
Score-P and OMPT: Navigating the perils of
callback-driven parallel runtime introspection

Christian Feld1 , Simon Convent3, Marc-André Hermanns1,2 ,
Joachim Protze3 , Markus Geimer1 , and Bernd Mohr1

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany,
{c.feld,m.a.hermanns,m.geimer,b.mohr}@fz-juelich.de

2 JARA-HPC, Jülich, Germany
3 IT Center, RWTH Aachen University, Aachen, Germany,

simon.convent@rwth-aachen.de, protze@itc.rwth-aachen.de

Abstract. Event-based performance analysis aims at modeling the be-
havior of parallel applications through a series of state transitions dur-
ing execution. Different approaches to obtain such transition points for
OpenMP programs include source-level instrumentation (e.g., OPARI)
and callback-driven runtime support (e.g., OMPT).
In this paper, we revisit a previous evaluation and comparison of OPARI
and an LLVM OMPT implementation—now updated to the OpenMP
5.0 specification—in the context of Score-P. We describe the challenges
faced while trying to use OMPT as a drop-in replacement for the exist-
ing instrumentation-based approach and the changes in event order that
could not be avoided. Furthermore, we provide details on Score-P mea-
surements using OPARI and OMPT as event sources with the EPCC
and SPEC OpenMP benchmark suites.

Keywords: performance measurement · performance analysis · OpenMP

1 Introduction

The use of performance analysis tools that measure and analyze the runtime
behavior of applications is a crucial part of successful performance engineering.
Besides core-level optimizations such as proper vectorization and cache usage,
particular attention needs to be paid to efficient code parallelization. In high-
performance computing (HPC), OpenMP [26] is commonly used to parallelize
computations on the node level to take advantage of the nowadays omnipresent
multi-core CPUs. However, before the OpenMP 5.0 specification was released in
November 2018, there has been no official interface for tools to capture OpenMP-
related information. Nevertheless, performance monitoring tools have been able
to obtain OpenMP-related measurement data for quite some time using different
approaches.

For example, TAU [30], VampirTrace [14], Scalasca’s EPIK [10], ompP [9],
and Score-P [15] all leverage the OpenMP Pragma And Region Instrumentor

https://orcid.org/0000-0001-7685-3497
https://orcid.org/0000-0003-3895-7791
https://orcid.org/0000-0003-0640-8966
https://orcid.org/0000-0002-5575-8287
https://orcid.org/0000-0001-9960-5867

2 C. Feld et al.

OPARI [20]. OPARI is a source-to-source preprocessor that rewrites OpenMP
directives found in the source code, inserting POMP API calls [21] for instru-
mentation. These functions then have to be implemented by the respective tool
to gather relevant performance data. Meanwhile, an extended version (OPARI2)
is available using an enhanced API.

Another proposal for an OpenMP collector API was published in 2006 by
Itzkowitz et al. [12]. However, with its restricted focus on sampling-based tools,
this approach did not find widespread adoption. To the authors knowledge, it has
only been implemented and used by the Sun/Oracle Developer Studio compiler’s
OpenMP runtime and the associated performance tools, as well as the OpenUH
compiler [16] and TAU [30] as part of an evaluation by Huck et al. [11].

A first draft of the OpenMP Tools Interface (OMPT) was published by
Eichenberger et al. [6] in 2013. Based on this interface, Lorenz et al. conducted an
initial comparison between OPARI2 and OMPT in the context of Score-P [17].
However, early experiences in implementing OMPT support in both OpenMP
runtimes and tools led to significant changes of the interface before it was inte-
grated into the OpenMP specification with Technical Report 4 [24]. A slightly
updated version is now part of the OpenMP 5.0 specification [26].

In this paper, we present our experiences with this OpenMP 5.0 version
of the OMPT interface as implemented in the LLVM OpenMP runtime [3]
with the Score-P instrumentation and measurement system. We describe the
challenges encountered while trying to reconstruct the event sequences based on
a logical execution view expected by Score-P’s measurement core as well as the
analysis tools building on top of Score-P from the OMPT events generated by the
LLVM runtime. Moreover, we highlight major differences between the OMPT-
based data collection and our previous OPARI2-based approach. Finally, we
show a detailed overhead comparison between both approaches using the EPCC
OpenMP benchmark suite [5] and the SPEC OMP2012 benchmarks [22].

2 The OpenMP Tools Interface

In this section, we will briefly introduce the OpenMP Tools Interface (OMPT)
and highlight major changes compared to the initial draft [6] used in the study by
Lorenz et al. [17]. OMPT is a portable interface enabling tools to gain deeper in-
sight into the execution of an OpenMP program. The design of OMPT accommo-
dates tools based on both sampling and instrumentation. For instrumentation,
OMPT defines callbacks for relevant events to be dispatched during execution of
a program. A tool can register callback handlers to record information about the
execution which includes, for example, the types of threads, tasks, and mutexes,
information on the stack frames, and more. Additionally, there are inquiry func-
tions which can be used to extract additional information from within callback
handlers, or signal handlers as typically used to implement sampling tools.

Changes to OMPT In the OpenMP 5.0 specification, tool initialization is now
a three-way handshake protocol. This allows the OpenMP runtime to determine

Score-P and OMPT 3

early during its initialization whether a tool is present or not. At the same time,
a tool can decide against activation for a specific run.

Initially, a tool was able to identify a thread, a parallel team, or a task by an
integer ID maintained by the runtime. Tracking OpenMP entities across multi-
ple callback invocations therefore required potentially costly lookups. For most
callbacks—a notable exception are the lock and mutex callbacks—the integer ID
was replaced by storage for a 64-bit data word that a tool can use to maintain
information on behalf of an OpenMP entity, thus enabling more efficient tool
implementations.

Moreover, multiple events providing similar information have been folded into
a single event callback. While reducing the number of callbacks simplifies the
interface, it also reduces the possibilities for a tool to selectively choose a set of
interesting events. The initial proposal also contained callbacks indicating that a
thread is idling between participation in two consecutive parallel regions; these
callbacks have been removed. We will see in Section 3, that the implicit-task-end
event for worker threads can be dispatched late, so that the runtime might
effectively report no idle time.

In contrast, callbacks for advanced OpenMP features such as task cancellation
or task dependences have been added. While cancellation information can be
relevant for maintaining the OMPT tool data objects, we do not yet see a use
case in Score-P for logging these events. On the other hand, task-dependency
information can be interesting to perform critical path analysis in tools like
Scalasca. Another addition are callbacks for devices including callbacks for the
initialization/finalization of devices as well as for data movements between host
and devices. However, this part of OMPT is not yet implemented in the OpenMP
runtime we are using for our experiments and therefore not considered in our
implementation.

To allow a tool to relate events to source code, a pointer argument providing
an instruction address was added to various callbacks. For ease of implementa-
tion, this pointer is defined as the return address: the next instruction executed
after the runtime function implementing an OpenMP construct finished.

Since the order in which the OpenMP runtime and an attached OMPT
tool are shut down is not necessarily well-defined, an ompt finalize tool()

function has been introduced. This function can be called by the tool during its
finalization and guarantees that any outstanding events that might have been
buffered by the runtime get dispatched. If the OpenMP runtime was already
finalized, however, all events have been dispatched and this function call results
in a no-op.

3 Implementing OMPT support in Score-P

Score-P—the tool we focus on in this paper—is a highly scalable and easy-to-
use instrumentation and measurement infrastructure for profiling, event tracing,
and online analysis of HPC applications. It currently supports the analysis tools
Scalasca [10,31], Vampir [14], Periscope [4], and TAU [30], and is open for other

4 C. Feld et al.

tools that are based on the Open Trace Format Version 2 (OTF2) [7] or the
CUBE4 [28] profiling format as well as tools that implement a Score-P substrate
plugin [29] for event consumption. As outlined before, up until now Score-P
uses the source-level instrumentor OPARI2 to rewrite and annotate OpenMP
directives to gather OpenMP-specific performance data. To limit the number of
required changes in the analysis tools, we aim for generating the same (or at
least very similar) event sequences based on a logical execution view from the
OMPT events generated by the LLVM runtime. In the following, we describe
the various challenges encountered and how we addressed them.

During development and for the experiments in this paper we used an
OpenMP runtime implementation based on LLVM/7.0 including a patch which
implements ompt finalize tool() [2]. This implementation roughly represents
the interface as defined in Technical Report 6 [25], without callbacks for device-
related events. Semantically there is no big difference to the OMPT specification
in OpenMP 5.0. The resulting Score-P development version implementing the
new OMPT functionality can be downloaded from [8]. Compilation was consis-
tently done using the Intel compiler, version 19.0.3.199 20190206.

Event sequence requirements Score-P stores event data independently per
logical execution unit in buffers called locations. Events in these locations are re-
quired to have monotonically increasing timestamps (monotonicity requirement).
In addition, as the Score-P event model is based on regions that correspond to
regions in the source code, most events are paired, either as ENTER/LEAVE or
BEGIN/END pairs. These pairs must be properly nested within a location, other-
wise the profile measurement or trace analysis fails (nesting requirement). Here,
special care is taken for events generated from within explicit OpenMP tasks
as the nesting requirement might be violated in task scheduling points [18]. For
parallel constructs that affect several locations, the happened-before semantics
must be reflected in the ordering of timestamps (HB requirement). For exam-
ple, all timestamps belonging to events from within a parallel construct must
not be larger than the corresponding parallel-end timestamp. With OPARI2’s
instrumentation being entirely inside the parallel region, this requirement is al-
ways fulfilled, and thus analysis tools rely on it to calculate performance metrics.
To minimize synchronization overhead, the OMPT specification is less strict re-
garding cross-location happened-before relationships, as detailed below.

parallel construct: overdue events OPARI2 as well as OMPT use the event
sequence depicted in Figure 1 for a parallel construct with T0 as the encoun-
tering thread. The events for each thread T0-T2 are written to individual Score-P
locations, where the encountering thread and the master child thread share one
location. With OPARI2 instrumentation, all events of all locations are dispatched
before the closing parallel-end on the encountering thread. Timestamps taken at
dispatch time are guaranteed to meet the fork-join happened-before semantics.
The OMPT specification, however, does not impose the requirement on non-
master child threads to dispatch the implicit-barrier-end and implicit-task-end

Score-P and OMPT 5

T0

T1

T2

parallel
begin

impl-task
begin

impl-barrier
begin

impl-barrier
end

impl-task
end

parallel
end

impl-task
begin

impl-barrier
begin

impl-barrier
end

impl-task
end

OPARI
impl. barrier

OPARI expl. / OMPT impl. barrier

impl-task
begin

impl-barrier
begin

impl-barrier
end

impl-task
end

expected ordering guaranteed ordering

Fig. 1: Event sequence and ordering for a parallel construct.

callbacks earlier than the corresponding parallel-end on the encountering thread,
only all implicit-barrier-begin events are guaranteed to be dispatched before the
implicit-barrier-end . That is, there might be two overdue events per non-master
child thread waiting for being dispatched even if the parallel region was already
joined, as highlighted for thread T2 in the diagram above. The only guarantee
for these overdue events is that they are dispatched before any further events on
this thread.

As a first consequence, timestamps taken when the overdue events are being
dispatched likely violate the HB requirement. The only implicit-barrier-end and
implicit-task-end timestamps guaranteed to conform to the assumed ordering are
those on the master thread. To retain the happened-before timestamp order in
Score-P, we chose to use these timestamps for all remaining implicit-barrier-end
and implicit-task-end events, thus having identical timestamps per event type
for all threads in the team.

parallel construct: non-deterministic scheduling The next consequence
arises from the combination of (1) the freedom of the runtime to postpone events,
(2) the mapping of OpenMP threads to Score-P locations, and (3) potential
non-determinism in mapping of logical OpenMP threads to system threads.
Whereas the first item has been described above, the other items need some
additional explanation.

Score-P establishes a fixed mapping of OpenMP threads to Score-P locations
based on OpenMP nesting characteristics, where the nesting characteristic is
determined by the sequence of OpenMP thread numbers from the initial thread
to the current one. This mapping is established in implicit-task-begin events by
assigning a location to thread-local storage. The reasons for a fixed mapping are
(1) to provide the user with the logical execution view, that is, present events
per OpenMP thread number instead of per system thread, and (2) to maximize
scalability regarding memory and the number of generated output files. As each
distinct nesting characteristic is assigned a single Score-P location, locations
are reused in subsequent parallel regions if a nesting characteristic has come to
light previously4. In contrast, the system thread executing an OpenMP nesting
characteristic might change in subsequent parallel regions.

4 In addition, the master thread reuses the encountering thread’s location.

6 C. Feld et al.

1 implicit-task-begin 2 implicit-barrier-begin 3 implicit-barrier-end 4 implicit-task-end

Expected event order per invocation on location 2 (loc. 2) and location 3 (loc. 3)

loc. 0

loc. 1

loc. 2

loc. 3

time

invocation A invocation B invocation C ompt finalize tool

threads X triggers Y

A1 A2

A1 A2

B1A3 A4 B2

B1A3 A4 B2

C1B3 B4 C2 C3 C4

C1 C2

sequence broken here

C3 C4

B3 B4
E

E

E

sequence broken here

Fig. 2: Three invocations of identical nested parallel regions with two threads
in each team. For invocation B the non-master OpenMP threads of the inner
regions are invertedly mapped to system threads, for invocation C the non-
master threads of both inner regions are mapped to the same blue system thread.
A location corresponds to a unique OpenMP ancestry sequence.

In the advent of overdue events combined with a non-deterministic OpenMP
thread to system thread mapping we observe two anomalous schedules which
tend to break the monotonicity requirement and may lead to data corruption.
Figure 2 illustrates these schedule decisions. Assume a parallel region with a
team size of two that executes a nested parallel region, also with team size of
two, for three subsequent invocations A, B, and C. The two inner parallel regions
expose work for four OpenMP threads with different nesting characteristics, thus
Score-P will create four locations. The Score-P locations created in invocation A
are reused in invocation B and C because of identical nesting characteristics.
The first form of the anomaly manifests in a OpenMP thread to system thread
assignment switch between invocations; while the inner region’s non-master im-
plicit task n was served by system thread i in the first invocation, it is served by
system thread j in the second one and vice versa for the other inner region, see
transition from invocation A to B in the figure. Each two system threads blue
and red carry two overdue events A3 and A4 from invocation A to be written
to location 3 (blue) and location 2 (red), respectively. Each thread triggers its
overdue events before its B1 event of invocation B . In B1 the switch manifests
as a location change. As no ordering is enforced by OMPT, thread red might
write B1 concurrently with thread blue writing the overdue events A3 and A4 to
location 3 and vice versa for location 2. This race condition potentially violates
the monotonicity requirement on either location—the overdue events A3 and A4
need to be written before B1—or worse, leads to corrupted data. Note that there
is no race condition in the absence of overdue events.

The second form manifests in invocation C in Figure 2 being executed by just
three of the four threads; the two inner region’s non-master implicit tasks get
both executed by the same system thread (blue). This time there is no issue on
location 2 as all events are delivered in the expected order. The problem arises for
location 3 during runtime shutdown. The undelivered events B3 and B4 (red) are

Score-P and OMPT 7

dispatched and will violate the monotonicity requirement. If the undelivered C3
and C4 (blue) are dispatched concurrently, data might get corrupted in addition.
The runtime implementation we used showed this anomalies only with nested
parallel constructs.

To address these two anomalies, we need to ensure that any overdue events
for a given location are written before processing an implicit-task-begin event
from a subsequent invocation on the same location. Translated to Figure 2,
invocation B and location 3, this means to write A3 and A4 from thread blue
before B1 from thread red . Thus, the first thing to do in B1 is to detect whether
there are overdue A3 and A4 events for location 3. To do so, we use location-
specific data transferred from invocation A to invocation B , saving a Score-P
representation of the latest implicit task data together with synchronization
handles. This data is cleared from the location once the overdue events have been
processed completely. If the overdue event data is still available when thread red
dispatches B1, thread red takes ownership and processes A3 and A4 first—
using the location-specific data provided by thread blue in invocation A—while
preventing thread blue to do the same. If thread blue is first, it takes ownership
and processes A3 and A4 while blocking thread red working on B1 during this
time. Applying this synchronization for every implicit-task-begin will processes
all overdue events except the ones waiting for being dispatched when the program
finishes, here C3 and C4 from thread blue. These are explicitly triggered by
calling ompt finalize tool during Score-P’s shutdown and handled without
additional effort. The fine-grained synchronization necessary to orchestrate this
mechanism uses atomic updates and two spin-mutexes per location.

Developing this overdue-handling mechanism to maintain the established
event sequence for the parallel construct was the biggest challenge in imple-
menting support for OMPT in Score-P. Once this was achieved, implementing
other OMPT callbacks was straightforward.

4 Differences in event sequence and source information

To investigate differences emerging from using OMPT callbacks compared to the
traditional OPARI2 instrumentation, we ran experiments from the OpenMP 4.5
Examples [8, 23].

Worksharing constructs Implicit barriers synchronize worksharing con-
structs, unless a nowait clause was given. For OPARI2, these implicit barriers
conceptually belong to the construct, that is, the events are nested inside the
enclosing construct’s ENTER and LEAVE events. In contrast, OMPT dispatches
the implicit barrier events after the worksharing’s end event. The different event
order is exemplified with a minimal example using the worksharing-loop con-
struct, see Listing 1. This event-sequence change is seen for all worksharing
constructs.

8 C. Feld et al.

1 #pragma omp parallel

2 {

3 #pragma omp for

4 for (int i = 0; i<20; i++)

5 work();

6 }

1 ENTER Region: "!$omp parallel"

2 ENTER Region: "!$omp for"

3 - ENTER Region: "!$omp barrier"

4 - LEAVE Region: "!$omp barrier"

5 LEAVE Region: "!$omp for"

6 + ENTER Region: "!$omp barrier"

7 + LEAVE Region: "!$omp barrier"

8 ENTER Region: "!$omp barrier"

9 LEAVE Region: "!$omp barrier"

10 LEAVE Region: "!$omp parallel"

Listing 1: For the worksharing-loop construct, ENTER and LEAVE events for the
implicit barrier are created inside the construct (OPARI2 in red) or outside the
construct (OMPT in green).

Barriers An OMPT implementation might distinguish between implicit and
explicit barriers, but the LLVM runtime we used currently does not. OPARI2,
on the other hand, distinguishes between barrier types. Whereas explicit bar-
riers are easily instrumented by OPARI2, implicit ones need special attention.
An implicit barrier is transformed to an instrumented explicit barrier, and for
worksharing constructs a nowait clause is added to the corresponding construct.
This way timing information can be obtained and the semantics stay unchanged.
However, there are cases where the compiler can safely merge consecutive implicit
barriers5. By transforming the implicit barrier, OPARI2 prevents the compiler
from performing this optimization.

Tasking OPARI2 takes care that undeferred tasks will not create any events
by evaluating the if clause. Similar behavior was implemented with OMPT
by evaluating the task type. For the remaining tasks, there are some changes
regarding the sequence of events written by Score-P. In general, the OMPT
specification allows to signal the switch from one task to the next task. However,
the current implementation in the LLVM runtime first signals a switch back to
the scheduling task before switching to the next task. This additional switch
is not observed with OPARI2, which leads to a reduced number of recorded
scheduling events. Task switches in OPARI2 are triggered when a task starts
running and potentially after scheduling points have been processed [18]. As
OPARI2 does not instrument all scheduling point types yet, untied tasks will
break the nesting requirement when scheduled in an unsupported type. OMPT
provides a robust and complete picture in this regard.

With OPARI2 it is possible to measure the duration of task creation, as the
instrumentation provides distinct task-create-begin/end events. OMPT’s task-
create does not provide timing information, nevertheless we mapped it to the
task-create-begin/end pair to preserve the existing event sequence.

5 See, for example, Example barrier regions.1.c from the OpenMP 4.5 Examples
[23] where the implicit barrier of the inner parallel region is omitted.

Score-P and OMPT 9

� llvm-ompt-off � llvm-ompt-on � scorep-opari2 � scorep-ompt

OMPT Runtime no yes no yes
Score-P Adapter — — OPARI2 OMPT

Table 1: Matrix of measurement setups used in the evaluation.

Relation to source code To optimize a program after performance analysis,
a user needs to relate analysis hotspots to source code. OPARI2, as a source-
level translator, has comprehensive knowledge of source locations. Line number
and filename of instrumented OpenMP constructs are hard-coded into OPARI2’s
output files. OMPT’s means to relate OpenMP events to their source is to pro-
vide a return address (codeptr ra) as a callback argument which is mapped to
a Score-P handle dynamically. This address does not point to the correspond-
ing OpenMP construct, but to the application code being executed once the
OpenMP region related to the event is completed. Usually the instruction be-
fore this address resolves to the corresponding filename:lineno source location6.

Other differences between OMPT and OPARI In addition, we want to
mention differences regarding the following constructs just briefly:

Named criticals While OPARI2 provides the optional name of a critcal

construct, OMPT distinguishes the underlying locks by a numeric wait id.
Atomic construct The LLVM runtime only dispatches callbacks for atomic-

events if the compiler is not able to emit a native atomic instruction. OPARI2
is able to instrument all atomic constructs, but due to the large relative
overhead involved, it allows for deactivating this feature.

Section construct The LLVM runtime currently does not provide events re-
garding the section construct (within the sections construct) although
the specification defines the corresponding ompt callback dispatch.

omp test lock and omp test nest lock The LLVM runtime does not yet dis-
tinguish between locks and test locks and their nested counterparts.

5 Evaluation

We used the EPCC OpenMP micro-benchmark suite [5] and the SPEC OMP2012
benchmarks version 1.0 [22] to evaluate the measurement dilation introduced by
the Score-P measurement adapters using OPARI2 and OMPT. The platform for
our evaluation is the cluster partition of the JURECA supercomputer [13] oper-
ated by the Jülich Supercomputing Centre of Forschungszentrum Jülich in Ger-
many. All measurements were taken on the same JURECA node, which consists
of two Intel Xeon E5-2680 Haswell CPUs (2.5GHz, 12 cores each) and 128GB

6 To convert addresses into file names and line numbers, we rely on the Binary File
Descriptor library (BFD) [1] and debug symbols in the binary.

10 C. Feld et al.

0.1 1 10 100

par

for

parfor

barrier

single

critical

lock

ordered

reduction

par task

master task

master task busy slaves

task barrier

cond task

nested task

nested master task

task wait

branch task tree

leaf task tree

Overhead [µs]

llvm-ompt-off scorep-opari2

llvm-ompt-on scorep-ompt

Fig. 3: Overhead reported by the EPCC OpenMP Benchmark Suite for individual
OpenMP constructs in the four different measurement setups with 12 threads
on a single socket of a JURECA Cluster Module [13] node.

RAM. For easier evaluation and reproducibility, we used the Jülich Benchmark-
ing Environment (JUBE) [19] in version 2.2.2 to configure and run the measure-
ments [8]. The Score-P measurements were done in profiling-only mode.

In our evaluation, we explore four different measurement setups as shown in
Table 1. As OPARI2 (scorep-opari2) does not need OMPT runtime support, we
disabled it in the LLVM runtime and provide a baseline measurement for this
setup (llvm-ompt-off). For the OMPT adapter (scorep-ompt), we used a separate
installation of the same LLVM runtime version with OMPT support enabled and
also provide a separate baseline measurement (llvm-ompt-on). Data for baseline
measurements are indicated by desaturated colors, whereas vivid colors indicate
measurements with Score-P attached. Blue indicates OMPT to be disabled in
the measurement, whereas orange indicates OMPT to be enabled.

EPCCbench The EPCC OpenMP micro-benchmark suite was developed to
identify overheads created by individual OpenMP constructs. We use it here
to compare the overhead that Score-P adds to the OpenMP measurement of
individual constructs for each adapter—OPARI2 and OMPT—by comparing
the overhead reported by the benchmark with and without Score-P attached.

Figure 3 shows the measurements on a single node of the JURECA cluster
with 12 threads bound to a single socket7. For these measurements, we inten-

7 We used OMP PROC BIND=close and OMP PLACES={0}:12 for all measurements.

Score-P and OMPT 11

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1

350.md

351.bwaves

352.nab

357.bt331

358.botsalgn

359.botsspar

360.ilbdc

362.fma3d

370.mgrid331

371.applu331

llvm-ompt-off (baseline) scorep-opari2

llvm-ompt-on scorep-ompt

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

372.smithwa

376.kdtree

Normalized Average Execution Time with Error

Fig. 4: Normalized execution time of the configured SPEC OMP2012 benchmark
applications for the four different measurement setups using the ref input size
with 12 threads on a single socket of a JURECA Cluster Module [13] node.

tionally did not occupy both sockets of the JURECA node to eliminate potential
NUMA effects in the measurements caused by inter-socket memory accesses. We
ran the benchmark with 150 outer repetitions, a test time of 5000µs, and the
delay time set to 15µs. The EPCC benchmark uses the configured outer repeti-
tions to provide an average overhead and uncertainty bounds for it as shown in
the figure.

We notice that measurement setups llvm-ompt-off and llvm-ompt-on show
very similar performance, i.e., OMPT overhead is minimal if no tool is attached.

While most of the task constructs are equally costly with OPARI2 and
OMPT, we see a higher overhead with the Score-P OMPT adapter for ker-
nels involving worksharing and barrier constructs. Analysis revealed that the
additional overhead is caused inside Score-P by mapping codeptr ra callback
arguments to Score-P-handles concurrently8. We are confident to be able to
improve this mapping in a future implementation. However, there will always
be more overhead involved compared to OPARI2, as in this case all required
information is statically available after source-to-source translation.

SPEC OMP2012 To evaluate the influence that users may expect of the two
different Score-P adapters on measurements of real-world applications, we mea-
sured the runtime of 12 benchmarks of the SPEC OMP 2012 benchmark suite.
We used the runspec command to build the respective benchmark applications,

8 The addr2line lookup is done only once per address and is negligible.

12 C. Feld et al.

but used JUBE to run the experiments. To enable time measurements even
without the presence of a performance tool, we introduced coarse-grained time
measurement and output around the outer iteration, excluding initialization and
I/O where possible, to minimize external influences on the measurement.

Figure 4 shows measurements using the ref input size. As absolute execution
time with this input size spreads significantly across the different benchmarks, we
normalized the data. The average time of each application in measurement setup
llvm-ompt-off acts as the baseline for the other measurement setups reported for
that application. Therefore all of these measurements are displayed as 1, crossed
by the vertical baseline indicator. For each data point, the average of 5 runs is
reported, error bars indicating the standard deviation. The measurements show
that for most of the SPEC applications, the runtime dilation due to the Score-P
measurements is within an acceptable range independent of the adapter used.
352.nab generates a large number of worksharing and barrier events which are—
due to the contended codeptr ra lookup—likely to cause the additional overhead
seen with the OMPT adapter [27]. More than 99% of 357.applu331’s events are
flush events. For these, we also do a codeptr ra lookup, but apparently with less
contention. 351.bwaves with its numerous, subsequent parallel do constructs
revealed a smaller number of parallel and barrier events in the OMPT case, which
might be due to the compiler’s ability to fuse subsequent loops. A more in-depth
investigation is needed, though. The measurements for 376.kdtree aborted for
both the OPARI2 and the OMPT adapter, as memory requirements for the
excessive number of explicit tasks could not be fulfilled by Score-P. The reason
for the large standard deviation of the OPARI2 measurement of 372.smithwa
could not yet be determined and is still under investigation.

6 Conclusion

With the availability of an official OpenMP Tools Interface, instrumentation-
based performance tools need to consider to replace the common source-level
OPARI2 approach, mainly to reduce the maintenance burden in the long run.
In this paper, we presented the challenges implementing an OMPT tool based
on the LLVM runtime as a drop-in replacement for OPARI2 in the context of
Score-P and described the unavoidable changes in the order of OpenMP events.
OMPT provides a runtime execution view, but as Score-P-based analysis tools
historically rely upon a logical execution view, our first implementation tried
to retain the latter. This choice presented a challenge handling the parallel

construct, whereas implementing other OMPT callbacks was straightforward
and provided sufficient measurement data to serve as a replacement.

From the EPCC micro-benchmarks, we saw that OMPT overhead is mini-
mal if no tool is attached, recording task events is costly with both OPARI2 and
OMPT, and our OMPT tool consistently generates higher overhead for work-
sharing and barrier constructs. The latter is caused by contended mapping of
codeptr ra callback arguments to Score-P-handles within Score-P and will be
addressed in the future. However, this overhead does not propagate in great

Score-P and OMPT 13

severity to real-world applications from SPEC OMP2012 but manifests in pro-
grams with a high number of codeptr ra lookups.

Once additional OpenMP runtimes with OMPT support are available from
compiler vendors, we are eager to verify whether they also provide sufficient data
to our tool to replace the source-level OPARI2 approach. In addition, we will
investigate how analysis tools consuming the Score-P measurement data have to
be adapted to deal with the remaining differences in event order.

Acknowledgements

The authors gratefully acknowledge the computing time granted through JARA-
HPC on the supercomputer JURECA [13] at Forschungszentrum Jülich. Part of
this work was performed under the POP2 project and has received funding from
the European Union’s Horizon 2020 research and innovation programme under
grant agreement 824080.

References

1. GNU Binutils. https://sourceware.org/binutils/
2. LLVM runtime with experimental changes for OMPT. https://github.com/

OpenMPToolsInterface/LLVM-openmp/commits/tool_finalization_tr7, branch
tool finalization tr7, commit dcf2962eb6d92d82e74bd374f27e6ef836a5e2b3

3. Support for the OpenMP language in LLVM. http://openmp.llvm.org
4. Benedict, S., Petkov, V., Gerndt, M.: Periscope: An online-based distributed per-

formance analysis tool. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E.
(eds.) Tools for High Performance Computing 2009. pp. 1–16. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010)

5. Bull, J.M., Reid, F., McDonnell, N.: A microbenchmark suite for OpenMP
tasks. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.)
OpenMP in a Heterogeneous World - 8th International Workshop on
OpenMP, IWOMP 2012, Rome, Italy, June 11-13, 2012. Proceedings. Lec-
ture Notes in Computer Science, vol. 7312, pp. 271–274. Springer (2012).
https://doi.org/10.1007/978-3-642-30961-8 24, https://www.epcc.ed.ac.uk/

research/computing/performance-characterisation-and-benchmarking/

epcc-openmp-micro-benchmark-suite

6. Eichenberger, A.E., Mellor-Crummey, J., Schulz, M., Wong, M., Copty, N., Di-
etrich, R., Liu, X., Loh, E., Lorenz, D.: OMPT: An OpenMP Tools Application
Programming Interface for Performance Analysis. In: OpenMP in the Era of Low
Power Devices and Accelerators. LNCS, vol. 8122, pp. 171 – 185. 9th Interna-
tional Workshop on OpenMP, Canberra (Australia), 16 Sep 2013 - 18 Sep 2013,
Springer, Berlin/Heidelberg (Sep 2013). https://doi.org/10.1007/978-3-642-40698-
0 13, http://juser.fz-juelich.de/record/138577

7. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.:
Open Trace Format 2 - The next generation of scalable trace formats and support
libraries. In: Proc. of the Intl. Conference on Parallel Computing (ParCo), Ghent,
Belgium, August 30 – September 2 2011. Advances in Parallel Computing, vol. 22,
pp. 481–490. IOS Press (2012). https://doi.org/10.3233/978-1-61499-041-3-481

https://sourceware.org/binutils/
https://github.com/OpenMPToolsInterface/LLVM-openmp/commits/tool_finalization_tr7
https://github.com/OpenMPToolsInterface/LLVM-openmp/commits/tool_finalization_tr7
http://openmp.llvm.org
https://doi.org/10.1007/978-3-642-30961-8_24
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://doi.org/10.1007/978-3-642-40698-0_13
https://doi.org/10.1007/978-3-642-40698-0_13
http://juser.fz-juelich.de/record/138577
https://doi.org/10.3233/978-1-61499-041-3-481

14 C. Feld et al.

8. Feld, C., Convent, S., Hermanns, M.A., Protze, J., Geimer, M.: [Reproducibility]
Score-P and OMPT: Navigating the perils of callback-driven parallel runtime in-
trospection (Jun 2019). https://doi.org/10.5281/zenodo.3251871

9. Fürlinger, K., Gerndt, M.: ompP: A profiling tool for OpenMP. In: Proceedings of
the first International Workshop on OpenMP (IWOMP) (2005)

10. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurrency and Computation: Prac-
tice and Experience 22(6), 702–719 (April 2010). https://doi.org/10.1002/cpe.1556

11. Huck, K.A., Malony, A.D., Shende, S., Jacobsen, D.W.: Integrated Measurement
for Cross-Platform OpenMP Performance Analysis. In: DeRose, L., de Supinski,
B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) Using and Improving
OpenMP for Devices, Tasks, and More. pp. 146–160. Springer International Pub-
lishing, Cham (2014)

12. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: An OpenMP Runtime API for Pro-
filing. White paper (2002), http://www.compunity.org/futures/omp-api.html

13. Jülich Supercomputing Centre: JURECA: Modular supercomputer at Jülich
Supercomputing Centre. Journal of large-scale research facilities 4(A132)
(2018). https://doi.org/10.17815/jlsrf-4-121-1, http://dx.doi.org/10.17815/

jlsrf-4-121-1

14. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mick-
ler, H., Müller, M.S., Nagel, W.E.: The Vampir Performance Analy-
sis Tool-Set, pp. 139–155. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68564-7 9, https://doi.org/10.1007/
978-3-540-68564-7_9

15. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y.,
Philippen, P., Saviankou, P., Schmidl, D., Shende, S.S., Tschüter, R., Wagner,
M., Wesarg, B., Wolf, F.: Score-P – A joint performance measurement run-time
infrastructure for Periscope, Scalasca, TAU, and Vampir. In: Proc. of 5th Par-
allel Tools Workshop, 2011, Dresden, Germany. pp. 79–91. Springer Berlin Hei-
delberg (Sep 2012). https://doi.org/10.1007/978-3-642-31476-6 7, http://dx.doi.
org/10.1007/978-3-642-31476-6_7

16. Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An opti-
mizing, portable OpenMP compiler. Concurrency and Computation: Practice and
Experience 19(18), 2317–2332 (2007)

17. Lorenz, D., Dietrich, R., Tschüter, R., Wolf, F.: A comparison between OPARI2
and the OpenMP tools interface in the context of Score-P. In: Proc. of the
10th International Workshop on OpenMP (IWOMP), Salvador, Brazil, Septem-
ber 2014. LNCS, vol. 8766, pp. 161–172. Springer International Publishing
(Sep 2014). https://doi.org/10.1007/978-3-319-11454-5 12, http://dx.doi.org/

10.1007/978-3-319-11454-5_12

18. Lorenz, D., Mohr, B., Rössel, C., Schmidl, D., Wolf, F.: How to reconcile event-
based performance analysis with tasking in OpenMP. In: Proc. of 6th Int. Work-
shop of OpenMP (IWOMP), Tsukuba, Japan. Lecture Notes in Computer Science,
vol. 6132, pp. 109–121. Springer (Jun 2010). https://doi.org/10.1007/978-3-642-
13217-9 9

19. Lührs, S., Rohe, D., Schnurpfeil, A., Thust, K., Frings, W.: Flexible and Generic
Workflow Management. In: Parallel Computing: On the Road to Exascale. Ad-
vances in parallel computing, vol. 27, pp. 431 – 438. International Conference
on Parallel Computing 2015, Edinburgh (United Kingdom), 1 Sep 2015 - 4 Sep

https://doi.org/10.5281/zenodo.3251871
https://doi.org/10.1002/cpe.1556
http://www.compunity.org/futures/omp-api.html
https://doi.org/10.17815/jlsrf-4-121-1
http://dx.doi.org/10.17815/jlsrf-4-121-1
http://dx.doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1007/978-3-642-31476-6_7
http://dx.doi.org/10.1007/978-3-642-31476-6_7
https://doi.org/10.1007/978-3-319-11454-5_12
http://dx.doi.org/10.1007/978-3-319-11454-5_12
http://dx.doi.org/10.1007/978-3-319-11454-5_12
https://doi.org/10.1007/978-3-642-13217-9_9
https://doi.org/10.1007/978-3-642-13217-9_9

Score-P and OMPT 15

2015, IOS Press, Amsterdam (Sep 2016). https://doi.org/10.3233/978-1-61499-
621-7-431, https://www.fz-juelich.de/jsc/jube/

20. Mohr, B., Malony, A., Shende, S., Wolf, F.: Design and prototype of a
performance tool interface for OpenMP. The journal of supercomputing 23,
105 – 128 (2002). https://doi.org/10.1023/A:1015741304337, http://juser.

fz-juelich.de/record/25115, record converted from VDB: 12.11.2012
21. Mohr, B., Malony, A.D., Hoppe, H.C., Schlimbach, F., Haab, G., Hoeflinger, J.,

Shah, S.: A performance monitoring interface for OpenMP. In: Proceedings of the
4th European Workshop on OpenMP (EWOMP’02). Rome, Italy (Sep 2002)

22. Müller, M., Baron, J., Brantley, W., Feng, H., Hackenberg, D., Henschel, R.,
Jost, G., Molka, D., Parrott, C., Robichaux, J., Shelepugin, P., van Waveren,
M., Whitney, B., Kumaran, K.: SPEC OMP2012 an application benchmark
suite for parallel systems using OpenMP. In: Proceedings of the 8th interna-
tional conference on OpenMP in a Heterogeneous World. pp. 223–236 (06 2012).
https://doi.org/10.1007/978-3-642-30961-8 17

23. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face – Examples – Version 4.5.0. http://www.openmp.org/wp-content/uploads/
openmp-examples-4.5.0.pdf

24. OpenMP Architecture Review Board: TR4: OpenMP Version 5.0 Preview 1.
Specification (November 2016), http://www.openmp.org/wp-content/uploads/

openmp-tr4.pdf

25. OpenMP Architecture Review Board: TR6: OpenMP Version 5.0 Preview 2.
Specification (November 2017), http://www.openmp.org/wp-content/uploads/

openmp-TR6.pdf

26. OpenMP Architecture Review Board: OpenMP application program interface ver-
sion 5.0. Specification (November 2018), https://www.openmp.org/wp-content/
uploads/OpenMP-API-Specification-5.0.pdf

27. Protze, J., Hahnfeld, J., Ahn, D.H., Schulz, M., Müller, M.S.: OpenMP Tools In-
terface: Synchronization information for data race detection. In: de Supinski, B.R.,
Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) Scaling OpenMP
for Exascale Performance and Portability. pp. 249–265. Springer International Pub-
lishing, Cham (2017)

28. Saviankou, P., Knobloch, M., Visser, A., Mohr, B.: Cube v4: From performance
report explorer to performance analysis tool. Procedia Computer Science 51, 1343–
1352 (Jun 2015). https://doi.org/10.1016/j.procs.2015.05.320

29. Schöne, R., Tschüter, R., Ilsche, T., Schuchart, J., Hackenberg, D., Nagel, W.E.:
Extending the functionality of Score-P through plugins: Interfaces and use cases.
In: Niethammer, C., Gracia, J., Hilbrich, T., Knüpfer, A., Resch, M.M., Nagel,
W.E. (eds.) Tools for High Performance Computing 2016. pp. 59–82. Springer
International Publishing, Cham (2017)

30. Shende, S.S., Malony, A.D.: The Tau parallel performance system.
Int. J. High Perform. Comput. Appl. 20(2), 287–311 (May 2006).
https://doi.org/10.1177/1094342006064482, http://dx.doi.org/10.1177/

1094342006064482

31. Zhukov, I., Feld, C., Geimer, M., Knobloch, M., Mohr, B., Saviankou, P.: Scalasca
v2: Back to the future. In: Proc. of Tools for High Performance Computing 2014.
pp. 1–24. Springer (2015). https://doi.org/10.1007/978-3-319-16012-2 1

https://doi.org/10.3233/978-1-61499-621-7-431
https://doi.org/10.3233/978-1-61499-621-7-431
https://www.fz-juelich.de/jsc/jube/
https://doi.org/10.1023/A:1015741304337
http://juser.fz-juelich.de/record/25115
http://juser.fz-juelich.de/record/25115
https://doi.org/10.1007/978-3-642-30961-8_17
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
http://www.openmp.org/wp-content/uploads/openmp-TR6.pdf
http://www.openmp.org/wp-content/uploads/openmp-TR6.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1016/j.procs.2015.05.320
https://doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
https://doi.org/10.1007/978-3-319-16012-2_1

	Score-P and OMPT: Navigating the perils of callback-driven parallel runtime introspection

