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Abstract—Identifying scalability bottlenecks in parallel ap-
plications is a vital but also laborious and expensive task.
Empirical performance models have proven to be helpful to
find such limitations, though they require a set of experiments
in order to gain valuable insights. Therefore, the experiment
design determines the quality and cost of the models. Extra-P is
an empirical modeling tool that uses small-scale experiments to
assess the scalability of applications. Its current version requires
an exponential number of experiments per model parameter.
This makes the creation of empirical performance models very
expensive, and in some situations even impractical. In this paper,
we propose a novel parameter-value selection heuristic, which
functions as a guideline for the experiment design, leveraging
sparse performance-modeling, a technique that only needs a
polynomial number of experiments per model parameter. Using
synthetic analysis and data from three different case studies, we
show that our solution reduces the average modeling costs by
about 85% while retaining 92% of the model accuracy.

Index Terms—Performance analysis, performance modeling,
reinforcement learning, high-performance computing, parallel
processing

I. INTRODUCTION

The design and development of high-performance comput-
ing (HPC) applications is an extremely challenging task and
requires major resource investments in order for them to run
efficiently on existing and future large-scale machines. As
the demand for parallelism and HPC is constantly increasing,
so is the need for performance analysis. One way of ana-
lyzing the performance of a parallel program is to conduct
experiments to explore its design and configuration space.
However, often these spaces are very large, making a complete
traversal, and therefore the determination of the performance,
economically infeasible. Performance modeling offers another,
more promising way by providing analytical expressions of
the application behavior at larger scales. One example for a
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performance model is the expression of the execution time
as a function of the number of processes and the problem
size. Analytical modeling is one way to derive such models,
by experts inferring application behavior from code analysis.
Therefore, they are expensive and usually limited to a few
selected program kernels [1], whereas empirical models can
be generated automatically based on only a few small-scale
experiments [2]. Apart from their cost efficiency and increased
code coverage, they have proven to be helpful to find scal-
ability bugs [2] and accurately predict the performance of
parallel programs [3]. However, with an increasing number
of configuration parameters even the experiments needed for
empirical performance modeling become very expensive.

Extra-P [4] is an empirical modeling tool that uses small-
scale experiments to assess the scalability of an application.
Its current modeling approach requires experiments of all
combinations of the considered application parameters [5].
Additionally, it suggests five repetitions per experiment to
counter the effects of system noise, as well as five different
values for each parameter considered [5]. Thus, the number of
experiments e it needs grows exponentially with the number of
parameters m, amounting to e = 5(m+1). Consequently, Extra-
P needs 625 experiments in order to model an application with
three varying configuration parameters, which is usually too
expensive to be practical.

In this work, we propose a novel sparse performance-
modeling technique, which only needs a polynomial number of
experiments per model parameter. Furthermore, we investigate
the trade-off between experiment repetitions to reduce the
effects of noise and conducting new experiments to capture
potentially unseen behavior. In addition, our new modeling
approach also offers more freedom for the experiment design,
as we do not need to analyze all parameter combinations
anymore. Motivated by the newly attained flexibility we use
reinforcement learning (RL) to train an agent on the task of
parameter-value selection. We then use the agent acquired
knowledge to derive a heuristic selection strategy, which
functions as a design guideline for the experiments required
by our approach, and is generally valid for all kinds of HPC
applications. Depending on factors such as the level of noise
or the number of model parameters, the heuristic determines



which experiments should be conducted in order to reach an
optimal trade-off between model accuracy and cost reduction.
In combination, our solution allows us to create cheap empir-
ical performance models of large-scale parallel applications
with multiple configuration parameters such as FASTEST [6],
Kripke [7], and Relearn [8]. The major contributions of our
work are:

• A sparse performance-modeling technique that requires
only a polynomial number of experiments per model
parameter and allows an overall more flexible experiment
design.

• A parameter-value selection heuristic that leverages the
sparse performance-modeling and functions as a design
guideline for the required small-scale experiments, re-
ducing the average modeling costs by about 85% while
retaining 92% of the model accuracy.

• Three case studies that demonstrate the advantages and
the substantial cost reduction our solution can achieve as
well as its inherent limitations.

The remainder of the paper is organized as follows. After
providing background knowledge on our prior work related
to automated empirical performance modeling in Section II,
we outline our novel approach in Section III. In Section IV,
we evaluate the sparse modeling technique using synthetic
analysis and compare accuracy and cost with our previous
work. We then present three case studies and discuss the
insights in Section V. Finally, we take a look at related work
in Section VI and provide a conclusion in Section VII.

II. BACKGROUND

Our approach builds upon Extra-P [2], a tool that leverages
empirical measurements to create performance models. The
input of Extra-P is a set of measurements representing change
in metrics such as runtime or floating point operations as
configuration parameters such as the number of processes
or the problem size per process are varied. The output of
Extra-P is a human readable function showing how the metric
of interest changes as the parameters change, similar to the
complexity of an algorithm. One example for such a function is
the performance model we created for the scientific application
FASTEST [6]. For one of its main kernels celuvw we
modeled the runtime T in seconds, where T (p, s) ≈ s7/4 +
p4/3 · log2(p) · s7/4 is a function of the number of processes
p and the problem size s.

The approach is based on the observation that the complex-
ity of algorithms used in both sequential and parallel applica-
tions is usually a combination of polynomial and logarithmic
expressions. The performance model normal form (PMNF)
codifies this insight and expresses the effect of a number
of parameters xi on a metric as a sum of terms consisting
of products of polynomial and logarithmic expressions in the
parameters xi. The expression is formalized in Equation 1.

f(x1, . . . , xm) =

n∑
k=1

ck ·
m∏
l=1

x
ikl

l · log
jkl
2 (xl) (1)

4 8 16 32 64

10

20

30

40

50

Number of processes p

Pr
ob

le
m

si
ze

s

low memory high jitter

Fig. 1: Example for a set of performance measurements
used for 2-parameter analysis. The filled circles represent the
extreme measurement cases, namely those where the most
work is divided among the fewest processes and where the
least work is divided among the most processes. Both cases
are inherently difficult to measure, as the former often runs for
longer than system limits allow or does not fit the available
memory, while the latter has so little work per process that
the dominant effect measured is the system jitter.

To generate models, a search space of possible model hy-
potheses is automatically generated by instantiating Equation 1
with different sets of exponents. To select the best models out
of the set of hypotheses, we first compute the coefficients for
each hypothesis using regression and subsequently evaluate it
using cross-validation. A new search space is generated in the
vicinity of the best model found and the process is repeated
iteratively until no significant improvements to the models can
be made [9].

Currently, Extra-P first models the effect of each parameter
xi on performance separately. The developers of Extra-P
suggest five different values for each parameter are required
to obtain accurate models if at most one non-constant term is
permitted, while the values of all other parameters are fixed,
and they suggest each measurement be repeated five times to
alleviate the impact of noise [10]. The core heuristic of the
multi-parameter modeling approach is the assumption that the
best multi-parameter model can be derived by combining the
best single-parameter models in different ways and selecting
the one that best fits the data. An important optimization comes
in at this point, allowing the modeling process to eliminate
parameters that do not have an impact on performance. After
determining the single-parameter models, all possible addi-
tive and multiplicative combinations of these selected single-
parameter models are tested to determine the multi-parameter
model that fits all measurements best.

The current implementation requires measurements repre-
senting all combinations of all parameter values to provide
correct results. This requires an exponential increase in mea-
surements as the number of parameters to be considered



grows. Given the five measurements per parameter required
and the five repetitions of each measurement suggested, the
cost incurred is 5m+1 measurements, where m is the number
of parameters considered. Apart from the sheer number of
measurements required, which is daunting enough by itself, it
is sometimes difficult to generate a full set of measurements
where for each parameter value all combinations of all other
parameter values are available. For example, when considering
problem size and number of processes, it is difficult to find
a range for these parameters such that the smallest problem
size still offers enough work such that the largest number
of processes considered can be used efficiently, and at the
same time the largest problem still fits in the memory of the
smallest number of processes considered and can be computed
without reaching the limits given by the job-system where the
experiment is being performed. Figure 1 shows both a matrix
of the 25 measurements required to model a common case,
the effect of problem size and process count on performance,
and highlights the extreme cases previously discussed.

The reason such a large number of measurements is nec-
essary can be found in the first step of the modeling process,
where the single-parameter models are created. The values for
this step are created by averaging all available measurements
for each distinct value of a parameter across all measurements
where the parameter of interest has the particular value.
Considering each parameter as an independent variable in an
n-dimensional space, this is in effect a projection from the
vector space of all parameters into the vector space of just
one parameter. For this projection to only show the effect of
the focused parameter, the impact of all other parameters on
each value must be the same. This can be achieved by ensuring
that the exact same combination of values for other parameters
are available.

III. APPROACH

In this section, we first formulate the basic idea of gen-
erating performance models from a sparse data set and then
explain how we train a reinforcement learning agent to teach us
a practical parameter-value selection strategy. In contrast to the
previous approach discussed in Section II, which the current
version of Extra-P is based upon, the number of experiments
required for sparse modeling grows only polynomially (i.e.,
almost linearly) with the number of model parameters and
makes the experiment design more flexible. The reinforce-
ment learning agent exploits this newly attained freedom in
the experiment design to find an strategy that represents a
near-optimal trade-off between retaining model accuracy and
reducing the overall modeling cost.

A. From exponential to linear cost

We have made the observation that the previous (i.e., dense)
method assumes that there is one and only one behavior
with respect to each parameter across the entire measured
space. If this is true, the same function terms describing the
effect of a given parameter should be identified no matter
which sequence of five measurements is considered as long

4 8 16 32 64

10

20

30

40

50

Number of processes p

Pr
ob

le
m

si
ze

s

Fig. 2: Performance measurement set example for 1 and 2-
parameter analysis. The filled black circles represent a set of
measurements that would be sufficient to generate a single
parameter model for how the number of processes affects
performance. Combined with the filled gray squares they are
an example of a subset of points that is sufficient to create a
performance model for how p and s affect performance. The
filled diamond represents a potential additional measurement
point that could be used to increase model accuracy.

as the effects of all other parameters are kept constant. Rather
than requiring every combination of values selected for each
parameter, it could be sufficient to select a sequence of five
measurements for each parameter to create single-parameter
models. However, a thorough analysis is required to ensure
that lowering the number and cost of measurements is not
detrimental to the quality of the results, given the empirical
nature of the modeling process. Figure 2 shows how only a
subset of measurements can be sufficient to generate a single-
parameter model that describes the impact of the number of
processes on performance.

Extra-P allows the effect of different parameters on a metric
to be either additive, meaning that the effect of those param-
eters is independent of each other, or multiplicative, meaning
that their effect is compounded. While more interactions
are theoretically possible, they have not been discovered in
practical codes. The binary decision whether the effect of any
parameter pair is additive or multiplicative cannot, however,
be made with only a sequence of five measurements for each
parameter. At least one additional data point is required, one
that is not part of those sequences. We must analyze if adding
more data points provides additional accuracy and discover
whether a sweet spot exists where the quality is close to
optimal but uses significantly less or cheaper measurements.
In our synthetic evaluation, the addition of this extra point
improves the model accuracy from 61.8% to 71.8%, whereas
adding more data points delivers only diminishing returns.
More details will be presented in Section IV.

Figure 2 shows a set of measurements which are sufficient
to correctly identify two-parameter performance models. Of
course, any of the columns and rows could be used to generate
the performance model. They can even overlap with each



other, so that a measurement point is used for modeling the
effects of several and not just one parameter. The question
of which rows and columns to measure as well as which
additional points to consider such that the best models can
be generated at the smallest cost is still open. While using the
cheapest set of measurements required to generate a model
at all is appealing, we must quantify how the quality of
the models degrades compared to other strategies. A large
concern is that even if the assumption holds that only one
behavior exists across the entire domain, the effects of jitter on
those measurements, where less actual work is performed, is
stronger, and could potentially jeopardize the accuracy of the
resulting models. Furthermore, if the measurements contain
outliers, these will more significantly affect the results if fewer
measurements are used.

In order to answer these questions we use reinforcement
learning and train an agent on the task of parameter-value se-
lection. More specifically, we want the agent to find an efficient
strategy of selecting the measurement points that represents
the optimal trade-off between retaining model accuracy and
reducing the overall modeling cost. Now, after having specified
the task the agent has to learn, we define the environment it
will be exposed to. We use this environment to both train the
agent and to evaluate different scenarios. Then, we introduce
the RL agent, including the setup of the neural network as
well as the RL cycle, followed by a detailed explanation of
the agent’s training and validation process. Finally, we use the
acquired knowledge to derive the selection heuristic.

B. Evaluation environment

For each evaluation we generate test functions by instanti-
ating our performance model normal form from Equation 1
with random coefficients cl ∈ (0.01, 1000) and random ex-
ponents il and jl, selected from the sets I = {0, 1, 2, 3} and
J = {0, 1, 2}. We then evaluate each function in our test set for
5m parameter-value combinations, where m is the number of
parameters. Because of limited computing resources, we used
three parameters for training, but evaluate the resulting heuris-
tic later with up to four. Depending on m, the parameter values
are drawn from predefined sets: x1 ∈ {4, 8, 16, 32, 64}, x2 ∈
{10, 20, 30, 40, 50}, x3 ∈ {1000, 2000, 3000, 4000, 5000} and
x4 ∈ {2, 4, 6, 8, 10}. x1 represents the number of processes
p and has a special meaning when determining the cost of
experiments.

To simulate the noise one would experience on a produc-
tion system, we apply different levels of random noise ∈
{0,±1,±2,±5} % to each evaluation. For each measurement
configuration and noise level, we draw up to seven samples.
This provides us with a set of rep ∗ 5m measurements, where
rep is the number of samples taken of each measurement
configuration, and m is the number of parameters considered.
We use these measurements as input for our two model
generators and to train our reinforcement learning agent. While
the previous modeler implementation requires all of these
measurements for modeling, the sparse modeler only uses a
small subset of points, depending on the agent’s strategy.

To evaluate the results, we consider two aspects, accuracy
and cost. To define cost, we try to replicate the scenario of the
tool being used to determine the scalability of an application,
which is the one most often encountered in practice. As men-
tioned before, we imagine that one parameter, x1, represents
the number of processes p and that the metric we measure is
the total runtime per process. The cost of the measurement
(e.g., the total core hours to run the experiment) is therefore
not the same for all samples. Given that the exhaustive modeler
requires all measurements, we consider their accumulated cost
to be 100%, and determine which percentage of it the sparse
modeler requires. To define accuracy, we consider the next
parameter value in every series (e.g., x1 = p = 128, x2 = 60,
x3 = 6000, and x4 = 12) and evaluate the resulting model for
this combination. Then, we verify whether the predicted value
is within {±5,±10,±15,±20} % of the actual value.

For the sake of completeness, we have also investigated
the effect of adding more measurements for each parameter,
using six or seven samples rather than five. We observed that
the optimum in terms of cost and benefit depends on the
number of parameters considered. Specifically, we found that
repeating each measurement four times provides the optimal
cost/benefit ratio if two or three parameters are considered,
while for single-parameter models even two repetitions can
be sufficient. When considering four or more parameters, six
or more repetitions improve the accuracy significantly.

C. Reinforcement learning agent

We instantiate the agent for the three configuration parame-
ters used for training. Using five different values per parameter
and all of their combinations provides us with a matrix of 125
possible measurement points.

The first step towards solving this optimization problem
with RL is to describe the task of parameter-value selection as
a Markov decision process. For this purpose, we define a set of
environment states S, a set of actions A, and a reinforcement
signal R.

Each state s is represented by a list of values, containing
four major elements s[p, i, j, c]: a one-dimensional represen-
tation of the matrix of measurement points p, the selection
phase i, the selection step j, and the model cost c. The matrix
representation itself is a list of 125 binary values [1, 0, 1, ...],
with a ‘1’ denoting a point that is used for modeling and a
‘0’ the opposite. The selection phase i is a single-digit integer
number with a value of either [0, 1, 2, or 3] which instructs
the agent whether it needs to select a line of five measurement
points for parameter one, two, or three or whether it needs to
select additional individual points to further increase the model
accuracy. We introduced this simplification to drastically re-
duce the number of point combinations the agent can produce.
Moreover, it supports the restriction that our sparse modeling
approach cannot work with an arbitrary set of points. The step
indicator j counts the number of points the agent has already
selected. Finally, the model cost c accumulates the relative
cost of these measurement points in percent in comparison to
the complete matrix.
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Fig. 3: Overview of the agent’s reinforcement learning cycle.
One traversal of the flowchart euqals one episode of training.

The set of possible actions is determined by the set of
measurement points that can be selected by the agent. For
each point we define an action a that allows the agent to
select that point. Furthermore, we have one additional action
per parameter, which allows the agent to select a line of five
points in a row at a time.

The reinforcement signal Ra(st, st+1) is the immediate
reward the agent receives after taking an action a to move
from state st to st+1. We calculate the reward as a function of
the cost c of the selected points p where Ra(st, st+1) = 1− c
in the interval (0, 1).

Based on these definitions, we use a modified version of the
standard RL cycle [11] and Q-learning [12] as the algorithm
to search for an optimal policy for the selection of actions
(i.e., measurement points). Our RL agent is based on the
DQN approach by Mnih et al. [13], although we use a simpler
multilayer perceptron consisting of an input layer, two fully
connected hidden layers, and one output layer with softmax.
Nevertheless, the neural network is necessary as we have
to deal with a very large number of agent states and its
approximation of the state space improves the training perfor-
mance. This network architecture allows us to feed the agent’s
state transitions T [st, at, rt+1, st+1] directly into the network
and yield the Q-value for each action. Furthermore, we use
several additional optimization techniques, such as prioritized
experience replay [14], double Q-learning [15], and double
DQN [16], to further improve the learning performance.

Figure 3 outlines the basic RL cycle of our agent that is
embedded in the training process. For each training episode,
we first generate a random performance function and create the
initial state sI . Then at each time step t, the agent will choose
an action at using an ε-greedy strategy. After a validation of

the chosen action (we do not allow the same sample to be
taken repeatedly), the agent will either choose another action
or execute the chosen action in the environment. In the latter
case, the agent and the environment move one step further
in time, from t to t+1. In return, the agent will receive the
new state st+1, the reward rt+1 associated with this transition,
and a boolean value that determines whether the episode is
finished. We then backup the old state st before updating it to
st+1. This process is repeated until the episode is finished.

The termination of a training episode can have several
reasons. The simplest one is that the agent has predicted the
correct function. Other possible reasons are that all available
measurement points have been selected without predicting the
correct function or that the agent reaches a pre-defined number
of maximum steps it is allowed to take. Such a limit can be
useful in order to speed up the training process, especially
when the agent is exposed to high degrees of noise.

After the episode has been terminated, we check the accu-
racy of the predicted model by evaluating the scaling proper-
ties, as explained in Section III-B. If the model is accurate
enough, we accept it as correct and calculate the overall
cumulated reward R and cost c of the episode. Finally, we save
all state transitions T the agent has experienced to a replay
memory, as we do not directly update the neural network
during each training episode. Moreover, if the predicted model
is too inaccurate we discard all knowledge of the episode.
There is no sense in training the agent on examples that can
not be solved by our modeling approach due to the impact of
noise—no matter which measurement points it selects. This
concludes the basic RL cycle of parameter-value selection.

D. Agent training and validation

We trained our parameter-value selection agent considering
three configuration parameters, over a set of 200,000 distinct
performance functions (200 epochs with 1,000 episodes each),
using the evaluation environment previously described. During
the first training epoch, we let the agent choose its actions
completely at random, without updating the neural network.
We save the state transitions the agent experiences to the
replay memory until we successfully predicted 1,000 models.
Starting with the second epoch, we use an ε-greedy strategy
to choose our actions. We save the new state transitions to
the replay memory, and perform a learning update after each
episode, allowing the agent to train on specifically selected
transitions from the replay memory. Until we reach 50 epochs,
we anneal ε linearly from [1.0, 0.1], reducing the amount of
exploration in order to exploit the already acquired knowledge.
At the end of each training epoch, we compare the current
network with the best network previously found, by testing
over 100 different functions which were not part of the training
set and determining the network that reaches the highest
overall reward. The winner becomes the new best network
and will be used as a baseline for training in the next epoch.

Figure 4 shows the progress of the training process, the
average cumulated reward and modeling cost in percent the
agent achieved after each training epoch. The agent starts with



an average reward of 0.88 which in turn means a cost of
≈ 12% using a blank network, choosing actions completely
at random. Therefore, the environment restrictions dictated
by the selection phase, such as forcing the agent to select
five points in a row for each parameter, helps the agent to
achieve good results even without having acquired a lot of
prior knowledge. Over the next 50 epochs, we see that the
average model cost converges to about 4.5% and the reward
is constantly rising. Beyond this point, the agent is no longer
able to further increase the reward (i.e., produce the same
number of correct models at lower cost), instead the reward
oscillates around 0.95. Experiments with other configurations
of the training process show similar results. The agent finishes
the training process with an average reward of 0.95, and an
average percentage cost of 5.53%, performing ≈ 3.1 steps (i.e.,
selecting a line of 5 points for the first parameter, a further
line of 4 points for the second parameter and finally 4 points
for the third parameter. By having a common point across
all parameters we can create single-parameter models with
just 13 points). Most of the models can be predicted correctly
using only the 13 base points, although some models require
additional points, in extreme cases even up to 100 out of
125. These cases slow down the training process and prevent
the agent from optimizing the models we actually want to
optimize, which are the ones that can be predicted using less
measurements. If almost all points are required to correctly
predict a model, there is not much room for optimization.
Therefore, we terminate these episodes after the agent exceeds
a predefined maximum number of steps.

We validated the agent using the same procedure as for
training, only without updating the network. In order to reduce
the chance of overfitting our training data, we let the agent
choose random actions with a probability of 5%. In addition,
we use a fixed set of 100,000 evaluation functions the agent
has not seen before and apply ±5% noise to the measurements.
On average, our agent achieves a reward of 0.96 and uses
3.85% of the cost. Therefore, it chooses 14 points on average.
These results represent the most efficient strategy the agent
could learn, that equally optimizes model cost and accuracy
for all training functions.

E. Selection heuristic

The agent is able to correctly predict all of our 100,000 test
functions by using only 3.85% of the cost the previous version
of the modeler would have required, proving that it is a gener-
ally valid strategy to start modeling by choosing the cheapest
lines of five measurement points per parameter. Furthermore,
it discovered that the sparse modeler most certainly requires
more than these lines, to provide a correct prediction, although
how many of these additional points are required depends
on the function. The best strategy is to add the cheapest
points available that have so far not been selected. For the
vast majority of the functions we tested, 1 to 10 additional
measurement points are enough to provide an accurate model.
There are some functions, however, that require almost all
points in order to provide a correct model, also depending
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Fig. 4: Training curves illustrating the agent’s learning
progress by visualizing the average cumulated reward R and
the relative modeling cost c in percent per training epoch.

on the noise present in the measurements. Higher amounts of
noise require more additional points, and benefit from having
more repetitions for each measurement point. In general, we
can formulate the following heuristic:

1) Measure the cheapest available lines of five points per
parameter. Use these to create a first model using our
sparse modeling technique.

2) Perform an additional measurement, starting from the
cheapest ones available. Using the model previously
determined one can assess if the quality of the model is
sufficient or additional points are required.

3) Recreate the model using all available points.
4) If the quality of the model evaluated in step 2 is

insufficient, return to step 2.
Using this strategy, one can increase the accuracy of the

model until the budget available for experiments is exhausted.
Although our agent was trained with only three parameters,
we will show in Section IV that it can be effectively used
even for performance models with four parameters.

IV. EVALUATION

To evaluate the accuracy and cost effectiveness of the
sparse modeling technique in comparison with our previous
approach, we conducted an extensive synthetic data analysis
using the described selection strategy. We experimented with
different modeler configurations and parameter-value selection
strategies for up to four configuration parameters. Figure 5
provides an overview of the experiments we conducted using
the same evaluation environment and definitions of accuracy
and cost, as for the RL agent, that we outlined in Section III-B.
As already explained there with an example, we declare a
model as accurate if the value it predicts for a selected
parameter value combination beyond the range used to derive
the model is within ±5%, ±10%,±15%, or ±20% of that
expected value. The value combination is derived by choosing
for each parameter the first value outside this range. We
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Fig. 5: Comparison of the accuracy of our previous and the sparse modeling approach for different numbers of parameters
m = {1, 2, 3, 4} and measurement repetitions rep = {2, 4, 6} over 100.000 synthetic performance functions. The x-axis
describes the number of points that is used for modeling. For each configuration we outline the percentage of models where
the prediction is within ±5%,±10%,±15% and ±20%.

define cost as the percentage of compute time used to derive
the model compared to the accumulated compute cost of
all measurements required by the old modeling approach.
We use the value of the function to be modeled as cost,
therefore not all measurements will contribute the same value.
To ensure the transparency of our method and our results, the
reader may access an extended version of the evaluation at
https://github.com/anonymous117/paper.

a) One parameter: For one parameter, there is no differ-
ence between the two modeling approaches, and given that
only one parameter must be modeled, the effect of noise
will usually be too small to affect results. The results are
very accurate: considering four samples for each measurement
(rep = 4) over 92% of models are within ±5% of the actual
values and almost 97% are within ±10%. We believe even two
samples (rep = 2) should be sufficient for single parameter
modeling on most systems, as ≈ 86% of results are within
±5% of the actual values, and over 92% are within ±10%.

b) Two parameters: The strategy of the sparse modeler
for the selection of parameter values in this case is quite sim-
ple, suggesting the cheapest points will provide good results.
The effect of ±5% noise on accuracy is such that sometimes
the influence of one of the parameters cannot be correctly
characterized by either modeling approach (i.e., the model
only describes the effects of one parameter). Nevertheless,

the results are satisfactory: considering four samples for each
measurement (rep = 4), more than 93% of models are within
±5% of the actual values if all measurements are used and
over 98% are within ±10%. The cost benefits of the sparse
modeling approach are clear even for two parameters, but the
actual reduction depends on the number of measurements used.
Using 11 out of the 25 possible measurements, each repeated
four times, we achieve 82% models within ±5% of the actual
values, and 86.5% are within ±10%, while the cost is only
12.7% of the total.

c) Three parameters: The agent taught us that, while
more expensive measurements provide better results in some
cases, these are exceptions and most functions are correctly
modeled using the cheapest points available. Additional points
provide better results, but—similar to repetitions—they offer
only diminishing returns. The effect of ±5% noise on accuracy
is so great that it will often be comparable to the impact of at
least one of the parameters, making accurate modeling very
difficult. Using all measurements and four repetitions results
in 93% of models within ±5% of the actual values. Using
15 out of 125 measurements, we still find almost 74% of
models within ±5% of the actual values. If we increase the
set of used measurements to 25, we increase the rate to 77%
within ±5% and 85% within ±15%. The cost of gathering
the measurements plummets, however, to only 1.8% in the



first case and 2.4% in the second.
d) Four parameters: When considering four or more

parameters simultaneously, the impact of noise becomes more
pronounced. We conducted experiments with measurements
where noise is at most ±5% of the value of the measurement.
Let us consider the best possible scenario: all parameters have
equal contributions to the measurements, making each of them
equally challenging to model. The contribution of at least
one of the parameters can be at most 25% of the value of
a measurement if four parameters are considered. This in turn
means the impact of noise is almost half the impact of a
parameter of interest, making it quite likely that the resulting
model will not be entirely correct. While the parameters with
most impact can be modeled correctly, those with a smaller
contribution can only be reliably modeled if the impact of
noise is kept much smaller than that of relevant parameters.
Therefore, we suggest additional repetitions if more than three
parameters are considered when modeling runtime. However,
there is a range of useful hardware and software counters,
such as the number of floating-point operations performed or
the number of bytes send or received over the network, which
are inherently far less sensitive to noise because they simply
count the work performed—no matter how long it takes—and
are therefore fairly reproducible—even on a noisy system. A
more detailed discussion regarding noise-resilient performance
counters can be found in Calotoiu et al [10]. For such metrics,
functions with more parameters can be accurately modeled
even without adding more points or repetitions. In any case,
even if the resulting models are not perfect, and not all
parameters are correctly identified, the model can still provide
useful insights: arguably, if the contribution of a parameter is
smaller or comparable to the impact of noise there is little
value to be gained from modeling it at all.

As shown in Figure 5b, we consider two, four, and six rep-
etitions for each measurement. We observe that even when we
use all possible measurements, only 76% of models are accu-
rate within ±5% of the expected value if only two repetitions
are considered. This number grows to 90% if six repetitions are
considered. The value of repeated measurements for the overall
result quality is higher the more parameters are considered.
Furthermore, the decrease in accuracy is due to the noise
preventing the modeler from capturing the effect of parameters
with smaller contributions: There are many models which
are not accurate within ±5%, but are accurate within ±20%
of the expected value (depicted in the figure by the darker
rectangles at the top of the bars). These appear significantly
more frequently for four parameters than for two and three
parameters.

The minimum number of points needed to model four
parameters is 17. Looking at models accurate within ±20% of
the expected value, even with so few points and six samples
per point (rep = 6), we still get around 60% accuracy.
Increasing the points to 25, which is still less than 0.45% of
the cost of all 625 points, we advance to around 71% accuracy.
Using 250 points, but only 4.74% of the total cost, we reach
about 90% accuracy for four parameters. In order to get a

better understanding of the relationship between the number of
measurements and the model accuracy, as well as model cost,
we used the results of the different modeler configurations as
input to our modeling tool. Based on the evaluation data we
can model the accuracy and cost of the sparse modeler as
a function of the considered measurements. However, these
functions are only applicable in case the measurements are
sorted by their cost from cheapest to most expensive. The
function for the cost is c(x) = 0.282 + 4.80 · 10−7 · x3 and
the function for the accuracy is a(x) = 57.329 + 3.62 · x1/3
where x is the number of measurements considered. Given that
the cost of measurements is not constant, and measurements
with larger problem sizes and more processes can be orders of
magnitude more expensive than smaller tests, it will often by
more effective to repeat smaller measurements than add more
expensive measurements.

We therefore show that even in the presence of noise our
models are capable of capturing the most relevant behavior,
and guide user decisions. To showcase the usefulness of our
method performs if the data available is less impacted by noise,
we also performed experiments with noise being at most ±1%
of the value of the measurements. This is qualitatively different
from no noise, as in the presence of no noise the exact model
can easily be found using very few measurements. However,
even noise-resilient measurements such as the number of
floating-point operations performed or the number of bytes
sent or received over the network often show minute run-to-run
variations. For example, if an operating-system daemon causes
some floating point operations to be performed on its behalf,
this could be conflated with the operations performed by the
application and logged by the instrumentation system. While
this disturbance is usually many orders of magnitude smaller
than the floating-point operations performed by a numerical
application, it can still lead to tiny variations in the results.
We believe a noise of ±1% simulates a very stable metric
with little to no run-to-run differences without relying on the
assumption that there is absolutely no noise, which is very
hard to conclusively prove when gathering measurements on
realistic systems.

When allowing at most ±1% noise, we see in Figure 5b that
the accuracy starts at almost 69% for two repetitions and 17
points and rises to over 95% for six repetitions and 250 out of
a possible 625 points. As it is to be expected, both providing
more measurements and increasing the number of repetitions
from two to four to six improve accuracy, but there is much
less benefit in adding more repetitions. Given that there is
much less run-to-run variation, this is no surprise. We also see
a much steeper increase in accuracy as more measurements
are added, reaching over 87% with just 25 points and two
repetitions. When the impact of noise is low, it is not only
possible to obtain better models, but it is also significantly
cheaper to do so.

e) Discussion: To summarize, it is possible to reduce the
costs of modeling by one or even two degrees of magnitude
while only giving up single-digit percentages of accurate
models. Of course, using more points or more repetitions



improves results, but our recommendation is to always start
from the cheapest set of measurements available and repeat
each sample four times, and add additional measurements only
if the quality of the results warrants it. The impact of noise
is increasingly important as more parameters are considered,
requiring the user to provide more repetitions and additional
measurements if precise results are important. However, the
general trend can still be observed with very little investment.

V. CASE STUDIES

Below we present three case studies that demonstrate the
advantages and the substantial cost reduction our solution can
achieve as well as its inherent limitations. For each of them
we create multi-parameter performance models of their main
kernels using the sparse modeling technique and the described
parameter-value selection heuristic. We discuss the insights
the models provide and analyze their accuracy based on an
evaluation of their scalability. Therefore, we follow the same
approach as defined in Section III-B. However, as we are
working with real application data, we are trying to analyze
the measurement point which is the furthest away from the
ones used for modeling.

A. FASTEST

The software package FASTEST [6] is a tool for the simula-
tion of flows in complex three dimensional configurations. We
measured its performance on SuperMUC, a petascale system at
Leibniz Supercomputing Centre with more than 241,000 cores
and a combined peak performance of about 6.8 petaflop/s.
Using Score-P [17] we were able to acquire different metrics
such as execution time and the number of floating point
instructions. The analysis covers two configuration parameters:
the number of processes p and the problem size per process s.
To obtain the set of measurements required by our approach
we varied the number of processes (16, 32, 64, 128, 256,
512, 1,024, 2,048, and 4,096) and the problem size (131,072,
65,536, 32,768, 16,384, and 8,192). We ran 125 tests (25
different parameter settings times 5 repetitions). In contrast
to the square matrix of performance measurements shown
in Figure 2 the resulting matrix for FASTEST is arranged
in a parallelogram. As described in Section II, it is often
difficult to generate a full set of measurements where for
each parameter value all combinations of all other parameter
values are available. In the case of FASTEST this is not
possible, as we either run out of memory or the runtime is too
small compared to the effects of jitter. Therefore, our previous
approach would not have been able to model this application
at all.

Following our heuristic strategy, we start by using only
the minimum number of measurement points required by
the sparse modeler, namely the two cheapest lines of five
points to model the effects of p and s. Based on these nine
points we automatically create empirical performance models
for each kernel of FASTEST. The kernels we found most
significant, and confirmed by the developer to be indeed criti-
cal to performance are: celuvw, caluvw_sipsol, celp2

TABLE I: Selected performance models for different kernels
of FASTEST, Kripke and Relearn describing their runtime T
in seconds as a function of their configuration parameters.

Kernel Model R̂2

FASTEST
celuvw s7/4 + p4/3 · log2(p) · s7/4 0.964

caluvw sipsol s · log22(s) + p1/2 · s · log22(s) 0.989

celp2 s4/3 + p4/3 · log2(p) · s4/3 0.939

calcp sipsol s · log22(s) + p1/2 · s · log22(s) 0.984

Kripke
LTimes d · g5/4 · log2(g) + d 0.974

LPlusTimes d3/4 · log2(d) + g3/2 · log2(g) 0.989

SweepSolver d · g4/5 + p1/3 + g4/5 1

MPI Testany p1/3 · log2(g) + log2(d) + p1/3 1

Relearn
Connectivity update log2(p) + n · log22(n) 0.976

and calcp_sipsol. Table I shows the corresponding mod-
els. This information allows us to predict the scalability
of FASTEST for specific configurations. For example we
predict the runtime of caluvw_sipsol for the configuration
p = 512 and s = 65, 536, which we did not use for modeling.
Analyzing FASTEST at a larger scale is extremely difficult, as
we can conduct only a very limited amount of measurements
for larger numbers of processes, due to the nature of its
configuration. The actual measured average runtime value at
this point is 669.49 seconds. With our performance model we
predict an average value of 683.96 seconds, that is an error of
only about 2%. Consequently, we can also use our models to
identify scalability bottlenecks.

Using additional measurement points for modeling does not
significantly increase their accuracy. The nine base points,
which we found sufficient to create accurate models, cost only
about 30% of all experiments. In other words our new solu-
tion does not only allow us more flexibility in measurement
selection, in the case of FASTEST we also need less than a
third of the budget we would have required before.

B. Kripke

Kripke [7] is an open-source 3D Sn deterministic parti-
cle transport code. It was designed as a research tool in
order to explore how different data layouts, programming
paradigms and architectures effect the implementation and
performance of Sn transport [7]. We already analyzed Kripke
in our previous work [5], hence we now focus on showing
the substantial cost reduction our new solution can achieve,
while retaining the model accuracy. Therefore, we focus
on the same kernels as in our previous analysis, which
are: LTimes, LPlusTimes, and SweepSolver. These
three kernels encapsulate the physics simulated by Kripke,
thus they are the most interesting for a performance analysis.
Additionally we take a look at the kernel MPI_Testany,
as it accounts for a large portion of the overall runtime. The
measurements we use for modeling have been conducted on
Vulcan, an IBM BG/Q system at Lawrence Livermore National



Laboratory with 24,576 nodes in 24 racks. Our analysis of
Kripke covers three parameters: the number of processes p, the
number of direction-sets d and the number of energy groups
g. For each of the selected kernels we model its execution
time T (p, d, g) measured in seconds as a function of the
configuration parameters. In total we have 750 experiments at
150 different measurement points with five repetitions each.
To create this matrix of measurement points we varied the
parameter values of p (8, 64, 512, 4,096, and 32,768), d (2,
4, 6, 8, 10, and 12), and g (32, 64, 96, 128, and 160). 625 of
these experiments e = 5(m+1) are required for modeling, in
order to compare both modeling approaches with each other,
while the rest of the experiments with d = 12 is used for
evaluation.

Following the parameter-value selection heuristic, we in-
stantiate the sparse modeler and use the three cheapest lines
of five measurement points to model the effects of each
parameter. In addition we use all remaining points, apart
from the ones with d = 12, to further increase the model
accuracy. In return we get the following model for LTimes:
4.86+2.16·10−3 ·d·g5/4 ·log2(g)+2.503·d with R̂2 = 0.992,
which is similar to the one we found in our previous analysis.
The old model for LTimes is: 12.68+3.67·10−2 ·d5/4 ·g with
R̂2 = 0.99 [5]. We then reduce the amount of measurements to
the minimum requirement of the sparse modeler to investigate
the effects on accuracy. As expected this negatively affects the
accuracy of all models, but as few as three additional mea-
surements are sufficient to obtain the same models as before.
Using these three additional points we get the following model
for LTimes: 0.86+3.49 ·10−3 ·d ·g5/4 · log2(g)+2.09 ·d with
R̂2 = 0.97. The smaller R̂2 indicates a slightly less accurate
model, the upside being that we require less than 1% of the
cost. Table I shows the results of the sparse modeler using
only the cheapest three lines of five points per parameter and
the three cheapest additional measurement points that are not
on this cross.

To further analyze the quality of our models we also look
at their scaling. Therefore, we specifically use a measure-
ment configuration that was not used for modeling, namely
p = 32, 768, d = 12 and g = 160. For LTimes we
measured an average actual runtime of 143.82 seconds for
this configuration. However, our performance model predicts
a runtime of 199.99 seconds. This corresponds to an error of
39.8% as opposed to only 0.39% using the old modeler. An
error of this magnitude could be evaluated as quite significant,
though one should not forget that this configuration is several
steps away from the ones used for modeling. Furthermore, our
previous approach required 625 measurement points in order
to create performance models of Kripke. In contrast the sparse
performance-modeling only needs 80 out of these 625 points,
which corresponds to a cost reduction of 99%.

C. Relearn

Relearn simulates the rewiring of connections between
neurons in the brain based on the Model of Structural Plasticity
(MSP) by Butz and van Ooyen [18] and employs a scal-

able approximation algorithm [8] to reduce the computational
complexity of MSP from O(np

2) to O(np log22 n+ p). Relearn
has three configuration parameters, the number of processes
p, the problem size n and θ, which determines the degree
of approximation used by the underlying Barnes-Hut algo-
rithm [19]. In general the developer expects an upper runtime
limit of O(θ−3 n

p log22 n+p) when covering all parameters [8].
However, the runtime behavior of Relearn changes depending
on the value of θ. For θ → 0 the expected runtime complexity
is O(np

2), though for larger values of θ this expectation
changes to O(np log22 n + p). One base assumption of our
modeling approach is that all configuration parameters are
independent of each other. Since for Relearn this is not the
case, we start our analysis considering only two parameters p
and n.

We measured its performance for 25 different configurations
(without repetitions) on the Lichtenberg computing cluster at
the Technical University of Darmstadt. In order to obtain this
amount of distinct configurations, we varied the number of
processes (32, 64, 128, 256, and 512), the problem size (5,000,
6,000, 7,000, 8,000, and 9,000), and set the value of θ = 0.1.
Relearn is a rather small application and therefore has only
a few kernels we can analyze. We have a particular inter-
est in the connectivity update, as it asymptotically
dominates the complexity of the computation. When using all
available measurement points for modeling our old and the
sparse modeler produce the exact same result, which is shown
in Table I. Even when reducing the number of additional
measurement points used by the sparse modeler, the accuracy
does not decrease. Therefore, we can successfully reduce the
modeling cost of Relearn by 85% without impacting accuracy.
From the literature [8] we expect an approximate runtime
behavior of O(np log22 n+p) for a fixed θ value. The model we
find is very similar, though we are not able to predict n

p and
instead of a linear effect of p we predicted a logarithmic one.
However, these are only minor inaccuracies. When analyzing
the scaling of the model for p = 512 and n = 9000 the
percentage error of our prediction in comparison to the actual
measured value is only 11.7%.

In addition, we tried to model the performance of Relearn
considering θ as a third parameter, choosing its value from
(0.1, 0.15, 0.2, 0.25 and 0.3). As before, we ran the sparse
modeler using only the cheapest points for each parameter,
including one additional point and got the following model:
−57+7.85∗ log2 p+3.13∗10−4 ∗n∗ log2 n+0.87∗θ− 8

3 with
an R̂2 = 1. Similar to the two parameter analysis our model
is close to the expectation of the developer, this time using
only about 0.58% of the budget required by the old modeling
approach. However, even though the R̂2 = 1 indicates a good
fit, the scaling analysis shows the opposite. To analyze how
our model reflects the actual scaling behavior of Relearn,
we measured the runtime of the connectivity update
kernel for the configuration p = 512, n = 9000 and θ = 0.4,
which we did not use for modeling. For this configuration we
measured an average runtime of 38.79 seconds. Our model



predicts a runtime of 60.65 seconds, which corresponds to an
error rate of 56.3%. After taking a look at the measurements,
we saw that the runtime of Relearn grows as the value of θ
is increased. Furthermore, the runtime variation in response
to scaling θ from 0.1 to 0.4 can cover several orders of
magnitudes. We repeated the analysis using a different model
that we obtained based on measurements with larger values of
θ, that is using more expensive points and about 9.42% of the
total budget. With the resulting model we are able to achieve
a prediction of 30.41 seconds, which corresponds to an error
of only 21.6%.

Overall, this example shows one clear limit of our approach.
When there are qualitatively different behaviors depending on
one parameter which affect how the other parameters impact
performance, our approach is not applicable. Nevertheless,
difficulties in finding a model that reflects the scaling behavior
very well may actually be indicative of such a dependence, an
insight that may turn out to be helpful even if the models
themselves cannot be used.

VI. RELATED WORK

Human readable performance models such as those resulting
from analytical reasoning have long been acknowledged as
one of the most powerful and insightful ways of describing
and understanding the performance behavior of applications.
Models of widely used applications [20], [21], gaining insights
into complex behaviors [22]–[24], have been achieved by
manually analyzing application code. Petrini et al. for example
discovered through analytical modeling a large difference
between actual and predicted performance caused by system
noise [1]. Hoefler et al. defined a simple six-step process to
create application performance models [25]. The described
method leads to insight into application scaling behavior but
is tedious to apply to real codes.

The main obstacle of analytical approaches is the expertise
required to gain results for realistic applications and the
large amount of effort this entails. Several approaches have
attempted to automate the performance modeling process
to make it feasible to use in practice: PALM [26], a tool
that generates models after requiring users to annotate the
source code with performance expressions; ASPEN [27], a
language specifically developed to annotate source code with
performance expressions; Vuduc et al [28], who generate
the coefficients of performance models automatically while
still requiring the user to select the hypotheses manually;
Jayakumar et al [29], who compare kernels in applications
with a database of kernels with known behavior to classify per-
formance characteristics. Siegmund et al. consider all relevant
configuration options of an application and model how their
interaction affects the performance of the application [30].
However, they only treat applications monolithically and can
therefore identify only the coarsest behaviors. Hoefler et al.
generate multi-parameter performance models online [31]. The
online nature of their approach limits the size of the search
space and thus the diversity of models quite significantly. This
in turn adversely affects model accuracy.

Other approaches combine traditional modeling techniques
with methods from machine learning, including active and
transfer learning, neural networks or decision trees, to further
improve the robustness of their predictions [32]. Duplyakin
et al., for example, apply active learning to suggest follow-
up experiments that can help refine their initial performance
models created by Gaussian process regression [33]. We, in
contrast, employ reinforcement learning to derive a parameter
value selection heuristic that is efficient for all kinds of HPC
applications, not tuned for one specific application. Similarly,
Neumann et al. use sparse grid regression to predict the
performance of various HPC applications, such as molecular
dynamics, climate and weather, using high-dimensional run
time data [34]. Jamshidi et al. show that, in some scenarios,
transfer learning can be used to reduce the cost of new
performance models by transferring knowledge about perfor-
mance behavior from one system to another [35]. In contrast,
some approaches focus on generating models for a very
specific purpose, such as learning and predicting application
performance based on its input parameters using artificial
neural networks [36], [37]. Kundu et al. use such an approach
to model the performance of VM-hosted applications as a
function of resource allocation and contention [38]. Li et al. on
the other hand use a modeling approach based on regression
trees to accurately predict the performance of single- and
multi-core processors for unsampled points in their design
space [39].

VII. CONCLUSION

Sparse performance-modeling in combination with an effi-
cient parameter-value selection strategy can successfully re-
duce the cost of the modeling process while retaining high
model accuracy. This renders taking measurements for all
combinations of the selected parameter values unnecessary.
Specifically, one can reduce the number of measurements
required for creating an empirical performance model from
exponential to polynomial, thus making the parameter value
selection more flexible. We exploited this flexibility to design a
generally valid heuristic for the selection of parameter values
that we derived once from the knowledge of an intelligent
agent. Trained on synthetic performance functions, our agent
learned to select parameter-value combinations that minimize
the cost and maximize the accuracy of empirical performance
models. Our solution reduces the average cost of the modeling
process by about 85% while retaining 92% of the model
accuracy. In addition, the new flexibility in selecting param-
eter values at the very least simplifies and sometimes even
enables the generation of empirical performance models for
applications such as FASTEST, which cannot produce useful
measurements or do not run at all under all combinations of
practically available parameter values.
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