the cache lines of 128 bytes (between two black ticks) [13]. The
loaded but unneeded data in the cache is displayed by diagonal grey stripes.

The data format of DE432 is designed to improve the data locality of single-
thread execution. All data required for the position calculations of a specific point
in time is collected in one record, which covers 32 days. This method increases
the spatial locality, as some coefficients of the latter bodies in the list are pre-
cached by requests to earlier bodies. Since the move to the subsequent point in
time rarely exceeds 7.0 days, the ephemeris data valid for the previous timestamp
will often be reused, which provides temporal locality. Figure 3 describes DE432
data stored in the GPU texture memory. As the data size for each polynomial is
often not a multiple of the cache line size, they will not be stored at the start of a
cache line. When a warp requests the polynomial coefficients for one specific body
covering a specific period, the relevant cache lines are loaded into the on-chip
cache. The first request targets four Sun polynomials of 1056 bytes, for which
twelve cache lines are loaded, although they would fit into nine. This results in
1536 bytes loaded, which is roughly 45% more than requested. In the second
example shown in Figure 3 regarding Jupiter polynomials, 40% more cache lines
containing 56% more data than needed are loaded. When all polynomials within
the records are applied at some point during the calculations, a fraction of the
unneeded data may be used for a different body or point in time. If cached
until this point, the data is then immediately available. However, getting a warp
instruction ready for execution will generally involve more memory traffic than
theoretically necessary. Additionally, a cache overload will replace former cached
polynomials, alleviating both spatial and temporal locality effects.

3.1 CUBE: CUdajectory Binary Ephemeris format

An efficient ephemeris data format for massively parallelized cudajectory requires
a different view of data locality. Instead of looking at the locality within a single
thread, we need to focus on the data that is requested at once by the threads of
one warp. By fitting the data’s alignment to the access pattern, we can reduce
the memory traffic and register spilling.
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Fig. 4: Same ephemeris model data and example requests as in Figure 3 but with the
polynomials sorted first by body and then by time.

The threads within a warp will all perform the position calculation for the
same body by design of the software. In case they evaluate the same polyno-
mial, they will also need the same data. For higher timestamp ranges, however,
this ranges over multiple polynomials. Therefore, storing the list of polynomials
sorted first by the body and then by timestamp will result in a more efficient
format than the original record-based approach. This is the exact idea behind
the proposed CUBE format.

Figure 4 describes the same data requests as in Figure 3, but now the poly-
nomials are stored in the CUBE format. For the Sun polynomials, we load the
minimum necessary number of cache lines, where only 9% more data than needed
is included. In the case of Jupiter, still, one more cache line than theoretically
necessary is loaded, which is caused by the alignment of the polynomials to the
cache lines in texture memory. However, we still perform much better compared
to the record-based format because only 20% more cache lines and 33% more
data than needed are loaded. Overall, we achieve a 21% reduction of loaded
cache lines (From 19 down to 15) by merely changing the alignment of the data,
promising a notable performance gain.

Furthermore, we identified a difference in the storage structure of coefficients
within each polynomial and the order of accesses by the cudajectory implemen-
tation. Thus, there is a chance for additional performance improvement when
either the algorithm is adjusted, or the CUBE format is further improved.

3.2 Alternative Models and Configurations

Using cubic splines; Popular types of ephemeris models apply Chebyshev
polynomials [10,12] to approximate the position and velocity of celestial bodies.
However, Korvenoja et al. [6] showed that ephemeris models for satellite orbits
could be computed using cubic splines, achieving high accuracy with significantly
lower effort. Moreover, Russell and Arora [15] demonstrated that this technique
could also be applied to ephemeris models of celestial bodies. When an alter-
native model is applied, the deviation in the calculated body positions affects
the direction and magnitude of the gravitational pull exerted on the simulated
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Fig. 5: Exaggerated illustration of an arbitrary body’s position obtained from tra-
jectory approximations of different accuracy. The gravitational pull on a spacecraft,
calculated from this position, is affected by the position deviation introduced by the
approximation, especially when close as shown for spacecraft 1.

Celestial Body or Interval Polynomial Per Polynomial Per 32 Days Record
Barycentre (BC) [days] degree N values bytes values bytes

Sun 16 10 33 264 66 528
Mercury 8 13 42 336 168 1 344
Venus 16 9 30 240 60 480
Earth BC 16 12 39 312 78 624
Moon 4 12 39 312 312 2 496
Mars BC 32 10 33 264 33 264
Jupiter BC 32 7 24 192 24 192
Saturn BC 32 6 21 168 21 168
Uranus BC 32 5 18 144 18 144
Neptune BC 32 5 18 144 18 144
Pluto BC 32 5 18 144 18 144

Table 1: Statistics on type 2 polynomials from DE432 with N + 1 three-dimensional
coefficients of double precision floating point type [11] [10].

spacecraft as depicted in figure 5. However, if this effect is small enough (e.g. for
spacecraft 2 in the figure), this model may be applied without consequences.

Cubic splines are polynomials of degree three, interpolating between a se-
quence of knots. When generating an alternative ephemeris model for a specific
celestial body, the positions at equally-spaced points in time retrieved from the
original DE432 model can be used as knots. By applying a model containing such
cubic splines instead of the DE432 Chebyshev polynomials, we are able to im-
prove the efficiency of specific position calculations. Chebyshev polynomials are
evaluated by a recursive algorithm, including six to fourteen three-dimensional
coefficients (Table 1). On the other hand, a cubic spline is simpler to evaluate
and reduces the number of coefficients to four and 96 bytes per polynomial.
Additionally, the CUBE format lets us choose the spline interval size for each
body independently, as we are not bound to the record’s interval anymore. Here,
longer intervals increase data reuse both within each specific sample simulation
and between different GPU threads.
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Furthermore, an ephemeris model using cubic splines turns out to have a very
stable deviation compared to the positions retrieved from the original model.
The maximum deviation of such a cubic spline model against the original can
be calculated statically and later used as accuracy metric to support model
selection. Increasing the polynomial interval increases the maximum deviation
and decreases the approximation accuracy of the model. However, we improve
the reuse of data as fewer different polynomials need to be loaded to cover the
same timestamp range. For bodies in the outer solar system, cubic splines seem to
be an efficient alternative. While using intervals much longer than set by DE432,
we still provide very high accuracy. For bodies closer to the Sun, however, cubic
splines are not able to provide more efficient intervals while achieving overall
acceptable accuracy levels. This is because of more extreme direction changes in
their movement caused by the surrounding close and massive bodies like the Sun
and Jupiter. Especially the trajectory of Mercury is heavily perturbed making
it very hard to apply cubic splines in an efficient way.

Celestial bodies exclusion; Another method to increase the performance is
to exclude a subset of bodies from simulations. An entire celestial body may be
excluded from the physics model if its full gravitational effect on the spacecraft
state is small enough. This skips the related position calculation and ephemeris
data loads within each step and thread, providing a significant performance
boost. Although such model modifications are not specific to GPU applications,
they are the extreme case of the deviation analysis and, therefore, included in
the upcoming experiments.

Planetary systems abstraction; The last optimization method is to abstract
planetary systems. In case a planet and its moons are treated as individual
bodies by the physics model, they may be abstracted using a fictional body of
combined mass at their barycentre, instead. For our applications, this method
can be applied for the Earth-Moon system, when the introduced error is small
enough to be accepted. We call this method EMB abstraction in the rest of this
paper.

4 Experimental Results

To assess the impact of the proposed method on the simulation runtime, we exe-
cute the disposal analysis for the BepiColombo mission and two additional arti-
ficial test cases with different ephemeris models. Here, only the runtime spent on
the selected CUDA device is measured. The baseline applies the original DE432
model, and on top of that, the speedup is calculated for runs using alternative
ephemeris models. The experiments are executed on Tesla K80, K20XM, and
K40M devices as well as on a Tesla V100 in selected cases. The latter is pri-
marily used for detailed investigations of the performance via the Nvidia Visual
Profiler because it provides additional insight into the utilization of the device
compared to older GPU generations.
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Fig. 6: The analysis of the overall range of gravitational acceleration (left) and worst-
case change of acceleration on given position offset (right) per celestial body on a
spacecraft between 9.8 × 107 and 2.3 × 108 km from the center of the solar system
(Potential distances for the BepiColombo upper stage around the Sun). As Venus,
the Earth, the Moon, and Mars orbit within this range, their potential gravitational
pull [km/s2] can be much higher (on close encounter) than for the rest and position
deviations would be more critical. For this, these bodies are not included on the right.

4.1 Accuracy Levels of Test Cases

To accelerate position calculations, we pick case-specific ephemeris models with-
out violating accuracy requirements. For this purpose, the accuracy level of the
conducted analysis is defined before we select a model for each celestial body.
We always opt for simpler models, provided that they guarantee the required
accuracy. This way, both the algorithmic complexity as well as the required data
size can be reduced.

Regarding the disposal analysis of the BepiColombo upper stage, the model
selection will be based on the astrodynamical analysis presented in Figure 6. It
requires only a rough guess of the simulated trajectory range and leads to no
significant increase in runtime.

The ephemeris model configurations for a range of accuracy levels are pre-
sented in Table 2. For each celestial body, either the original polynomials, cubic
splines of a specific maximum deviation, or exclusion is selected. The deter-
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Accuracy Level 10−20 10−15 10−12 10−10

Sun DE432 DE432 CS 1 CS 102

Mercury DE432 DE432 DE432
Venus DE432 DE432 DE432 DE432

Earth BC DE432 DE432 DE432 DE432
Moon DE432 DE432 DE432 DE432

Mars BC DE432 DE432 DE432 DE432
Jupiter BC DE432 CS 102 CS 105 CS 107

Saturn BC DE432 CS 104 CS 107

Uranus BC CS 10 CS 106

Neptune BC CS 10 CS 106

Pluto BC CS 105

Table 2: Ephemeris configurations for accuracy levels in km/s2 regarding the Bepi-
Colombo analysis. For each body either the original polynomials (DE432), cubic splines
of given maximum deviation in kilometers or exclusion (empty) is selected.

mined collection of polynomials is then stored in the CUBE format supported
by cudajectory.

For high accuracy applications at, e.g., 10−20 km/s2, all listed celestial bodies
are included as their gravitational effect is of relevant magnitude (see the left
plot of Figure 6). Since small position offsets of most bodies already have a
worst-case effect larger than 10−20 km/s2, we inherit the original polynomials
for these. Only for Uranus, Neptune, and Pluto, cubic splines of lower accuracy
are selected. These bodies are always very far away from the spacecraft. Thus,
a position deviation of 10 or 105 km, respectively, is accepted (see the right plot
of Figure 6).

For lower accuracy levels, less accurate cubic splines can be selected for most
of the bodies, and some may be excluded entirely when their overall gravitational
acceleration is determined to be lower than the level at all times. For instance,
Pluto and its moons can safely be excluded when an accuracy level of 10−16 or
higher is applied, as shown in Figure 6. The model for the lowest level in the
table (10−10) includes only six of the eleven bodies. Four of them still require
the original accuracy as the spacecraft might have a close encounter, and for the
other two, the Sun and Jupiter, cubic splines of quite a high deviation can be
selected.

The models for all of the given accuracy levels produce results that can be
used to get the first idea of this specific problem, while 10−20 and 10−15 can also
be applied for the final analysis.

Two artificial sample sets on static circular orbits between Earth and Mars
are also included to test alternative models not covered by the BepiColombo
case. Additionally, we configured their timestamp ranges to stay at zero and 64
days to investigate its effect on the performance. We define an accuracy level at
10−11 km/s2, where cubic spline models at 100 km (Sun), 106 km (Venus, Mars,
and Jupiter) and 108 km (Beyond Jupiter) maximum deviation are applied.
Mercury, Uranus, Neptune, and Pluto are excluded from the model if the body
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Fig. 7: The speedup of efficient ephemeris models used by the listed cases and config-
urations. The cases are BepiColombo (BC), zero days (0d), 64 days (64d) timestamp
range. The model features include CUBE format, EMB abstraction, cubic splines (CS),
and the full exclusion of bodies, which are all included for the accuracy level (AL) con-
figurations.

exclusion feature is enabled. EMB abstraction can safely be applied at every
step, as its maximum error is two magnitudes below the selected accuracy level.

When the original model is applied by one of the cases, the total of all
position calculations for one point in time requires 2520 bytes of polynomial
coefficients. Using the alternative models for the BepiColombo case without
EMB abstraction, this data size is reduced by 6% at level 10−20 to 48% at
level 10−10. However, when EMB abstraction is activated, a reduction of up to
60% can be achieved. The described model for the artificial case can improve
this further to 69% reduced memory consumption, while 45% of the position
calculations per point in time are skipped entirely.

4.2 Speedup Gained From Ephemeris Model Changes

The BepiColombo analysis applies step size control, which causes an average of
120 days range of timestamps within warps. To identify the performance impact
of this timestamp range, we execute the artificial cases without step size control.
One case contains samples starting at the same time, and thus the timestamp
range will always be zero. Within the second case, however, the samples’ start
times are equally distributed so that two days are in between every pair of
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DE432 CUBE Cub. Splines Exclusion

Full kernel runtime 10.81 s 7.64 s -29.3% 7.56 s -1% 5.99 s -22%
for integration 0.46 s 0.39 s -15.2% 0.42 s +8% 0.42 s +8%
for physics model 2.22 s 1.74 s -21.6% 1.85 s +6% 1.45 s -17%
for ephemeris model 7.45 s 4.82 s -35.3% 4.52 s -6% 3.41 s -29%
for positions copy 0.52 s 0.43 s -17.3% 0.46 s +7% 0.48 s +12%

Local memory overhead 95.7% 94.7% -1.0% 95.9% +1% 94.9% 0
L2 Cache hit rate 38.0% 47.0% +9.0% 53.0% +6% 42.0% -5%
Device memory loads (TiB) 2.508 1.847 -26.4% 1.738 -6% 1.612 -13%
Global memory requests 4.5 G 3.3 G -26.7% 3.9 G +18% 2.1 G -36%
Texture memory requests 90.2 G 90.2 G 0 61.9 G -31% 56.7 G -37%
Local memory requests 56.0 G 44.6 G -20.4% 49.8 G +12% 31.9 G -28%
Table 3: Performance profiles of one CUDA kernel call till the first clustering break of
the BepiColombo case on a Tesla V100 for DE432 model (baseline) and CUBE format.
The third case uses cubic splines on top, while the fourth case excludes Mercury, Saturn,
Uranus, Neptune and Pluto on top of the CUBE format.

subsequent samples. This results in a static timestamp range of 64 days within
every warp of 32 threads.

The speedup displayed in Figure 7 is observed for the mentioned cases when
applying different ephemeris model configurations. All configuration features in-
dividually, as well as the fully adapted models, are able to achieve a significant
runtime speedup of up to 2.6×, where roughly 62% of execution time is saved.
When the data is structured using the CUBE format, a speedup of 1.3× to 1.37×
is observed for the BepiColombo case on the tested GPUs. For cases of smaller
timestamp ranges, even higher speedup is achieved with over 1.4× and 1.5×,
respectively.

The impact of the individual configuration features was tested on artificial
cases. Here, the performance gain is similar for both timestamp ranges. However,
all features combined are able to speed up the case of 64 days range more than the
case of zero-days range. The higher range causes a runtime increase by a factor
of 1.13× in the first place, which is reversed by applying the optimizations.

The high accuracy model used for the BepiColombo case already gains a de-
cent performance boost, which is, however, mostly caused by the format change.
The included cubic splines do not make a big difference. The less accurate mod-
els drive the runtime down to a speedup of 2.1× at the accuracy level of 10−10,
which is mainly due to the exclusion of specific bodies.

4.3 Performance Profiles of Ephemeris Model Changes

We profiled the cudajectory using the baseline data format and all the proposed
methods. The details are presented in Table 3. The CUBE format reduces the
overall runtime by 29.3%, where especially the heavy ephemeris routines are
accelerated. Further optimization methods are less affected but still faster by at
least 15%. The number of ephemeris data requests is unchanged, but we see a
significant reduction of total loads from device memory by over 26%. The only
change between the first two runs is the data structure of the texture memory. We
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can determine that the improved load efficiency results in an increased L2 cache
hit rate and fewer reloads of data in both global and local memory. Especially
the 12 billion requests saved in local memory have a very beneficial impact on
the runtime. Although the local memory overhead was only reduced by 1%, we
can state that register spilling is reduced significantly by applying the CUBE
format.

When the cubic splines are now applied on top, we observe a further reduction
of the ephemeris model runtime. However, the other program sections experience
an increase, which results in only a small speedup. This is in line with the
observations from Figure 7, where only a small to no speedup is identified for
cubic splines on top of the CUBE format. The load requests to texture memory
were reduced by 31% as cubic splines are polynomials of lower degree involving
fewer coefficients. As the covered intervals are increased as well, we also observe
an increase in the L2 cache hit rate. However, the little extra logic in cudajectory
to support different types of polynomials introduces additional overhead and thus
increases register spilling. This is most likely why we encounter higher rates of
local and global memory requests and almost no additional speed.

When specific bodies are excluded entirely from the simulation, a large frac-
tion of the algorithmic effort and data requests are skipped. Thus, the runtime
decreases significantly, which makes case-specific model configurations very ben-
eficial. This can be seen in the observed speedup and the presented performance
profile for body exclusion. Compared to the CUBE format, 22% of the kernel
runtime is saved when 45% of the bodies are excluded. Most of the skipped
bodies’ orbits are approximated by Chebyshev polynomials of sixth or seventh
degree, where, in comparison, fewer coefficients and algorithmic effort are in-
volved. However, with Mercury involving polynomials of degree 14, the most
expensive position calculation is also excluded. In total, we perform 37% fewer
ephemeris data requests and reduce the device memory traffic by 13%, which
subsequently reduces the need for register spilling (28% less local memory re-
quests). As mostly polynomials of shorter intervals are computed, the data reuse
and thus the L2 cache hit rate decreases as well.

Although the analyzed configuration features have different impacts on the
performance, they were not able to reduce the overall local memory overhead.
This states that the pressure on the memory bus due to register spilling is still
very high, and a significant amount of time is spent on moving register data back
and forth. Additionally, when executing a merged configuration of those cubic
splines and exclusions, we get a total runtime per kernel of 5.82 seconds, which
is a reduction of 1.73 seconds or 24% against the CUBE format and slightly
more than the sum of both individual changes. This draws the conclusion that
the changes boost each other and explains the much higher speedups achieved
by the lower accuracy level configurations compared to those in the profiles.
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5 Related Work

Various astrodynamic simulations utilize the power of GPUs to accelerate their
computations. However, we noticed that achieving an efficiency level close to the
hardware peak performance necessitates modifications to both the algorithm and
data structure. Thus, each problem requires tailor-made optimizations, different
from other domains. In the following, we mention similar works in this field.

Russell et al. [16] parallelized the computation of a Mascon model, a high-
precision description of the mass distribution of a celestial body for one tra-
jectory simulation. In another work by the same authors [1], they use GPUs
to simulate trajectories generated by Lambert’s algorithm as an alternative to
the Monte-Carlo method. Massari et al. [9], on the other hand, present numeri-
cal methods to improve the performance of Monte-Carlo simulations on GPUs,
which in theory could also be used in cudajectory. Russell [15] and Korvenja [6]
demonstrated that cubic splines and cubic Hermite polynomials produce accept-
able ephemeris accuracy while reducing both memory requirements and compu-
tation time significantly. Thus, we implemented this concept to reduce the data
size of the ephemeris model in cudajectory. To the best of our knowledge, an
efficient GPU-specialized ephemeris model for a parallel set of trajectory simu-
lations is not introduced so far.

6 Conclusion and Outlook

Trajectory simulations can benefit significantly from massive parallelization on
GPUs. However, with the increase of simulation timestamps within one warp,
different ephemeris data need to be loaded into memory, thus causing consid-
erable memory traffic and register spilling. In this paper, we introduced a new
data format, called CUBE, which restructures the data to improve data locality.
Our experiments showed that by just using the CUBE data format, we could
obtain higher speedups of at least 1.3×. Additionally, we noticed that by exclud-
ing specific celestial bodies from simulations while losing negligible accuracy, we
could reduce the algorithmic complexity and data accesses within the ephemeris
model computations and achieve significant speedup. Another approach that
yields higher performance with the cost of losing accuracy level is to use cubic
splines as an alternative polynomial type. This method decreases the accuracy of
the orbit approximation but also simplifies the calculation and reduces the size
of the required data. Additionally, adjusting the polynomial intervals affects the
data locality within warps of higher timestamp ranges. While the use of cubic
splines further improves caching, it also increases the need for register spilling
and thus results in only a small runtime improvement on top of the CUBE for-
mat. However, in combination with body exclusion, the model changes can boost
each other. Thus, cubic splines are a valuable ephemeris model setting. All the
proposed optimization methods enabled us to accelerate the trajectory simula-
tions on a real-world scenario between 1.31× - 2.11×, depending on the desired
accuracy level.
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