
The MPI T Events Interface: An Early Evaluation and Overview of the Interface

Marc-André Hermannsa,b, Nathan T. Hjelmc, Michael Knoblochb, Kathryn Mohrord, Martin Schulze

aJARA-HPC, 52425 Jülich, Germany
bJülich Supercomputing Centre,Forschungszentrum Jülich GmbH, Germany

cHPC Division,Los Alamos National Laboratory, USA
dCenter for Applied Sci. Comp.,Lawrence Livermore National Laboratory, USA

eDepartment of Informatics, Technical University of Munich, Germany

Abstract

Understanding the behavior of parallel applications that use the Message Passing Interface (MPI) is critical for optimizing com-

munication performance. Performance tools for MPI currently rely on the PMPI Profiling Interface or the MPI Tool Information

Interface, MPI T, for portably collecting information for performance measurement and analysis. While tools using these interfaces

have proven to be extremely valuable for performance tuning, these interfaces only provide synchronous information, i.e., when

an MPI or an MPI T function is called. There is currently no option for collecting information about asynchronous events from

within the MPI library. In this work we propose a callback-driven interface for event notification from MPI implementations. Our

approach is integrated in the existing MPI T interface and provides a portable API for tools to discover and register for events

of interest. We implement our MPI T Events interface in Open MPI and demonstrate its functionality and usability with a small

logging tool (MEL) as well as an early integration into the comprehensive measurement infrastructure Score-P.

Keywords: MPI; callback functions; runtime introspection; performance measurement; tool interfaces

1. Introduction

A detailed understanding of parallel application behavior in

High-Performance Computing (HPC) is key to performance op-

timization. The vast majority of HPC parallel applications use

the Message Passing Interface (MPI) [1] for distributed mem-

ory programming. Although the use of MPI is ubiquitous, its

optimal use is often not straightforward and the cause of poten-

tial performance bottlenecks in many applications.

For decades, MPI developers have used performance mea-

surement and analysis tools to gain insight into application be-

havior. Performance tools collect a wide variety of information

about applications during execution, including time spent in dif-

ferent activities, e.g., function calls, application phases, or par-

ticular lines of code and communication and synchronization

details, e.g., communication patterns between processes and the

overhead of particular synchronization operations. Using this

collected information, developers can identify the performance

bottlenecks in their code and target their optimization efforts at

the most severe performance problems in order to achieve the

highest performance gains.

The current MPI Standard offers two interfaces for tools to

extract information from an MPI application, namely PMPI, the

MPI Profiling Interface, and MPI T, the MPI Tool Information

Interface. The concept of PMPI is simple and has been used

Email addresses: m.a.hermanns@fz-juelich.de (Marc-André

Hermanns), hjelmn@lanl.gov (Nathan T. Hjelm),

m.knobloch@fz-juelich.de (Michael Knobloch), kathryn@llnl.gov

(Kathryn Mohror), schulzm@in.tum.de (Martin Schulz)

successfully for decades; tool developers write libraries that in-

tercept selected (or all) MPI calls in an application execution

and perform a wide variety of tasks, including measuring the

time spent in MPI calls, collecting communication details (such

as bytes transferred or communication partners), or replacing a

communication pattern altogether, e.g., replacing a broadcast

operation with point-to-point calls.

While PMPI has proven to be powerful, information about

the internal workings of the MPI library were not available to

tools with PMPI. Thus, in MPI 3.0 the MPI T interface was

added to the standard to enable an MPI implementation to ex-

pose selected details about its configuration and execution. With

this interface, tools or applications can query and possibly set

MPI-internal and MPI implementation specific configuration

variables. Examples of such variables could be the eager limit

for messages or the type of collective algorithm used for par-

ticular operations. Additionally, tools can obtain performance

data recorded within the MPI library. Examples for the latter

could be the amount of memory used in MPI-internal buffers or

the length of message queues. In both cases, the MPI imple-

mentation can choose what to expose and in which form. This

was a key element in the design of the interface as to not restrict

the implementation options of individual libraries. While this

leads to a certain degree of vagueness, as tools cannot rely on

the existence of particular variables or measurements, MPI T

has proven to be quite popular and several approaches have

shown the benefit of using MPI implementation internal infor-

mation for tuning MPI applications [2, 3, 4, 5, 6, 7].

While the introduction of MPI T improved the amount per-

formance information available to tools, one area is still miss-

Preprint submitted to Parallel Computing January 11, 2019

ing: information about event occurrences within MPI imple-

mentations. To mitigate this gap, we propose to extend the

MPI T interface with a new callback-driven mechanism to no-

tify tools of events that occur during execution. Using the event

interface, a tool can register for and be notified of events that the

MPI implementation exposes. These events could include the

progress of communication activities, the time the actual trans-

fer of a non-blocking send operation starts, or the time of the

message arrival on the receiver side. Such events could be use-

ful in diagnosing performance issues of applications, e.g., by

comparing the non-blocking message arrival time with the time

of the post of the matching wait operation. As with MPI T,

the number and types of events exposed is MPI implementation

dependent, allowing for flexibility in the implementation and

avoids forcing particular implementation styles in the standard.

Our MPI T Events interface, a callback-driven extension to

MPI T, is currently being discussed for inclusion in the MPI

Standard. As this extension is currently not a part of the MPI

Standard, we anticipate that (if accepted) the API for MPI T

Events finally integrated into the standard may differ slightly

from what is presented here. However, our intent is to describe

the state of the interface as of this writing and to explore the

design choices we have faced in our efforts, both to demonstrate

the feasibility of the proposed API as well as to give the larger

MPI community an option to provide feedback.

This paper is an extended version of our earlier publica-

tion [8] on this topic. We retain the contributions of the original

paper:

• A detailed description of the design of the MPI T Events

interface, including a novel transparent buffering approach

and a discussion of design trade-offs;

• A prototype implementation in Open MPI;

• An evaluation of the interface with an event logger tool;

and

• An integration of the interface into the comprehensive

Score-P [9] measurement infrastructure.

Additionally, the contributions of this extended version include:

• An extended discussion of overhead measurements with

different tool configurations across multiple benchmark

applications;

• An updated list of event types supported by the presented

Open MPI prototype.

The remainder of this paper is structured as follows. Sec-

tion 2 provides background and related work. Section 3 de-

scribes the API and discusses design decisions. Section 4 de-

tails the prototype implementation in Open MPI. Section 5 dis-

cusses multiple case studies focusing on overhead and usability,

and Section 6 concludes with a brief look at future work.

2. Background and Related Work

2.1. Event Information in MPI

In the current MPI Standard, tool developers have two por-

table mechanisms to obtain information on the communication

behavior of an MPI program: either using wrappers through the

PMPI interface or by explicitly querying performance informa-

tion through MPI T. However, the drawback of both approaches

is that data collection is limited to synchronous information,

i.e., when the user application calls an MPI routine that is then

intercepted by PMPI wrappers or when a tool library explicitly

calls into MPI T.

Performance tool developers have long stated the need for

capturing asynchronous MPI event information [10, 11]. By

gaining insight to the relative timings of events as they occur

in an MPI library, one can understand the order of events, track

causality, and with that uncover additional performance prob-

lems not visible in synchronous data. For example, if a mes-

sage is received by the MPI library and the user code has not

yet posted a matching receive call, the message will be placed

in the unexpected message queue. By knowing the relative time

between the arrival of the message and the posting of the receive

call, one can infer potential causes. For example, this could be

an indicator of load imbalance that is causing the receiving pro-

cess to post the receive call late.

2.2. Event Interfaces for Tools

The de facto approach for propagating event information to

tools is with callback-driven interfaces: the system being mon-

itored (in our case the MPI library) notifies tools of events near

the time of their occurrence in order to indicate state changes in

the system. Such interfaces are available or are being designed

for a variety of systems. For Unified Parallel C (UPC) [12] and

the underlying GASNet [13] library, the callback-driven inter-

face GASP [14] provides information for tools such as the Par-

allel Performance Wizard (PPW) [15, 16]. The upcoming tools

interface [17] for OpenMP [18] will also provide a callback-

driven tool interface.

2.3. PERUSE

The first effort to introduce event notification into MPI was

called PERUSE [19, 20]. PERUSE was an international ef-

fort to design a callback interface to collect internal informa-

tion from MPI implementations. PERUSE was implemented in

Open MPI [21] and used by selected projects in the MPI com-

munity [22, 23, 24].

The design of PERUSE differs from our events interface

as it defines several specific events as part of its interface, like

“message activation” and “message transfer initiation” that re-

fer to the times when MPI starts processing a message request

and when it actually begins the data transfer, respectively. Over-

all, PERUSE defined a large number of events related to mes-

sage transfers and message queues, and the draft document con-

tains event definitions for collective communications, MPI I/O,

one-sided communication and dynamic process creation. The

PERUSE specification states that PERUSE-compliant MPI im-

plementations are required to support all PERUSE functions

2

and data types. However, it also states that if a particular de-

fined event does not directly correlate to a particular MPI im-

plementation or would incur undue overhead to support, imple-

mentors are free to ignore that event.

Ultimately, the PERUSE specification was not standardized.

The main criticism of the interface was that supporting the de-

fined MPI internal events could lead to performance bottlenecks

or restrictions for some MPI implementations if their design

doesn’t follow the PERUSE concepts. Although the interface

specified that implementations could ignore problematic events,

there was concern that in order to be considered competitive in

procurement bids, MPI implementors would need to support the

full PERUSE interface.

Our design of the MPI T events interface is in direct re-

sponse to this criticism; as with the existing MPI T interface,

no events are pre-defined or enforced. Instead, we provide a

query interface for tools to discover the events that an MPI im-

plementation supports.

3. Design

The design of our callback-driven events interface integrates

cleanly with the MPI T interface. Following the approach of

MPI T for performance and configuration variables, we do not

specify any events that must be supported by MPI implemen-

tations, but instead leave the choice of which event to provide

to the MPI implementor. The MPI T Events interface then pro-

vides functions for tools to discover available events and to reg-

ister callbacks for them. This allows MPI implementors com-

plete freedom to choose the events to be exposed and how to

implement them in their library. As with MPI T, the proposed

events API can be used whenever MPI T is active, which can

be before MPI Init and after MPI Finalize.

In Table 1 we show the proposed API supporting our design.

The functions of the API fall into five categories: 1. Query-

ing the availability of events and their descriptions 2. Callback

registration management 3. Reading event-instance data within

a callback function 4. Reading event-instance metadata within

a callback function 5. Querying information on event sources.

MPI implementations can, but are not required to propagate

event occurrences to callbacks immediately, but can defer and

buffer events internally. Our goal with this design choice is

to reduce the potential for prohibitively high overhead within

MPI implementations caused by having to supporting immedi-

ate notification of all events. Furthermore, the API introduces

the notion of information sources for specific event instances.

A source might be internal to the MPI implementation, e.g.,

internal message queues, or external, e.g., a network device.

By introducing the concept of sources, we enable transparent

buffering of events from sources with disparate control flows,

without the need to enforce event ordering across those flows

(see Section 3.6).

3.1. Query Event Type Information

The API for querying event type information follows the

same approach as the API for querying MPI T variables. A

subtle difference is that for events we query for available event

types in the information gathering phase. Then, during exe-

cution we collect information about, i.e., register callbacks for

specific events or event instances that belong to the queried

event types. Users query the current number, N, of available

event types via MPI_T_event_get_num. By calling MPI T-

event get info, tools can then query detailed information

about specific event types provided by the specific MPI imple-

mentation identified by its index between 0 and N−1. The event

type information returned to the user comprises:

Name A string that uniquely identifies the event type among

all other event types available

Description An optional string documenting the event type

Verbosity Level The verbosity level of the event type

Event Type Structure A set of arguments describing the struc-

ture of the event data, including element data types and

displacements, as well as the number of elements

Enumeration Type An optional MPI T enumeration describ-

ing all elements of the event type

Bound Object The type of MPI object (if any) to which the

event type must be bound

MPI implementations can add new event types as they become

available during execution, e.g., through dynamic loading of

components; however, they cannot change event type informa-

tion, change event type indices or delete indices once they have

been added to the set.

The name, description and verbosity have the same seman-

tics as with MPI T variables. Specifically, the name uniquely

identifies a given event type among all available event types

and must identify equivalent event types across all connected

MPI processes. The description clear-text string is optional,

but can be used to convey semantic information for event types

to users. Thus, a high-quality implementation should provide

descriptions for all event types to aid users in understanding

the information provided. The verbosity allows users to judge

whether a specific event type represents high- or low-level in-

formation, e.g., whether the event type is intended to be helpful

for application users or whether it is intended for specialized

uses for MPI implementors.

Event types can be complex and can potentially return mul-

tiple elements of different types during the callback as parame-

ters. Therefore, returning a single basic datatype, as with MPI T

performance variables, will not suffice, and we represent them

conceptually with an event type structure. The event type struc-

ture comprises 1. the number of elements contained in the event

type, 2. an array of MPI basic datatypes allowed for MPI T de-

scribing the type of each element, 3. an array of displacements

to identify the location of each element in the event buffer as

provided by MPI_T_event_copy, and 4. the extent (including

potential padding among elements) of such a buffer. We use

this approach instead of using MPI derived datatypes directly,

as MPI T may be initialized and used before MPI is initialized

3

Table 1: List of functions of the proposed MPI T Events API. The return type is always int, returning an MPI error code with the same semantics and scope as

existing MPI T functions.

Name Arguments

Event type information

MPI T event get num int* num events

MPI T event get info int event index, char* name, int* name len, int* verbosity, MPI Datatype* arrary of datatypes,

MPI Aint* array of displacements, int* num elements, MPI T enum* enum, MPI Aint* extent,

char* description, int* description len, int* bind

MPI T event get index const char* name, int* event index

Callback registration management

MPI T event handle alloc int event index, void* object handle, void* user data, MPI T event cb function event cb function,

MPI T event registration* event registration

MPI T event handle free MPI T event registration event registration, MPI T event free cb function free cb function

MPI T event set dropped handler MPI T event registration event registration, MPI T event dropped cb function dropped cb function

Reading event data

MPI T event read MPI T event instance event, int element index, void* buffer, int size

MPI T event copy MPI T event instance event, void* buffer, int size

Reading event metadata

MPI T event get timestamp MPI T event instance event, MPI Count* event timestamp

MPI T event get source MPI T event instance event, int* source index

Source handling

MPI T source get num int* num sources

MPI T source get info int source index, char* description, int* description len, MPI T source order* ordering,

MPI Count* ticks per second

MPI T source get timestamp int source index, MPI Count* timestamp

and, thus, the full MPI type system may not be available during

tool initialization.

An optional enumeration type provides additional informa-

tion about the individual elements of the event type. The intent

is to allow performance tools to harvest specific element de-

scriptions in machine accessible form, rather than parsing the

natural language of the description text for element descrip-

tions. For example, an event type that occurs when an incom-

ing two-sided message is matched may return the tag and size

of the incoming message. In this case the enumerator for this

event type could return the strings “tag” and “size”.

Some event types may be required to be bound to a spe-

cific MPI handle as a bound object at event callback registra-

tion. Binding event callbacks to specific MPI objects allows for

more refined event collection. For example, a tool could col-

lect message queue events for a particular MPI communicator

instead of all communicators.

As stated previously, event types are identified by their in-

dex in the set of all currently available event types, from 0 to

N − 1. However, as is true for variables in the MPI T inter-

face, event indices may change between executions, and thus

an index is not a reliable identifier for events. However, if the

unique name of the event type is known to the user, a call to

MPI_T_event_get_index will provide the index of the asso-

ciated event type for that execution. This avoids an iterative

search of the full set of event types for a specific, known event

type. If no event type is available with the given name, the

call returns with an appropriate error code. Also, because event

types may become available at different stages of execution, a

tool may retry failed attempts to query the event type index in

case it becomes available.

3.2. Event Handle Management

In order to receive notifications of individual event occur-

rences of a particular event type—called event instances—a

tool must register a callback function using MPI T event han-

dle alloc1. The user provides the following arguments to the

registration call:

Index The index of the event type with which the callback

function is associated.

Bound Object Handle If needed, a valid MPI object handle to

bind to the event instances.

User Data User data that will be provided to the registered

callback function. This is intended to pass a pointer to

user-controlled memory, but a tool is free to choose what

is actually passed.

Callback Function The callback function to call to process

event information with the given event type and MPI ob-

ject.

1Note that the name of the call is chosen in symmetry to the existing func-

tions MPI T cvar handle alloc and MPI T pvar handle alloc within the

MPI Tool Information Interface.

4

Table 2: List of all callback function types of the proposed MPI T events API. All types have a return type of void.

Name Arguments

MPI T event cb function MPI T event instance event, MPI T event registration event registration,

MPI T event cb safety cb safety, void* user data

MPI T event free cb function MPI T event registration event registration, MPI T event cb safety cb safety, void* user data

MPI T event dropped cb function int count, MPI T event registration event registration, MPI T event cb safety cb safety,

void* user data

Event Registration A handle for identifying this event type

registration.

After successful event-callback registration, an event-regis-

tration handle is returned. The handle is used subsequently

for several purposes: 1. As input to each callback invocation

2. For registering a callback for handling information loss due

to dropped events, 3. For de-registering the callback. The han-

dle is used as input to each callback because one callback func-

tion can be registered for multiple event types, and the handle

differentiates the event type for the particular invocation of the

callback. Note that multiple handles may exist for a given event

type, but each handle is associated with only one specific event

type.

If multiple event registration handles exist for the same event

type and bound object, the corresponding event instance data is

provided to the callback function invocation of each of those

handles. This enables multiple tool libraries to register call-

backs for the available event types without further coordination.

By calling MPI_T_event_handle_free, a user initiates

the deallocation of an event registration handle and the de-re-

gistration of the associated callback function. Because the API

allows event data to be transparently buffered and event call-

back invocations to be postponed, the MPI implementation may

not be able to guarantee that no event data corresponding to

the event registration handle is still buffered in the system at

the time of the call to MPI_T_event_handle_free. Thus,

the user can provide a pointer to a callback function of type

MPI T event free cb function (see Table 2 and Section 3.3)

that can free any resources allocated by the tool associated with

the handle. The callback function is invoked when the MPI

implementation can guarantee that no event data for the corre-

sponding handle is pending. After the return of the callback

function, the event registration handle is deallocated.

3.3. Event Callback Requirements

In Table 2, we show the C function prototypes for the call-

backs in our event interface. These include the

1. MPI T event cb function to be used for event instance

notification;

2. MPI T event free cb function to indicate completed

handle deallocation after raising events potentially buffered

before the corresponding call to MPI T event handle-

free; and

3. MPI T event dropped cb function to handle events

that may have been dropped by the MPI implementation.

The MPI implementation may invoke a callback function as

soon as it is registered. The API is designed to support different

execution contexts for the callback function. To enable the safe

and flexible handling of execution contexts both with respect to

the tool and the MPI implementation, the requirements for safe

execution of a specific callback invocation are communicated

to the callback function via the argument cb safety.

The callback-safety requirements are defined in a hierarchy,

where each level includes all restrictions of its predecessor in

the hierarchy as listed below:

MPI T CB REQUIRE NONE The callback function does not need

to fulfill specific requirements.

MPI T CB REQUIRE MPI RESTRICTED The use of MPI within

the callback function is restricted to a specific set of func-

tions.

MPI T CB REQUIRE THREAD SAFE The callback must expect

to be interrupted by and/or run concurrently with itself

and other callback functions.

MPI T CB REQUIRE ASYNC SIGNAL SAFE The callback must ex-

pect to be run in an asynchronous signal handler context.

The callback safety level MPI T CB REQUIRE NONE is the

lowest level, with no restrictions on the callback function. We

provide this level as a defined minimum. While MPI imple-

mentations may never actually provide this level to a callback

in an HPC production environment, we do not want to require

an MPI implementation to enforce specific restrictions if they

are not needed.

The callback safety level MPI T CB REQUIRE MPI RESTRICT-

ED restricts the use of MPI calls within a callback to 1. read-

ing event data, meta data, and event type information 2. read-

ing source information 3. managing event callback registrations

4. starting, stopping and reading performance variables

The level of MPI T CB REQUIRE THREAD SAFE requires the

callback function to be reentrant and thread safe. This means a

developer needs to expect the execution of a callback to be in-

terrupted by any other callback function or happen concurrently

with any other callback function.

The most restrictive level, MPI T CB REQUIRE ASYNC SIG-

NAL SAFE, requires the callback to be safe inside a signal han-

dler.

The distinction in callback safety levels allows flexibility

for the MPI implementation to make decisions about the needed

safety for a specific callback invocation. It provides for interrupt-

based calling contexts which require the highest safety level,

5

as well as calling contexts via a function pointer from a con-

trolled place in the code, which have weaker safety require-

ments. The weaker requirements may allow the tool to process

the event data inside the callback, without requiring any tool-

internal buffering. Additionally, allowing a callback to perform

further processing than just copying data to a buffer may en-

able completely self-contained tools that are not dependent on

an extra thread or using the PMPI interface to process event

information.

Because event information may be buffered by the MPI im-

plementation and not returned immediately upon event occur-

rence, the internal buffer space may be depleted at some point

during the execution. This could occur if event data is gener-

ated faster than it is processed by calling the associated callback

functions. As a consequence, the MPI implementation will then

have to drop some event data. For some tools, the loss of event

data may be problematic, depending on the semantic connec-

tion of recorded and lost events. Because of this we provide the

MPI T event dropped cb function callback to be called as

soon as the MPI implementation can inform the tool of the ob-

served loss of data. The count argument tells the tool the count

of event instances that were lost. The counter itself only re-

quires constant space for each event type so it should not be

a burden on MPI implementations. Depending on the impor-

tance of the lost events, the tool may abort its execution, warn

the user, interpolate the missing data or simply ignore the lost

events. The event registration argument provides the event reg-

istration handle for the lost events. As with all other callback

functions, the required safety level and the associated pointer to

user data is provided.

3.4. Reading Event Data

Our MPI T Events API provides two methods for extracting

information from within an event callback function once it is

invoked, namely 1. reading event data one element at a time

and 2. copying the event data as one opaque memory chunk for

later processing.

Reading single elements. A tool can read single data elements

from the event data, represented by the opaque type MPI T-

event instance, with a call to MPI_T_event_read. This

enables users to copy elements of the event instance to specific

memory locations directly. Furthermore, the user does not need

to know the displacement for the individual event elements, but

can rely on the MPI implementation to copy the element data

from the correct memory location. This enables MPI imple-

mentations to hide implementation details from the callback

(i.e., data layout at callback invocation) and allows tools to copy

one or more event data elements directly to tool allocated vari-

ables, without the need to copy the event data as a whole.

Copying the event data. In some calling contexts, a callback

may not be able to process individual data elements, e.g., due

to required asynchronous signal safety. In this case, a tool may

choose to copy the event data as a whole (including poten-

tial padding) into a user-provided buffer with a call to MPI T-

event copy. The user must provide a buffer with enough ca-

pacity to copy as many bytes as returned in the extent argu-

ment of the call MPI T event get info for the corresponding

event type. This enables tools to postpone the processing of

event data to a time off of the critical path of the application

and possibly to a more permissive execution context. While

the event type structure is communicated in the MPI T event-

get info call, access to the event data is only possible through

the event instance handle provided to the callback function.

This enables MPI implementations to assemble the event data

buffer copied on the fly in the structure communicated through

array of datatypes and array of displacements of the MPI T-

event get info call. Of course, on-the-fly assembly contra-

dicts the premise of a fast copy, so implementations are encour-

aged to implement the copy as efficiently as possible.

3.5. Reading Event Metadata

Instances stemming from all event types share some basic

metadata information, including a time stamp and the source

of the event (see Section 3.6). Additionally, event instances

may include other metadata specific to their event type. In our

design, we do not include this part of the metadata in the spec-

ification. The primary reason is flexibility; as new event types

are supplied by MPI implementations, we do not need to update

our API or type definitions. Further, it enables MPI implemen-

tations to store the metadata separately from the other event

information (or generate it on the fly), and the metadata may

not be interesting for all tools, so it is left to the tool to query

information when necessary.

Observed Timestamp. A call to MPI T event get timestamp

returns the time stamp the event was observed by the MPI im-

plementation, which may be significantly different to when the

corresponding callback is invoked. This enables MPI imple-

mentations to 1. Postpone the invocation of a callback to a more

convenient or less restricted execution time 2. Provide multi-

ple event sources, including hardware components, to provide

event data without their explicit support to raise a signal or in-

voke a function callback.

Users are not required to use MPI T event get timestamp

to obtain a time stamp and can use other timer routines; how-

ever user-generated time stamps will always reflect the time of

the callback invocation rather than the time when the event was

initially observed.

Decoupling internal event data generation and notification

to the user also allows for internal recording of high-frequency

events to burst buffers through the MPI implementation before

calling the individual callback functions. Control of such buffers

could be granted to the user through MPI T control and perfor-

mance variables.

Event Source. Sources provide additional optional information

on the origination of the event data and callback invocation.

The source concept is introduced into the API to allow for flex-

ible handling of the chronological ordering requirements on

event data by a tool, as explained in the next section in more

detail. As the event-instance data available to a callback func-

tion of a specific registration handle may stem from different

6

sources for distinct invocations, a callback function can query

the source index for a specific event-instance via MPI T event-

get source.

3.6. Event Sources

Allowing transparent buffering of events in our design may

enable MPI implementations to support novel sources for gen-

erating events, e.g., directly from the network hardware. How-

ever, these sources may not be capable of maintaining the nec-

essary synchronization with other sources for a centralized, co-

ordinated event data buffer. This presents a challenge for some

tools and data formats, such as Score-P [9] and OTF2 [25],

which have strict requirements on event ordering for the events

they record in one stream. Sorting and ordering events from

disparate sources during execution would be challenging and

error-prone for both tools and MPI implementations. The con-

cept of sources reconciles these challenges with low overhead.

Here, a source is a tag attached to the event data that identifies

ordered event sub-streams from the unordered combination of

event callback invocations from multiple unsynchronized data

sources. This means, instead of attempting to coordinate mul-

tiple software and hardware components to provide a single

chronologically ordered stream of events, an MPI implemen-

tation can supply multiple sub-streams identified with source

tags, for which ordering can be guaranteed to a tool. Gener-

ally speaking an MPI implementation should create a separate

source for each control flow that generates event data, e.g., the

main thread, a progress thread or a network card.

Users can query the number of sources via MPI T source-

get num and then query detailed information on a specific source

via MPI T source get info, similar to querying events them-

selves. The detailed information query returns 1. The descrip-

tion of the source 2. The kind of ordering guarantees of the

source 3. The number of ticks the timestamp of this source ad-

vances per second The kind of ordering guarantee can either

be MPI T SOURCE ORDERED for guaranteed chronological order

or MPI T SOURCE UNORDERED otherwise. This allows MPI im-

plementations to provide event information even from sources

where ordering cannot be guaranteed or only with substantial

overhead and inform the tool accordingly. The tool can then

choose how to handle the unordered source. Nevertheless, an

MPI implementation should strive to keep the number of un-

ordered sources low.

The time stamp returned by MPI T event get timestamp

is a count of ticks since some time in the past and a user can

query the current time stamp of a source via MPI T source-

get timestamp. However, time stamps of different sources

may not be directly comparable without a manual translation

into a common time format. In combination with a common

reference time of the same timestamp and the number of ticks

per seconds reported for the source, any later time stamp of that

source can be translated to such a common time format easily.

4. Implementation

To evaluate the proposed MPI T Events interface, we im-

plement it in Open MPI. The authors’ familiarity with the im-

plementation, the existing PERUSE implementation and the mod-

ular design of Open MPI make it well suited for implementing

this prototype, but the results generalize to other MPI imple-

mentations as well, especially those with a robust MPI T sup-

port.

4.1. Open MPI

Open MPI is designed around the concept of a Modular

Component Architecture, know as the MCA. At a high level,

the implementation is split into three layers; the Open Plat-

form Abstraction Layer (OPAL), the Open Run-Time Layer

(ORTE) and the Open MPI Layer (OMPI). OPAL implements

the core of the MCA. Each layer encompasses multiple inter-

faces known as frameworks, which are then each implemented

in the form of one or more components.

The OPAL layer includes the code responsible for imple-

menting both performance and configuration variables exposed

by the existing MPI T interface, as this allows variables to be

exposed from any of the layers in the Open MPI implementa-

tion. The core of the prototype event-driven extension to MPI T

is therefore also implemented in the same layer.

The new event support in Open MPI consists of both in-

ternal and external facing APIs. The internal calls handle the

registration, de-registration, and invocation of event instances.

The external-facing calls handle all the functions necessary to

implementing the new MPI T Events API calls as specified ear-

lier in Table 1.

We expect that, as more internal event information is ex-

posed via the internal event registration mechanism, there will

be additional overhead, possibly even on the critical path. In our

implementation we therefore mitigate as much of this overhead

as possible. This includes the use of low-overhead, single con-

ditional, inline functions for the invocation of event instances

and a handle allocation callback function that can be specified

at event registration time. The handle allocation callback is

called when the tool calls MPI_T_event_handle_alloc. This

allows the component implementing a particular event to de-

fer some of the overhead associated with using the event to a

point when a tool is actually attaching to the event. The goal of

this design is to allow all events to be compiled into the imple-

mentation with minimal overhead and hence be always present

without switching library versions. The alternative would be

to conditionally compile support for these event types, which

would reduce the usefulness of the implementation.

4.2. Events

For the initial implementation of the MPI T Events proto-

type we focus on implementing event types to cover two-sided

(send/recv) and one-sided communication. The two-sided event

types are implemented in the ob1 Point-to-point Management

Layer (PML) component and cover the complete set of events

that were implemented to support PERUSE. One-sided events

are implemented to cover network operations in the ugni Byte

Transport Layer (BTL) [26] component. These event types in-

dicate the initiation or completion of a one-sided (i.e., put, get

or Atomic Memory Operation (AMO)) operation. The one-sided

7

events are added to assist in the evaluation of Open MPI on

Cray systems when using the RMA-MT benchmark suite [27].

Table 3 provides a complete list of the events exposed in the

prototype implementation.

5. Case Studies

To demonstrate the use of the MPI T Events, we provide

several examples of smaller case studies in this section. Their

purpose is to show how individual parts of the API can be used

to obtain generic or specific performance-relevant information.

5.1. Overhead Study

Figure 1 shows results from an overhead study performed

with selected benchmarks of the SPEC MPI 2007 version 2

benchmark suite. The measurements were performed on the In-

tel cluster JURECA [28] at Forschungszentrum Jülich with four

nodes and 24 processes per node resulting in 96 processes in to-

tal. For each configuration the mref input size was chosen. The

original benchmarks were patched to measure the time spent in

the main loop excluding initialization using MPI Wtime. The

figure shows the average execution time of 5 measurements per

configuration, with error bars indicating the minimum and max-

imum across the measurements. The Events disabled configu-

ration has the MPI T callback system disabled at compile time

in the Open MPI runtime system. The Events enabled w/o tool

configuration has the MPI T callback system enabled, but no

tool attached. The MEL w/o callbacks configuration has the

MEL tool attached, with no callbacks registered. In this config-

uration the MPI initialization and finalization is intercepted via

PMPI wrappers and the MPI T subsystem is initialized and fi-

nalized in those wrappers, respectively. The Events enabled w/

empty callbacks also attaches a the MEL tool, now registering

an empty callback function for each event available.

As can be seen in the figure, the overhead of the MPI T

callback system is within or close to the measurement uncer-

tainties of an Open MPI version with a callback system fully

disabled at compile time, for three of the four benchmarks. For

the 121.pop2 benchmarks, the overhead with an enabled call-

back system is consistently larger than without, but stays below

3 percent (2.8%) when comparing the lowest runtime of Events

disabled with the largest runtime of MEL w/ empty callbacks.

121.pop2 is a very communication intensive benchmark, and

consequently even a small overhead for communication func-

tions is immediately noticeable. With Score-P attached, run-

ning in runtime-summarization mode, the overhead is again sig-

nificantly higher than observed with MEL, even with no addi-

tional callback functions registered. When Score-P also regis-

ters the callback functions that track searches in the posted and

unexpected message queue, the overhead increases yet again,

as the time spend searching the in the queues is so low per in-

stance that the overhead of recording their beginning and end is

relatively high.

The fluctuations in the runtime of 132.zeusmp2 still needs

to be investigated further. While four out of the five runs are

very similar to the comparable runs with the other benchmarks,

we observed one isolated run with a significantly reduced run-

time, which influenced the average execution time significantly.

The fact that 132.zeusmp2 shows significant runtime variation

across the measurements for each configuration could indicate

that this benchmark is much more sensitive to noise than the

other tested applications, but it could also just point to a severe

anomaly in the machine during the one outlier run.

Figure 2 shows the results of the overhead from the RMA-

MT benchmark suite. These results were performed on the

same JURECA cluster as the SPEC benchmarks. Open MPI

was configured to use the osc/rdma[29] and btl/uct components

for communication. These components have been heavily op-

timized for RMA-MT communication. The RMA-MT bench-

mark suite was configured to run with 16 threads, binding worker

threads to cores, and run for 1000 iterations. The figures show

the results of the rmamt_bw bandwidth benchmark with the

flush, flush all, and all flush (all threads calling MPI Win flush)

synchronization methods with both MPI_Put and MPI_Get. With

the MEL tool attached with no callbacks there is little degrada-

tion in performance across the range of message sizes when

using MPI_Put. The overhead is higher when running with

MEL and empty callbacks. In this case it leads to a degradation

in performance around 10% for small messages (< 1kB). The

overhead on the small message bandwidth when using MPI_Get

and the large message bandwidth for both MPI_Get and MPI_Put

is within the uncertainty of the benchmark.

5.2. MEL—MPI T Events Logger

We developed the MPI T Events Logger library (MEL) as

a prototypical example of a generic events logger and extended

it with basic message queue profiling capabilities. MEL is a

profiling library that employs both the PMPI and MPI T inter-

faces to obtain performance relevant information. As described

in Section 3, event types can either be unbound (i.e., not tied to

a specific object) or bound (i.e., tied to a specific object handle

such as a specific communicator). Handles for unbound event

types can be allocated once during the initialization of the mea-

surement system. Handles for bound event types need to be

allocated anew for each newly created object handle. For that

purpose, MEL intercepts all MPI calls that create new handles.

As the Open MPI prototype currently only supports event types

bound to communicators, the MEL prototype used for this pa-

per only intercepts communicator handle creation routines. At

startup, MEL allocates event handles for event types bound to

communicators for the implicitly defined communicator han-

dles MPI COMM WORLD and MPI COMM SELF. In the default be-

havior, during execution MEL evaluates the environment vari-

able MEL EVENTS, which may contain a list of event type names

separated by comma, colon, semicolon, or spaces. If the vari-

able is unset or empty, MEL will query all event types available

at the end of the execution and dump the gathered information.

If the variable is set, MEL allocates handles for all events types

listed.

5.2.1. Generic Events Logging

Using a generic event callback for all event types, MEL uses

the information available on the structure of the event type to

8

Table 3: List of events exposed by the pml/ob1 component in the prototype MPI T events implemenation in Open MPI

Event Name Binding Description Event Data

message arrived Comm. Message arrived for match Communicator ID, Source rank, Tag, Sequence

number

search posted begin Comm. Starting search of the posted receive queue Source rank, Tag

search posted end Comm. Finished search of the posted receive queue Source rank, Tag

search unexpected begin Comm. Starting search of the unexpected message queue Request pointer

search unexpected end Comm. Finished search of the unexpected message

queue

Request pointer

posted insert Comm. Added request object to the posted receive queue Request pointer

posted remove Comm. Removed request object to the posted receive

queue

Request pointer

unex insert Comm. Added request object to the unexpected message

queue

Request pointer

unex remove Comm. Removed request object to the unexpected

message queue

Request pointer

transfer begin Comm. Data transfer has begun for a request Request pointer

transfer Comm. Data transfer on request Request pointer

cancel Comm. Receive request was canceled Request pointer

free Comm. MPI request was freed Request pointer

Table 4: List of events exposed by the osc/rdma component in the prototype MPI T events implemenation in Open MPI

Event Name Binding Description Event Data

lock acquired Win. A lock on a remote peer was acquired Target rank (-1 for lock all)

lock released Win. A lock on a remote peer was released Target rank (-1 for unlock all)

put started Win. A network put operation on a contiguous region

has been started

Target rank, Remote address, Size

put complete Win. A network put operation on a contiguous region is

complete (may not be available on all platforms)

Target rank, Remote address, Size

get started Win. A network get operation on a contiguous region

has been started

Target rank, Remote address, Size

get complete Win. A network get operation on a contiguous region is

complete (may not be available on all platforms)

Target rank, Remote address, Size

flush started Win. A flush synchronization operation has started Target rank (-1 for lock all)

flush complete Win. A flush synchronization operation has completed Target rank (-1 for lock all)

pscw expose start Win. A Post-Start-Complete-Wait (PSCW) exposure

epoch has started

None

pscw expose complete Win. A PSCW exposure epoch has completed None

pscw access start Win. A PSCW access epoch has started Target rank

pscw access complete Win. A PSCW access epoch has completed Target rank

rdma fence Win. A fence epoch has started None

Table 5: List of events exposed by the btl/ugni component in the prototype MPI T events implemenation in Open MPI

Event Name Binding Description Event Data

event netop rdma None Network event Network-op type, Target rank, Size, Local address,

Remote address

9

0 50 100 150 200 250 300

121.pop2

126.lammps

132.zeusmp2

137.lu

Execution Time [s]

Events disabled

Events enabled w/o tool

MEL w/o callbacks

MEL w/ empty callbacks

MEL w/ queue analysis

Score-P profile w/o cb

Score-P profile w/ cb

Figure 1: Runtime of selected SPEC MPI2007 v2.0 benchmarks on JURECA [28] with different tool configurations. Bar length indicates the average runtime of 5

measurements. Error bars indicate the minimum and maximum runtime within a measurement set.

query and print the information, without understanding specific

elements of the event type and their semantics. While this does

not enable automatic processing of events during execution—

it relies on the user to interpret the gathered information—it

showcases that it is possible for a simple tool to generate useful

event information without undue complexity.

For example, by combining the information provided by

MPI T event get info, MPI T enum get info, and MPI T -

enum get item, MEL is capable of providing relevant infor-

mation, without a specific semantic understanding programmed

into the callback itself, as shown by the following partial mea-

surement output of the ring c example provided by Open MPI:

[0.002151416] ’pml_ob1_message_arrived ’ \

context id=0 source =0 tag =201 \

sequence number =10

The name in single quotes is the event name and part of the

event information. The keys of the key-value pairs and the item

names of the provided (optional) enumeration type. The val-

ues of the key-value pairs represent the values directly queried

within the event callback using MPI_T_event_read.

5.2.2. Profiling the Message Queues

Open MPI uses two message queues to handle receiving

messages efficiently – the posted message queue, containing

the message envelope for posted receive operations, and the

unexpected message queue for messages without a matching

outstanding receive. Understanding the performance character-

istics of both queues can help the application developer in a

more efficient ordering of send and receive operations.

MEL provides callbacks to profile both the duration of how

long individual messages are waiting in the queue for and how

much time is spent on searching for messages in the queues.

The message queue statistics show the total number of mes-

sages entering the queue, the total time the queue was popu-

lated, and the maximum length of the queue as well as the av-

erage, minimum and maximum time a message stayed in the

queue. Events used for the posted queue are pml ob1 posted-

insert/remove and pml ob1 unex insert/remove are used for the

unexpected message queue. Output is generated for each rank

similar to the following example of a measurement of the Zeus-

MP/2 (132.zeusmp2) benchmark of the SPEC MPI 2007 [30]

10

100 101 102 103 104 105

0

2

4

6

·107

Bytes per thread

M
es
sa
g
es

p
er

se
co
n
d

baseline

no callbacks
empty callbacks

(a) put/flush

100 101 102 103 104 105

0

2

4

6

·107

Bytes per thread

M
es
sa
g
es

p
er

se
co
n
d

baseline

no callbacks
empty callbacks

(b) put/flush all

100 101 102 103 104 105

0

2

4

6

·107

Bytes per thread

M
es
sa
g
es

p
er

se
co
n
d

baseline

no callbacks
empty callbacks

(c) put/all flush

100 101 102 103 104 105

0

1

2

·107

Bytes per thread

M
es
sa
g
es

p
er

se
co
n
d

baseline

no callbacks
empty callbacks

(d) get/flush

100 101 102 103 104 105

0

1

2

·107

Bytes per thread

M
es
sa
g
es

p
er

se
co
n
d

baseline

no callbacks
empty callbacks

(e) get/flush all

100 101 102 103 104 105

0

1

2

·107

Bytes per thread

M
es
sa
g
es

p
er

se
co
n
d

baseline

no callbacks
empty callbacks

(f) get/all flush

Figure 2: Message rate (Messages per second) over message size (Bytes per thread) for the RMA-MT with 16 threads on JURECA with no tool attached (baseline),

MEL attached without callback registration (no callbacks), and MEL attached with empty callbacks registered (empty callbacks).

benchmark suite on 24 processes:

[MEL] Posted queue statistics rank: 21 \

Num Messages : 14559 \

Max length of message queue: 14 \

Total time of messages in queue : 625.01 s \

Average time of message in queue: 0.0429294 s \

Min time of message in queue : 5.16e -07 s \

Max time of message in queue : 0.571345 s

Figure 3 shows the maximum lifetime of a messages in the

posted message queue for the 2 SPEC MPI 2007 benchmarks

121.pop2 (Figure 3 (a-b)) and 137.lu (Figure 3 (c-d)). For each

benchmark we show the maximum message lifetime per pro-

cess on the left and a histogram of the distribution of that time

among the processes on the right. We see a very homogenous

distribution for POP2 with basically just one bin in the his-

togram populated and a wave-front pattern in the LU case.

The queue search analysis generates statistics for total search

time, the average time per search as well as minimal and max-

imal search time on each MPI process. It uses the event pairs

pml ob1 search posted begin/end for the posted queue and pml -

ob1 search unexpected begin/end for the unexpected queue, re-

spectively. Again the output is per MPI process as shown by the

output of the analysis of the Zeus-MP/2 benchmark:

[MEL] Unexpected queue search statistics rank: 21 \

Num Searches in queue: 29284 \

Total time searching in queue: 0.0351296 s \

Average time of a search : 1.19962 e-06 s \

Min time of a search : 7.8e -08 s \

Max time of a search : 3.0116e -05 s

Figure 4 shows the unexpected message queue search re-

sults for the two SPEC benchmarks 126.lammps (Figure 4 (a-

b)) and 132.zeusmp2 (Figure 4 (c-d)) in a similar way to Fig-

ure 3. Here, we cannot determine a specific pattern for any of

the benchmarks. In each case the search time varies signifi-

cantly between the processes with several bins populated in the

histogram. In each case the outliers are clearly visible in the

histogram. An interesting observation is the significant jump in

search time after the first quarter of processes in both bench-

marks. This can be a starting point for further investigations.

5.3. Optimizing RMDA-based Messaging

One early success for MPI T Events came from debugging

a performance problem when using Open MPI with the RMA-

MT benchmark suite. This benchmark suite consists of latency,

bandwidth and bi-directional measurements between a pair of

MPI processes. These benchmarks create a user-specified num-

ber of threads each performing a single (for latency measure-

ments) or multiple (for bandwidth measurements) MPI_Put or

MPI_Get operation(s). A master thread handles all synchro-

nization (lock, flush, post-start-complete-wait (PSCW), etc.).

On Cray XC systems we observed a significant drop in the

large message (> 8kB) bandwidth of MPI_Put at higher thread

counts (¿ 8 threads). The cause of this drop was unknown and

a workaround was added that essentially limits the number of

active large put operations. This was working well with the

benchmarks. As part of the prototype implementation we added

MPI T events in the ugni BTL to trigger when one-sided net-

work operations were started and completed. The RMA-MT

benchmarks were updated to create callbacks to print out the

size and thread ID when these new event types are triggered.

With these event types we were able to determine that with-

out the large message throttling most (in some cases all) of the

completion events were being handled by the synchronization

thread essentially serializing the completion of network oper-

11

0 20 40 60 80

1

2

3

4
·10−2

Processes

M
a
x
.
t
im

e

(a) time per rank (121.pop2)

1 2 3 4

·10−2

0

20

40

60

80

Max. time

N
u
m
.
p
r
o
c
e
s
s
e
s

(b) time distribution (121.pop2)

0 20 40 60 80

4

6

8

·10−2

Processes

M
a
x
.
t
im

e

(c) time per rank (137.lu)

4 6 8

·10−2

0

5

10

15

Max. time

N
u
m
.
p
r
o
c
e
s
s
e
s

(d) time distribution (137.lu)

Figure 3: Maximum lifetimes of messages in the posted message queue for 121.pop2 (a-b) and 137.lu (c-d).

0 20 40 60 80

0.5

1

1.5

2
·10−4

Processes

M
a
x
.
t
im

e

(a) time per rank (126.lammps)

0.5 1 1.5 2

·10−4

0

5

10

15

Max. time
N
u
m
.
p
r
o
c
e
s
s
e
s

(b) time distribution (126.lammps)

0 20 40 60 80

1

2

3
·10−4

Processes

M
a
x
.
t
im

e

(c) time per rank (132.zeusmp2)

1 2 3

·10−4

0

5

10

Max. time

N
u
m
.
p
r
o
c
e
s
s
e
s

(d) time distribution (132.zeusmp2)

Figure 4: Maximum search times in the unexpected message queue for 126.lammps (a-b) and 132.zeusmp2 (c-d).

ations. With the throttling enabled the handling of the com-

pletion events was more balanced between all the benchmark

threads. This information will be used to guide future develop-

ment in the multi-threaded RMA code paths in Open MPI.

This result would not have been possible without the flex-

ibility provided by the MPI T Events interface. By not speci-

fying events and their semantics it allows MPI implementors to

expose the information that is relevant to their implementation

and platform.

5.4. Score-P Integration

We also integrate MPI T Events into Score-P [9] to show

its applicability to complex and established tool infrastructures.

Score-P is an event-based performance measurement and analy-

sis tool and processes information based on event relationships

defined in an event model that enables portable performance

analysis across MPI implementations. The MPI T approach to

not define and mandate specific events posed difficulties for the

Score-P event model. However, some event types mapped to

12

Figure 5: Zoomed timeline of an execution of Zeus-MP/2 on 24 processes. Solid blue lines of the Master thread shows execution of an MPI Waitall; Magenta

blocks on the location stream below show searches in the posted message queue.

events in the model. Identifying similarity of events within and

across MPI implementations and how to handle them in event

models such as that of Score-P, OTF2 [25], and Scalasca Trace

Analyzer [31] are left as future work.

We implemented a Score-P prototype that records searches

in the posted-message queue and the unexpected-message queue

via the event pair pml ob1 search posted begin/end and the event

pair pml ob1 search unexpected begin/-end by modeling them

as code regions with enter and exit records. Events are recorded

on a separate location stream. Figure 5 shows how Vampir [32]

displays the event information of a measurement of the Zeus-

MP/2 benchmark. The information obtained through the MPI T

events interface reveals where the implementation searches the

respective queues during a call of MPI Waitall. Score-P at-

taches the event information passed to the begin callbacks to

the corresponding enter event, which Vampir displays as region

attributes (shown on the right).

6. Conclusions

Asynchronous event information can greatly aid in the per-

formance analysis of MPI applications. It enables the detec-

tion of causal and temporal relationships within a program’s

execution, which are not available through synchronous event

information or through summarized profiles. However, the cur-

rent tool interfaces in the MPI Standard do not provide asyn-

chronous data leaving such information unexplored, subject to

approximation or heuristics or dependent on implementation or

vendor specific extensions — portable tools leveraging event

data are not possible.

To close this gap, we propose the MPI T Events API. It ex-

tends and cleanly integrates with the existing MPI T interface

with functions for tools to register asynchronous callbacks for

events of interest generated by the MPI implementation. Our

proposed API follows the design philosophy of MPI T and does

not prescribe any particular event, but rather lets the MPI imple-

mentation decide which events to offer and in what form. Tools

can then query the MPI implementation for the events offered

as well as their semantic information and with that gain access

to the events. Our proposed API addresses many issues sur-

rounding the use of callback APIs in MPI, including the ability

to reason about event order, restrictions imposed on callbacks

in certain execution contexts as well as the use of extendable

type information and callback signatures. Further, a prototype

in Open MPI, one of the leading open source MPI implementa-

tions, shows that the approach is both feasible and can provide

novel and helpful performance data to tools.

In summary, our MPI T Events proposal closes a clear gap

in the current tool interfaces of MPI and can enable a new gen-

eration of portable tools. It complements and completes the

existing tool APIs and hence equips MPI with new monitoring

capabilities already present in other programming models, such

as GASNet and OpenMP. This proposal is currently under dis-

cussion in the MPI Forum for inclusion in the MPI Standard.

We hope that this paper helps further this discussion, as well as

spurs the development of new, event-based tools for MPI appli-

cations.

Acknowledgment

We thank our colleagues at the MPI Forum and specifically

the MPI Forum Tools Working Group for their valuable feed-

back during the discussion of this interface. This work was

partly funded by the Excellence Initiative of the German federal

and state governments. This work was performed under the aus-

pices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under Contract DE-AC52-07NA27344. LLNL-

JRNL-765281. The authors gratefully acknowledge the com-

puting time granted through JARA-HPC on the supercomputer

JURECA at Forschungszentrum Jülich.

[1] The Message Passing Interface Forum, MPI: A Message Passing Interface

Standard, Version 3.1, 2015.

[2] I. Compres, On-line Application-specific Tuning with the Periscope Tun-

ing Framework and the MPI Tools Interface, Presentation at the 2014

Petascale Tools Workshop, Madison, WI, August 2014.

[3] E. Gallardo, J. Vienne, L. Fialho, P. Teller, J. Browne, MPI Advisor: A

Minimal Overhead Tool for MPI Library Performance Tuning, in: Proc.

22nd Eur. MPI Users’ Gr. Meet., EuroMPI ’15, ACM, New York, NY,

USA, 2015, pp. 6:1—-6:10. doi:10.1145/2802658.2802667.

[4] E. Gallardo, J. Vienne, L. Fialho, P. Teller, J. Browne, Employing

MPI T in MPI Advisor to optimize application performance, The In-

ternational Journal of High Performance Computing Applications 0 (0).

doi:10.1177/1094342016684005.

[5] T. Islam, K. Mohror, M. Schulz, Exploring the Capabilities of the New

MPI T Interface, in: Proceedings of the 21st European MPI Users’ Group

Meeting, EuroMPI/ASIA ’14, 2014.

13

[6] R. Rajachandrasekar, J. Perkins, K. Hamidouche, M. Arnold, D. K.

Panda, Understanding the Memory-Utilization of MPI Libraries: Chal-

lenges and Designs in Implementing the MPI T Interface, in: Proc. of the

21st European MPI Users’ Group Meeting, EuroMPI/ASIA ’14, 2014.

[7] S. Ramesh, A. Mahéo, S. Shende, A. D. Malony, H. Subramoni, D. K.

Panda, MPI Performance Engineering with the MPI Tool Interface: The

Integration of MVAPICH and TAU, in: Proceedings of the 24th European

MPI Users’ Group Meeting, EuroMPI ’17, 2017.

[8] M.-A. Hermanns, N. T. Hjlem, M. Knobloch, K. Mohror, M. Schulz, En-

abling callback-driven runtime introspection via MPI T, in: Proceedings

of the 25th European MPI Users’ Group Meeting, EuroMPI’18, ACM,

New York, NY, USA, 2018, pp. 8:1–8:10. doi:10.1145/3236367.3236370.

[9] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff, K. Diethelm, D. Es-

chweiler, M. Geimer, M. Gerndt, D. Lorenz, A. D. Malony, W. E.

Nagel, Y. Oleynik, P. Philippen, P. Saviankou, D. Schmidl, S. S. Shende,

R. Tschüter, M. Wagner, B. Wesarg, F. Wolf, Score-P: A Joint Perfor-

mance Measurement Run-Time Infrastructure for Periscope, Scalasca,

TAU, and Vampir, in: H. Brunst, M. S. Müller, W. E. Nagel, M. M. Resch

(Eds.), Tools High Perform. Comput. 2011, Springer Berlin Heidelberg,

2012, pp. 79–91. doi:10.1007/978-3-642-31476-6 7.

[10] R. Brightwell, S. Goudy, K. Underwood, A Preliminary Analysis of

the MPI Queue Characteristics of Several Applications, in: Proceedings

of the 2005 International Conference on Parallel Processing, ICPP ’05,

IEEE, 2005, pp. 175–183.

[11] J. M. Kunkel, Y. Tsujita, O. Mordvinova, T. Ludwig, Tracing Internal

Communication in MPI and MPI-I/O, in: Int. Conf. on Parallel and Dis-

trib. Comp., Applications and Technologies, IEEE, 2009, pp. 280–286.

[12] UPC Consortium, UPC language specifications (Nov. 2013).

[13] D. Bonachea, GASNet specification, Tech. Rep. UCB/CSD-02-1207,

Lawrence Berkeley National Laboratory (Nov. 2006).

[14] A. Leko, D. Bonachea, H.-H. Su, A. D. George, GASP : A performance

analysis tool interface for global address space programming models,

Tech. Rep. LBNL-61606, Lawrence Berkeley National Lab (Sep. 2006).

[15] A. Leko, H.-H. Su, D. Bonachea, B. Golden, M. Billingsley III., A. D.

George, Parallel performance wizard: a performance analysis tool for

partitioned global-address-space programming models, in: SC ’06 Proc.

2006 ACM/IEEE Conf. Supercomput., ACM, New York, NY, USA, 2006,

p. 186. doi:10.1145/1188455.1188647.

[16] H.-H. Su, Parallel Performance Wizard: Framework and Techniques for

Parallel Application Optimization, Ph.D. thesis, University of Florida

(2010).

[17] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty,

R. Dietrich, X. Liu, E. Loh, D. Lorenz, OMPT: An OpenMP Tools Appli-

cation Programming Interface for Performance Analysis, in: A. P. Ren-

dell, B. M. Chapman, M. S. Müller (Eds.), OpenMP Era Low Power De-

vices Accel., Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp.

171–185.

[18] OpenMP Architecture Review Board, OpenMP 4.5 Specification, 2015.

[19] R. Dimitrov, A. Skjellum, T. Jones, B. de Supinski, R. Brightwell,

C. Janssen, M. Nochumson, PERUSE: An MPI Performance Reveal-

ing Extensions Interface, Sixth IBM System Scientific Computing User

Group.

[20] T. Jones, B. W. Barrett, D. E. Bernholdt, R. Brightwell, L. A. Bongo,

G. Bosilca, A. Cortés, T. Cortés, J. Coyle, B. R. de Supinski, R. Dimitrov,

S. Erdogon, H.-C. Hoppe, G. Fagg, F. Geier, J. Gimenez, R. L. Graham,

D. Gunter, S. T. Healey, C. Janssen, K. L. Karavanic, R. Keller, B. King-

Smith, D. J. Kerbyson, J. Labarta, B. LePore, A. Lumsdaine, C. W. Lee,

E. L. Lusk, D. Merril, B. Mohr, K. Mohror, M. S. Müller, B. Noble,

R. W. Numrich, P. Ohly, D. K. Panda, K. Pinnow, K. Pajaram, H. Ritzdorf,

P. C. Roth, M. Schulz, M. Senar, A. Skjellum, J. Squyres, R. Treumann,

T. Woodall, MPI PERUSE: An MPI Extension for Revealing Unexposed

Implementation Information, Tech. rep., LLNL (2006).

[21] R. Keller, G. Bosilca, G. Fagg, M. Resch, J. J. Dongarra, Implemen-

tation and Usage of the PERUSE-Interface in Open MPI, in: B. Mohr,

J. L. Träff, J. Worringen, J. Dongarra (Eds.), Recent Adv. Parallel Virtual

Mach. Messag. Passing Interface, Vol. 4192 of LNCS, Springer Berlin

Heidelberg, 2006, pp. 347–355. doi:10.1007/11846802 48.

[22] R. Keller, R. L. Graham, Characteristics of the Unexpected Message

Queue of MPI Applications, in: R. Keller, E. Gabriel, M. Resch, J. Don-

garra (Eds.), Recent Adv. Messag. Passing Interface, Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2010, pp. 179–188.

[23] K. A. Brown, J. Domke, S. Matsuoka, Tracing Data Movements Within

MPI Collectives, in: Proc. 21st Eur. MPI Users’ Gr. Meet., EuroMPI/A-

SIA ’14, ACM, New York, NY, USA, 2014, pp. 117:117—-117:118.

doi:10.1145/2642769.2642789.

[24] K. A. Brown, J. Domke, S. Matsuoka, Hardware-Centric Analysis of Net-

work Performance for MPI Applications, in: 2015 IEEE 21st Int. Conf.

Parallel Distrib. Syst., 2015, pp. 692–699. doi:10.1109/ICPADS.2015.92.

[25] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel,

F. Wolf, Open Trace Format 2: The next generation of scalable trace for-

mats and support libraries, Adv. Parallel Comput. 22 (2012) 481–490.

doi:10.3233/978-1-61499-041-3-481.

[26] S. K. Gutierrez, N. T. Hjelm, M. G. Venkata, R. L. Graham, Performance

evaluation of open mpi on cray xe/xk systems, in: 2012 IEEE 20th An-

nual Symposium on High-Performance Interconnects, 2012, pp. 40–47.

doi:10.1109/HOTI.2012.11.

[27] M. G. F. Dosanjh, T. Groves, R. E. Grant, R. Brightwell, P. G. Bridges,

Rma-mt: A benchmark suite for assessing mpi multi-threaded rma

performance, in: 2016 16th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 550–559.

doi:10.1109/CCGrid.2016.84.

[28] Jülich Supercomputing Centre, JURECA: General-purpose supercom-

puter at Jülich Supercomputing Centre, Journal of large-scale research

facilities 2 (A62). doi:10.17815/jlsrf-2-121.

[29] N. Hjelm, M. G. F. Dosanjh, R. E. Grant, T. L. Groves, P. G. Bridges,

D. C. Arnold, Improving MPI multi-threaded RMA communication per-

formance, in: Proceedings of the 47th International Conference on Paral-

lel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018, 2018,

pp. 58:1–58:11. doi:10.1145/3225058.3225114.

[30] M. S. Müller, M. van Waveren, R. Lieberman, B. Whitney, H. Saito,

K. Kumaran, J. Baron, W. C. Brantley, C. Parrott, T. Elken, H. Feng,

C. Ponder, SPEC MPI2007 – an application benchmark suite for parallel

systems using MPI, Concurrency and Computation: Practice and Experi-

ence 22 (2) (2007) 191–205. doi:10.1002/cpe.1535.

[31] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker,

B. Mohr, The Scalasca performance toolset architecture, Concurrency

and Computation: Practice and Experience 22 (6) (2010) 702–719.

doi:10.1002/cpe.1556.

[32] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,

M. S. Müller, W. E. Nagel, The Vampir performance analysis tool-set, in:

Tools for High Perf. Comp., Springer, 2008, pp. 139–155.

14

