
Designing Efficient Parallel Software via
Compositional Performance Modeling

Alexandru Calotoiu
Department of Computer Science
Technische Universität Darmstadt

64293 Darmstadt, Germany
calotoiu@cs.tu-darmstadt.de

Thomas Höhl
Department of Computer Science
Technische Universität Darmstadt

64293 Darmstadt, Germany
hoehl@cs.tu-darmstadt.de

Heiko Mantel
Department of Computer Science
Technische Universität Darmstadt

64293 Darmstadt, Germany
mantel@cs.tu-darmstadt.de

Toni Nguyen
Department of Computer Science
Technische Universität Darmstadt

64293 Darmstadt, Germany
tutoni.nguyentuan@stud.tu-darmstadt.de

Felix Wolf
Department of Computer Science
Technische Universität Darmstadt

64293 Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Abstract—Performance models are powerful instruments for
understanding the performance of parallel systems and uncover-
ing their bottlenecks. Already during system design, performance
models can help ponder alternatives. However, creating a perfor-
mance model – whether theoretically or empirically – for an
entire application that does not exist yet is challenging unless the
interactions between all system components are well understood,
which is often not the case during design. In this paper, we
propose to generate performance models of full programs from
performance models of their components using formal compo-
sition operators derived from parallel design patterns such as
pipeline or task pool. As long as the design of the overall system
follows such a pattern, its performance model can be predicted
with reasonable accuracy without an actual implementation.

Index Terms—performance modeling, parallel design patterns,
composition operators

I. INTRODUCTION

The main motivation for letting software exploit paral-
lelism is performance, making it a first-class citizen in the
development process. However, permanent pressure to recon-
cile functional with performance requirements poses serious
challenges already during the design phase when an actual
implementation is not yet available. To simplify the design of
parallel software, several authors proposed design patterns to
guide the creation of parallel programs [1]–[3]. With its origins
in the field of civil engineering, the notion of design patterns
has been introduced to document good solutions for recurring
problems [4]. In the parallel-computing community, design
patterns help identify and express parallelism on different
levels, ranging from the decomposition of an abstract com-
putational problem down to the selection of specific parallel-
programing constructs.

If performance cannot be measured, it must be predicted.
This is why designing efficient software requires performance
models, at least as long as one lacks a running prototype
that can serve as the basis for performance measurements.
Formally, a performance model is an equation that describes a

performance metric, usually the execution time, as a function
of one or more parameters such as the size of the input data
or the number of processing elements.

Deriving performance models analytically from software
blueprints, that is searching for equations that accurately
reflect the performance of the final product, is, unfortunately,
both difficult and time consuming. This is why it is rarely
tried for entire programs but rather for selected kernels such
as functions or loops expected to consume the majority
of the compute time. More than often, software developers
avoid even this and, instead, restrict their analysis to the
comparison of pre-existing performance models available in
the literature when they select appropriate algorithms. For
runnable code, empirical performance modeling presents an
effective but less laborious alternative to analytical modeling.
Empirical performance modeling learns performance models
from measurements, for example, using regression [5]. While
being much faster than analytical modeling, a prerequisite
for using this technique is the ability to obtain performance
measurements, which is usually not possible during the design
phase we want to address here. Even during re-design, the
ability to run the product only materializes after all changes
have been implemented, which is often too late for major
revisions.

In this paper, we show how empirical performance modeling
can still support the (re-)design of parallel software as long as
the construction of the software follows a certain path, closely
aligned with the concept of design patterns. In our approach,
we exploit the idea that many parallel design patterns can be
interpreted as composing an application of (at least initially)
serial building blocks that represent the application logic.
Very often, these building blocks are already available, for
example, as components of a serial program to be parallelized.
Following the rules of the pattern, they are subsequently
connected through communication and synchronization fa-
cilities, such as shared queues—similar to how one creates



Fig. 1: Interactive exploration of performance models using Extra-P. The screen shot shows performance models generated for
call paths in SWEEP3D, a neutron transport simulation

software in a data-flow model. Assuming that performance
models exist at the level of these elementary building blocks,
derived empirically through unit performance tests (i.e., mea-
surements), we define for each design pattern a matching
composition operator that allows the performance model of
the pattern-based implementation to be constructed from the
less complex performance models of the pattern components.
Applying this approach recursively, we can quickly model
the performance of an entire application without the need to
run more than any of its components in isolation. Beyond
uncovering performance bottlenecks early, our approach also
helps find optimal execution configurations, for example, by
suggesting the replication of slower stages in a pipeline. We
summarize our contributions as follows:

• We propose a modular approach to the construction
of performance models during the design of parallel
software that reduces the conceptual complexity of the
construction, allowing empirical performance models of
software components to be plugged together based on
well-defined rules.

• We define composition operators for two design patterns,
pipeline and task pool, that can be used in our modular
construction approach.

• We provide evidence that our method produces useful
performance models by comparing their predictions with
actual measurements and their equations with empirical
models derived from these measurements.

Before presenting the details of our approach in Section III,
we review related work in Section II. Then, we support
our claim with performance results in Section IV. Finally,

we discuss future work and opportunities in Section V and
conclude in Section VI.

II. RELATED WORK

Our approach leverages the concept of design patterns for
parallel programs [2]. Design patterns are usually arranged
in a pattern language, which is less a formal language with
well-defined syntax and semantics than a kind of decision
tree that guides the software developer through various design
spaces of decreasing levels of abstraction. A well-known
language for parallelism is OPL by Keutzer and Mattson [1],
which distinguishes five pattern categories or design spaces:
structural, computational, algorithm strategy, implementation
strategy, and parallel execution patterns. Another way of
looking at parallel design patterns is to think of them as
algorithmic building blocks that connect serial computations
to make them run in parallel.

The performance analysis of parallel programs has been a
primary concern since the very beginning of high-performance
computing. A variety of tools, including HPCToolKit [6],
TAU [7], Scalasca [8], Score-P [9] and Vampir [10], can be
used to gather measurements, usually at the level of individual
code regions, that capture the behavior of an application in
a given runtime configuration. Many of them use profiling
to summarize metrics across each code region or thread,
keeping the storage requirements at a minimum. Similar to
profiles, we summarize performance metrics in our analysis.
However, instead of considering the runtime of particular
code regions, we rather focus on data elements and the time
they require to traverse the application. Basically, we look at
applications from the large-grain data-flow perspective [11].



Therein, applications are viewed as directed graphs of blocks,
where a stream of data elements flows along the arcs of the
graph and the blocks implement sequential transformations on
the input data elements. The key property of those blocks is
that they are independent of the global memory state. Many
parallel design patterns, including pipeline, task graph, data
flow, fork join, master/worker, and map reduce, can be re-
interpreted according to this model.

Multiple tools have been developed to help create perfor-
mance models, some of them based on neural networks [12],
[13], others requiring code annotations to supplement measure-
ments in order to derive models [14], [15]. Finally, Siegmund
et al. [16] analyze the interaction of different performance
relevant parameters to generate models of applications as a
whole.

Parallel design patterns have been successfully used to
understand Quality of Service attributes of complex software
systems at design time using probabilistic analysis [17]. We
wish to apply a similar concept towards understanding perfor-
mance. To model the performance of pattern components and
validate the composition operators we propose in this paper,
we build on Extra-P [5], an empirical performance-modeling
tool, which we tailor towards modeling the traversal time of
data elements through the program.

Extra-P automatically derives human-readable performance
models from performance measurements. It is based on the
assumption that the behavior of most practical programs can
be expressed as n terms involving logarithmic and polynomial
expressions of a parameter p, usually representing the number
of processors. Extra-P therefore represents models using the
performance model normal form (PMNF):

f(p) =

n∑
k=1

ck · pik · logjk2 (p)

A search space for potential models defined, by the sets I and
J from which ik and jk can be chosen, is either generated
automatically [18] or can be set by the user, and a combination
of regression and cross-validation is then used to find the best
coefficients ck and then select the model with the optimal
fit. The resulting human-readable performance models express
the execution time, number of floating point operations, bytes
send over the network or any other captured metric as a
function of the number of processes or other performance-
relevant parameters such as the problem size.

Fig. 1 shows how the results of the model generator can be
interactively explored. The GUI annotates each call path with
a performance model. The formula represents a previously
selected metric as a function of the number of processes, and
allows other parameters to be represented as well. The user
can select one or more call paths and plot their models on the
right. In this way, the user can visually compare the scalability
of different application kernels.

III. COMPOSITION OPERATORS FOR PERFORMANCE
MODELS

Our goal is the modular construction of performance models
for parallel applications based on our understanding of parallel
design patterns—after their re-interpretation from a data-flow
perspective. We first clarify our general assumptions regarding
parallel design patterns and then define two specific patterns,
namely pipeline and task pool, which we use to demonstrate
our approach. After that, we explain the performance metrics
we deem appropriate for our data-flow-centric analysis. In a
next step, we clarify the notion of a composition operator for
performance models and define operators for the two parallel
design patterns we consider in this study. Finally, we introduce
an algebra for these composition operators that allows us
to reason about the performance impact of applying parallel
design patterns.

A. Parallel Design Patterns

In this work we focus on two parallel design patterns,
namely pipeline and task pool. We consider the individual
blocks combined with the help of a pattern to be sequences
of operations of variable computational intensity, without
side-effects. We further assume that the implementation of a
parallel design pattern has no impact on the performance of
the sequential blocks, but can and will affect the performance
of the system as a whole. As a consequence, the number
of threads used may not exceed the available hardware con-
currency. Below, we provide definitions of the two patterns
pipeline and the task pool.

1) Task Pool.: The task-pool pattern utilizes a group of
worker threads to execute multiple blocks, henceforth called
tasks, in parallel, decreasing the overall time in comparison
to serial computation of the tasks. The implementation of the
pattern in our work consists of two components, a queue for
data elements representing the tasks and a thread pool of fixed
size as shown in Figure 2a. The task queue stores the work that
has to be done and the thread pool is a set of workers that pop

tpoolT (task)

task 1

task T

(a) Task-pool pattern

pipe(stage1,stage2)

stage1 stage2

(b) Pipeline pattern

Fig. 2: Parallel design patterns from a data-flow perspective



data elements from the queue and process them. The pattern
has the benefit of being able to reuse threads to process data
rather than using short-lived threads. This limits the overhead
for the creation and destruction of the worker threads. We write
tpoolT(task) for a task pool that concurrently executes the
block task for each data element with T threads.

2) Pipeline.: The pipeline pattern can be compared to an
assembly line in a factory that creates a product in multiple
stages. Once they filled, all stages run in parallel, albeit
working on different product instances. A pipeline is useful
if the computational tasks can be expressed as a consumer-
producer relationship [3]. A pipeline consists of a sequence
of stages where each stage corresponds to a computational
task that can be either a sequential block or an instance of a
parallel design pattern. Each stage consumes a data element
from the prior stage and produces a data element for the next
stage. Conceptually, all stages run in parallel for different data
elements, as shown in Figure 2b. Without loss of generality, we
model a pipeline as having two stages. A pipeline with more
stages can be modeled as a composition of pipelines with only
two stages. We write pipe(stage1,stage2) for a pipeline
that is composed of the stages stage1 and stage2.

B. Performance Metrics

As discussed in Section II, performance models are equa-
tions that represent a performance metric as a function of one
or more parameters. We write M(·) to denote the performance
model of an application. Below, we identify two different
performance metrics for applications that process a stream of
data elements.

• Throughput: The rate at which data elements can be
processed.

• Latency: The total computational time a single data
element requires.

In this work, we select throughput, since we focus on appli-
cations that process large streams of data elements. However,
instead of using throughput directly, we use its inverse, that is,
the average time a data element spends in the application, both
considering the computations and the waiting and transport
times between these computations until the next data element
reaches the same stage in the workflow. We call this the
average runtime of a single data element. Examples of this
metric for both patterns are shown in Figure 3.

This performance metric enables both assessing the asymp-
totic complexity of the program as a whole but also predicting
the specific runtime for a fixed number of input data elements.
Note that our approach of compositional reasoning for perfor-
mance models works for latency as well – in a similar fashion.

C. Composition Operators for Performance Models

Below, we define operators for composing performance
models of applications based on parallel design patterns. We
interpret the patterns as higher-order functions that take the
performance models of the blocks the pattern is composed of,
which are themselves functions, as input and returns a function
that represents the resulting performance model for the entire

pattern implementation. In this sense, the composition oper-
ator represents the performance impact of the parallel design
pattern itself. It will therefore contain scalar parameters which
express the configuration of the parallel design pattern, such as
the number of worker threads in a task pool. In the following,
we present instances of composition operators for the patterns
pipeline and the task pool.

1) Task Pool: Given a task pool tpoolT(task), a perfor-
mance model for the sequential block M(task), and a fixed
number of threads T , we define the composed performance
model of the task-pool pattern as follows:

M(tpoolT(task)) :=
1

T
·M(task) (1)

Intuitively, a task pool with T threads can process T data
elements at once. Therefore, the average runtime of a single
data element is only a T th of the average runtime of the
sequential block task.

2) Pipeline: Given a pipeline pipe(stage1,stage2)
and performance models for the states M(stage1) and
M(stage2), we define the composed performance model of
the pipeline pattern as follows:

M(pipe(stage1,stage2))

:= max(M(stage1),M(stage2)),
(2)

where max applied to performance models is defined as
follows:

max(m1,m2) =

{
m1 if O(m1) ≥ O(m2)

m2 else
(3)

Intuitively, the performance model of the pipeline pattern
is equal to the performance model of the slower stage for a
selected data element size since it will become the bottleneck
of the execution. This is why we can use the asymptotic
complexity of the stages to make this choice.

In some cases, the performance for a given parameter
range can mean that a different selection than the asymptotic
choice has to be made. This is not the case for the types of
computational tasks considered in this paper, but an expansion
of the composition operator to handle such cases would be
similar to the way collective operations in MPI optimize
runtime by selecting algorithms based on the number of ranks
involved [19].

D. An Algebra for Composition Operators

The composition operators provide a structured way of
combining multiple performance models. This enables the
definition of an algebra for compositional reasoning of per-
formance models. In the following, we provide examples of
rules that govern our composition operators and the benefits
they provide. For all stages stage1, stage2, and stage3,
sequential blocks task1 and task2, thread counts T , the
following equalities hold:



Parallel pattern Arrival times Average time

≈ 5s

≈ 10s

10s 10s 20s 20s 30s 30s . . .

0s 10s 0s 10s 0s

15s 25s 35s 45s 55s 65s . . .

10s 10s 10s 10s 10s

10s

10s

10s 5s

Fig. 3: Examples of average runtimes of individual data elements

i) M(pipe(stage1,pipe(stage2,stage3)))
= M(pipe(pipe(stage1,stage2),stage3)),

ii) M(pipe(stage1,stage2))
= M(pipe(stage2,stage1)), and

iii) M(pipe(tpoolT(task1),tpoolT(task2)))
= M(tpoolT(pipe(task1,task2))).

Intuitively, rule (i) states that the performance of a pipeline
with more than two stages does not depend on the composition
order and rule (ii) states that the performance of a pipeline does
not depend of the order of the stages. Rule (iii) states that a
parallel pipeline where each stage is a task pool executing
some work has the same performance as a task pool where
the tasks are parallel pipelines executing the same work. This
is equivalent to stating that when layering parallel design
patterns correctly, the performance of the resulting system will
not change, regardless of the ordering of these patterns.

This kind of statements are not possible if the performance
of the whole program is modeled as a black box, yet they
are evident using our compositional modeling. On a practical
level, this means that once the models of the individual stages
are known, the model for the performance of the entire system
can be derived, and no new measurements have to be per-
formed if the ordering is changed. As long as the performance
model of each stage is known, stages can be arbitrarily added
or removed from the system and the performance can still be
derived without any new measurements.

IV. EVALUATION

In this Section, we support the claims made in Section III.
To create examples of parallel systems, we first introduce a
number of computational tasks with different complexities,
which we use as the sequential building blocks for our parallel

TABLE I: Models of sequential task blocks.

Task Model

nop 0.00864
inc 0.02599 · n

qsort 0.03899 · n log2 n

design patterns. We then create performance models using the
composition operators we have introduced for these patterns.

We compare the compositional models with both the per-
formance models generated by Extra-P for the entire systems
as well as with the actual performance measurements of the
entire systems themselves. We show that the prediction error
of the performance model constructed using composition is
less than 12% over all our experiments.

All experiment have been carried out on a single node from
the Lichtenberg high-performance computer of TU Darmstadt.
The node includes 2 Intel XEON E5 2680 v3 processors (12
cores, hyper-threading disabled, 2.5GHz base, 3.3GHz boost),
64GB of DDR4-RAM running under CentOS Linux 7 (kernel
3.10.0-957.21.3.el7.x86 64). The machine is managed by the
slurm workload manager in version 17.02.09 and we have used
GCC in version 4.8.5 for all experiments.

1) Tasks.: For simplicity, the tasks we use in the following
experiments all take an array of integers as input, and return
the array after applying their computational task which can
potentially alter the array. We have selected the following
tasks:

1) nop: Performs no operation and return the array un-
changed [O(1)].

2) inc: Increases the value of each element in the array
by 1. [O(n)].

3) qsort: Sorts the array using the quicksort algorithm.
[O(n log2 n)].

We look at the average complexity rather than the worst case
complexity as we are interested in the behavior across a large
number of samples in a realistic execution scenario rather
than specific outliers. To gather data, we vary the number of
elements of the array from 1.024 to 262.144 in increments of
1.024. To ensure the statistical soundness of our results, we
repeat each measurement 256 times. The runtime is expressed
in microseconds.

The performance models of these tasks express their runtime
as a function of the number of elements n in the array. The
models are summarized in Table I.

A. Composition Operators

The composition operators we defined are adequate for all
possible combinations of tasks. We performed experiments



TABLE II: Comparison between modular and monolithic models of the task-pool and pipeline patterns.

Configuration Modular model Monolithic model Relative error

Ta
sk

po
ol tpool1(qsort) 0.03899 · n log2 n 0.03900 · n log2 n 0.160

tpool2(qsort) 0.01946 · n log2 n 0.01950 · n log2 n 0.180
tpool4(qsort) 0.00975 · n log2 n 0.01015 · n log2 n 4.043
tpool8(qsort) 0.00488 · n log2 n 0.00545 · n log2 n 11.267

Pi
pe

lin
e

pipe(qsort,nop) 0.03899 · n log2 n 0.03873 · n log2 n 0.067
pipe(qsort,inc) 0.03899 · n log2 n 0.03891 · n log2 n 0.02
pipe(inc,qsort) 0.03899 · n log2 n 0.03865 · n log2 n 0.089
pipe(inc,inc) 0.02599 · n 0.02700 · n 3.802
pipe(inc,nop) 0.02599 · n 0.02718 · n 4.437

for all combinations but, for the sake of brevity, focus on
analyzing the most relevant four configurations for the pipeline
and most relevant two for the task-pool pattern.

1) Task Pool.: The evaluation of this composition operator
is straightforward. We initialized the task pools with a dif-
ferent number of threads, ranging from 1 to 8, and measured
the execution time for each run. Our composition operator,
M(tpoolT(task)) = 1

T · M(task), predicts that the
performance model is the division of the task performance
model by the number of threads. The results show that each
run yields a different execution time and as such a different
performance model, as can be seen in Table II. And indeed,
the speedup achieved by the number of threads according to
the model is effectively the division of the base model by the
number of threads used.

2) Pipeline.: We focus on the following configurations of
stages and tasks: pipe(qsort,nop), pipe(inc,inc),
pipe(inc,nop), and pipe(inc,qsort). Our
composition operator, M(pipe(stage1,stage2)) =
max(M(stage1),M(stage2)), predicts that the
performance model of the pipeline is the performance
model of the slower stage. The models summarized in
Table II show that the measured data support using maximum
as a composition operator: the runtime and models of the
pipeline where two inc tasks are performed are effectively
the same as those of the pipeline where one inc task
and one nop task is performed. Similarly, the models and

measurements for the pipeline composed of a qsort task
and a nop task and that of the qsort task and an inc
task are the same. Therefore, the average runtime of a data
element in a parallel pipeline depends only on the runtime of
the stage with the highest complexity.

B. Algebra of Composition Operators

In this subsection, we test the claims from Section III, where
we define an algebra of composition operators that apply to
the parallel design patterns. The first two rules state that the
composition operator for the parallel pipeline is (i) associative
and (ii) commutative with respect to the tasks. The third rule
(iii) states that the order in which parallel design patterns are
layered is performance neutral.

We show a representative subset of pipeline configurations
that use the inc, qsort and nop tasks. In Table III, we
display the measured performance models for these config-
urations. Not only are the models in the same complexity
class but even the coefficients show less then 10% variation
across all configurations. The models show that the parallel
pipeline design pattern is associative and commutative. The
commutative property can also be seen in Table II, where the
models of pipe(qsort,inc) and pipe(inc,qsort)
are effectively equal.

The third algebra rule we introduce states that layering
parallel design patterns correctly should have no impact on
performance. In order to compare the performance models, we
have created software systems following both design patterns,

TABLE III: Performance neutrality of pipeline associativity and commutativity

Configuration Monolithic model

A
ss

oc
ia

tiv
ity

pipe(pipe(qsort,inc),nop)

C
om

m
utativity

0.03873 · n log2 n
pipe(qsort,pipe(inc,nop)) 0.03900 · n log2 n
pipe(pipe(qsort,nop),inc) 0.03873 · n log2 n
pipe(qsort,pipe(nop,inc)) 0.03888 · n log2 n
pipe(pipe(inc,qsort),nop) 0.03877 · n log2 n
pipe(inc,pipe(qsort,nop)) 0.03894 · n log2 n
pipe(pipe(inc,nop),qsort) 0.03860 · n log2 n
pipe(inc,pipe(nop,qsort)) 0.03894 · n log2 n



TABLE IV: Performance neutrality of different layerings for parallel design patterns.

Parameter pipe(tpoolT(qsort),tpoolT(inc)) tpoolT(pipe(qsort,inc))

T = 1 0.03827 · n log2 n 0.03914 · n log2 n
T = 2 0.01930 · n log2 n 0.01996 · n log2 n
T = 4 0.01015 · n log2 n 0.01033 · n log2 n
T = 8 0.00565 · n log2 n 0.00563 · n log2 n

but applied in a different order. The first configuration is a
pipeline that uses stages that rely on task pools to process
the tasks, while the second type is a task pool that uses a
pipeline containing stages that are responsible for processing
the data. The resulting models are summarized in Table IV and
show that all configurations perform similarly— well apart
from inherent run-to-run variations. With this we can confi-
dentially say that layering parallel patterns and the ordering
in which patterns are layered, if done correctly, does not affect
performance.

V. FUTURE WORK

So far, we have modeled the task-pool and pipeline parallel
design patterns, their interactions, and discussed the types of
insights that can be gained from them. We plan to expand our
approach to a wider range of patterns, and test our approach
on real scientific applications.

By combining DiscoPop [20], an approach aimed at discov-
ering parallel patterns in existing applications with our method
we hope to allow the benefits of compositional performance
modeling to be attained with a minimum of developer ef-
fort. We further wish to investigate the software engineering
benefits of our method by supporting the developers of high-
performance applications.

In this work, we have performed measurements and applied
the tool Extra-P to derive the performance models for the
sequential tasks and the entire systems. However, our modular
approach is not limited to the models generated by Extra-P
and not even to performance models in general. We plan to
investigate the insights we can gain by using other dynamic
or static analysis tools instead.

VI. CONCLUSION

We introduce a modular approach to the construction of
performance models that can be used not only to optimize
existing software or choose between implementation alterna-
tives, but even (and arguably especially) during the design
of parallel software. Leveraging the properties of parallel
design patterns, we can now construct accurate performance
models in a brick-by-brick fashion from performance models
of software components, as long as the combination of the
components follows the design pattern. The resulting models
can be created not just without needing to repeat the entire
measurement process whenever a component of the system
is changed but rather allow detailed performance prediction
before an implementation of the system as a whole even
exists. Our modular approach provides significant support to

developers trying to design, maintain or optimize parallel
programs.

ACKNOWLEDGMENT

This work was funded by the Hessian LOEWE initiative
within the Software-Factory 4.0 project, by the German Re-
search Foundation (DFG) through the Program Performance
Engineering for Scientific Software and the ExtraPeak project,
and by the US Department of Energy under Grant No. DE-
SC0015524. The authors gratefully acknowledge to conduct
part of this study on the Lichtenberg high-performance com-
puter of TU Darmstadt and thank all anonymous reviewers for
the constructive and elaborate feedback.

REFERENCES

[1] K. Keutzer and T. Mattson, “Our Pattern Language – A Design Pattern
Language for Engineering (Parallel) Software,” https://patterns.eecs.
berkeley.edu/ (Online: February 19, 2019).

[2] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Pro-
gramming, 1st ed. Addison Wesley, 2004.

[3] M. McCool, J. Reinders, and A. D. Robison, Structured Parallel
Programming: Patterns for Efficient Computation. Morgan Kaufmann,
2012.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[5] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using automated
performance modeling to find scalability bugs in complex codes,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, Nov 2013, pp. 45:1–
45:12.

[6] L. Adhianto, S. Banerjee, M. W. Fagan, M. W. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “HPCToolkit: Tools for Per-
formance Analysis of Optimized Parallel Programs,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 6, pp. 685–701,
April 2010.

[7] S. S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” International Journal of High Performance Computing Appli-
cations, vol. 20, no. 2, pp. 287–331, 2006.

[8] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and
B. Mohr, “The Scalasca Performance Toolset Architecture,” Concur-
rency and Computation: Practice and Experience, vol. 22, no. 6, pp.
702–719, April 2010.

[9] D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler,
M. Gerndt, A. Knüpfer, D. Lorenz, A. D. Malony, W. E. Nagel,
Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S. S. Shende,
M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A Unified Performance
Measurement System for Petascale Applications,” in Proceedings of
the CiHPC: Competence in High Performance Computing, HPC Status
Konferenz der Gauß-Allianz e.V., Schwetzingen, Germany, June 2010,
Gauß-Allianz. Springer, 2012, pp. 85–97.

[10] W. Nagel, M. Weber, H.-C. Hoppe, and K. Solchenbach, “VAMPIR:
Visualization and Analysis of MPI Resources,” Supercomputer, vol. 12,
no. 1, pp. 69–80, 1996.

[11] J. S̆ilc, B. Robič, and T. Ungerer, “Progress in Computer Research,”
F. Columbus, Ed. Commack, NY, USA: Nova Science Publishers,
Inc., 2001, ch. Asynchrony in Parallel Computing: From Dataflow to
Multithreading, pp. 1–33.

https://patterns.eecs.berkeley.edu/
https://patterns.eecs.berkeley.edu/


[12] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An Approach
to Performance Prediction for Parallel Applications,” in Proceedings of
the 11th International Euro-Par Conference. Springer-Verlag, 2005,
pp. 196–205.

[13] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh,
and S. A. McKee, “Methods of Inference and Learning for Performance
Modeling of Parallel Applications,” in Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, ser. (PPoPP ’07). ACM, 2007, pp. 249–258.

[14] K. L. Spafford and J. S. Vetter, “Aspen: A Domain Specific Language for
Performance Modeling,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ser.
SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012,
pp. 84:1–84:11.

[15] N. R. Tallent and A. Hoisie, “Palm: Easing the Burden of Analytical
Performance Modeling,” in Proceedings of the 28th ACM International
Conference on Supercomputing, ser. ICS ’14. New York, NY, USA:
ACM, 2014, pp. 221–230.

[16] N. Siegmund, A. Grebhahn, S. Apel, and C. Kästner, “Performance-
influence models for highly configurable systems,” in Proc. of the
2015 10th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 284–294.
[Online]. Available: http://doi.acm.org/10.1145/2786805.2786845

[17] A. Brogi, M. Danelutto, D. De Sensi, A. Ibrahim, J. Soldani, and
M. Torquati, “Analysing Multiple QoS Attributes in Parallel Design
Patterns-Based Applications,” International Journal of Parallel Pro-
gramming, 11 2016.

[18] P. Reisert, A. Calotoiu, S. Shudler, and F. Wolf, “Following the Blind
Seer – Creating Better Performance Models Using Less Information,” in
Proceedings of the 23rd Euro-Par Conference, Santiago de Compostela,
Spain, ser. Lecture Notes in Computer Science. Springer, Aug. 2017,
pp. 106–118.

[19] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg, T. Angskun, and J. J. Don-
garra, “MPI Collective Algorithm Selection and Quadtree Encoding,”
Parallel Computing, vol. 33, no. 9, pp. 613–623, Sep. 2007.

[20] Z. Li, R. Atre, Z. U. Huda, A. Jannesari, and F. Wolf, DiscoPoP: A
Profiling Tool to Identify Parallelization Opportunities, 08 2015.

http://doi.acm.org/10.1145/2786805.2786845

	Introduction
	Related Work
	Composition Operators for Performance Models
	Parallel Design Patterns
	Task Pool.
	Pipeline.

	Performance Metrics
	Composition Operators for Performance Models
	Task Pool
	Pipeline

	An Algebra for Composition Operators

	Evaluation
	Tasks.
	Composition Operators
	Task Pool.
	Pipeline.

	Algebra of Composition Operators

	Future Work
	Conclusion
	References

