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Abstract—The analysis of runtime performance is important
during the development and throughout the life cycle of HPC
applications. One important objective in performance analysis
is to identify regions in the code that show significant runtime
increase with larger problem sizes or more processes. One
approach to identify such regions is to use empirical performance
modeling, i.e., building performance models based on measure-
ments. While the modeling itself has already been streamlined
and automated, the generation of the required measurements
is time consuming and tedious. In this paper, we propose an
approach to automatically adjust the instrumentation to reduce
overhead and focus the measurements to relevant regions, i.e.,
such that show increasing runtime with larger input parameters
or increasing number of MPI ranks. Our approach employs
Extra-P to generate performance models, which it then uses
to extrapolate runtime and, finally, decide which functions
should be kept for measurement. Also, the analysis expands
the instrumentation, by heuristically adding functions based on
static source-code features. We evaluate our approach using
benchmarks from SPEC CPU 2006, SU2, and parallel MILC.
The evaluation shows that our approach can filter functions of
little interest and generate profiles that contain mostly relevant
regions. For example, the overhead for SU2 can be improved
automatically from 200% to 11% compared to filtered Score-P
measurements.

Index Terms—automatic instrumentation, performance mod-
eling, high-performance computing, performance analysis

I. INTRODUCTION

The analysis of application performance is an important
step during the development and throughout the life cycle of
high-performance computing (HPC) applications. Many of the
established simulation frameworks and applications used today
have been in development for more than 10 years and outlived
several generations of hardware. Every hardware generation
posed other and new requirements on applications, so their
behavior needed constant inspection and improvement.

To benefit from, e.g., increasing parallelism, two main
objectives are of importance: (1) for which functions in the
target does the amount of work increase with input size, and,
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(2) for which functions in the target does the amount of
synchronization increase with added parallelism. The first one
searches for regions that benefit from (additional) parallelism,
commonly referred to as kernels. The second one searches for
regions in which the amount of synchronization needs to be
reduced to more efficiently use the parallelism available.

The identification of kernels is usually important when an
application needs to expose more parallelism, e.g., porting it to
another hardware architecture. The code is then searched for
regions that show increasing amounts of work with increasing
input size. Hence, it is of interest to understand which kernels,
e.g., functions, in the application depend on the input param-
eters, e.g., grid size or number of iterations. Likewise, for
code regions of which the runtime increases with the degree of
parallelism, it is of interest which relation the runtime increase
has w.r.t. the number of processes used.

One approach to identifying regions that show interesting
behavior depending on one or multiple input parameters
is performance modeling, i.e., constructing a mathematical
model that expresses properties, such as wall-clock time, as a
function in the parameters of interest. In particular, empirical
performance modeling, as implemented in Extra-P [1], has
gained attention, as the approach relies on measurement data
rather than the time-consuming manual model construction [2].

As empirical performance modeling is based on runtime
measurements, the method is prone to jitter in the mea-
surement data arising from the profiling itself. Jitter is the
consequence of perturbation in the target application’s (from
here simply target) execution caused by the measurement
system – noticeable as runtime overhead. Also, an increasing
number of modeling parameters requires increasingly many
measurements of the target. It is, therefore, preferable to base
the model construction on measurements that do not impact
the target execution unreasonably heavy.

To mitigate the perturbation and resulting long experiment
time, the instrumentation configuration, i.e., which functions
are instrumented, needs to be adjusted to reduce the impact of
the measurement system on the target. Currently, this process
requires different degrees of manual configuration.

We can summarize the challenges currently arising in em-
pirical performance modeling as follows. (1) Performing the
required measurements can take a considerable amount of
time, partly, due to runtime overhead. (2) The measurement



influence on runtime interferes with the modeling itself, po-
tentially, leading to misleading results. (3) The number of
functions in current software can be large and leads to too
many functions presented to the user at once.

In this paper, we propose an automated iterative approach
for the creation of reasonable instrumentation configurations
using empirical performance modeling. We extend our previ-
ous work on PIRA [3] to include Extra-P’s modeling approach
and implement new filter techniques that automatically focus
the measurements to regions that show input-parameter de-
pendent runtimes. In particular, the approach uses the models
to extrapolate the runtime of the functions recorded in the
measurements, to refine the instrumentation towards only those
functions that will consume the most runtime with increasingly
large input parameters.

We validate our approach with sequential codes from SPEC
CPU 2006, the computational fluid dynamics code SU2 [4],
and a multi-parameter study of the parallel MILC application.

Our main contributions in this paper are:
1) An approach to automatically reduce the runtime over-

head of direct instrumentation for the creation of perfor-
mance models with Extra-P.

2) An implementation of the proposed approach that stream-
lines the task of repetitive measurements for the genera-
tion of empirical performance models.

The paper is structured as follows: first, an introduction to
empirical performance modeling is given in Section II and its
implementation in Extra-P in Section III. We introduce PIRA
in Section IV, before we elaborate on the improvements to
the automation and the analysis component used to steer the
filter process in Section V. The explanation is followed by the
evaluation in Section VI, and the discussion in Section VII.
We set our approach into perspective to related work in
Section VIII. Finally, we conclude in Section IX and outline
future research directions in Section X.

II. EMPIRICAL PERFORMANCE MODELING

Empirical performance modeling is a performance analysis
technique that owes its existence to key insights into the cost-
effectiveness of performance analysis approaches. Analytical
performance modeling has been proven many times to pro-
vide unparalleled understanding into the behavior of appli-
cations, being able to identify performance bottlenecks [5],
explain runtime performance [6]–[8], and even predict per-
formance [9]–[12]. The difficulty in the analytical approach
lies in the complexity and time required to model even
simple codes. Therefore, to be of widespread practical use,
a performance modeling method must be as accessible as
possible. Empirical performance modeling provides the type of
insightful models previously confined to analytical modeling
by instrumenting and measuring performance relevant metrics,
e.g., runtime or number of floating operations, while varying
certain configuration parameters such as number of processes
or the problem size per process and determining how the
metrics change with respect to one or more such parameters.

This information can be presented to the user as human-
readable functions, for example showing that the runtime of a
routine foo can be expressed as a function of the number of
processes: t(p) = 100 + 10 · p2 seconds.

III. EXTRA-P
Extra-P [1] is a state of the art tool that can leverage fine-

grained measurements, e.g., provided by Score-P, to generate
performance models for multiple parameters [13]. The core
concept relies on the fact that the complexity of algorithms
implemented in both sequential and parallel applications with
respect to most relevant configuration parameters is most com-
monly polynomial, logarithmic, or some combination of the
two. This has led to the introduction of the performance model
normal form (PMNF), which expresses the effect of a number
of parameters xi on a metric as a sum of terms consisting
of products of polynomial and logarithmic expressions in the
parameters xi. The expression is formalized in Equation 1.

f(x1, . . . ,xm) =

n∑
k=1

ck ·
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l=1

x
ikl

l · log
jkl
2 (xl) (1)

Given a set of measurements, the performance models are
identified in an iterative process. We first model the effects of
each separate parameter, and then test all possible combina-
tions of the selected single-parameter models to determine the
multi-parameter model that fits the measurements best.

An important assumption of the modeling approach is that
there is one behavior to the modeled application across the
entire parameter range. Should this not be true, for example
due to the MPI collective communication algorithm changing
with increasing number of processes, then the resulting model
may be misleading. A method has been developed that can
automatically detect such an occurrence and if necessary
suggest additional measurements [14].

Extra-P has been successfully used to detect scalability
bottlenecks and evaluate the performance of many libraries
and scientific applications [1], [15], [16].

While the modeling process itself has been streamlined and
is both efficient and accurate, the approach relies on the mea-
surements themselves to provide useful results. Gathering high
quality measurements with Score-P or other instrumentation
tools is difficult and time consuming, and noise can have a
negative impact on the quality of the resulting models. An
approach which would remove unimportant code regions from
the analysis altogether will not only reduce the measurement
overhead but also improve the quality of resulting models, and
therefore allow the developers to find and focus on the true
issues in their applications quicker.

IV. PIRA
Many performance analysis tools [1], [17], [18] rely on

the Score-P [19] measurement infrastructure to obtain the
required performance profiles. Since Score-P by default uses
automatic compiler instrumentation to obtain measurement
data, it may perturb the target’s runtime quite significantly,
when no filtering is applied [20].



Fig. 1. The build–run–analyze cycle: build the application in a certain
configuration, running it to generate measurement data, analyze the resulting
profile to generate some insight.

Particularly challenging for instrumentation-based measure-
ments are codes that consist of many small functions, e.g.,
operator[] in C++. Since the amount of work such func-
tions incorporate is comparably small, the negative effects
of instrumentation are very prominent. The runtime overhead
introduced by unfiltered direct instrumentation due to such
small functions can become larger than 100x easily [21].

To reduce the effect, Score-P implements a compiler plugin
for GCC that automatically filters functions marked inline.
In addition, analysts reduce overheads by manually creating
filter lists and employ them at runtime or at compile time,
to filter out the specified functions. For some applications,
creating these filter lists is relatively straight forward. First, the
analyst performs a measurement with a full instrumentation.
Then, the list of functions, sorted according to their runtimes
and call counts is inspected, and, the functions that show the
highest call counts are manually added to the filter list. This
is repeated until a satisfying overhead reduction is achieved.

To reduce the time spent by an analyst creating these
filter lists, we developed PIRA [3], which fully automatically
constructs such lists. It automates the build–run–analyze cycle,
shown in Fig. 1, as an iterative instrumentation refinement.
It, first, performs baseline measurements, i.e., running the
target without any instrumentation, to compute the overheads
generated from the instrumentation applied in every iteration.
The iterative refinement process starts with an initial, statically
determined, guess based on the approach presented in [22].
We improved the strategy to adjust the threshold value used
for filtering based on statistical measures of the static code
features, i.e., the number of statements per function. After
the initial iteration, PIRA refines the instrumentation using
heuristics that consider both static source-code features and
runtime measurements gathered in the previous iteration.

The initial PIRA version (PIRA I) carried out all measure-
ments for one input configuration. It refined the instrumenta-
tion towards runtime hot-spots in the target by analyzing raw
runtime in the profiles. This process is of course sensitive to
input data and the result is specific to that data set.

In this work, we replace the prior heuristics with a new
scheme that filters out functions based on empirically deter-
mined and automatically built performance models.

V. PIRA II

Empirical performance modeling with Extra-P requires mul-
tiple data points as input. Therefore, we add the possibility
to run the target with multiple input configurations to PIRA.
Also, we introduce the notion of repetitions, i.e., running the
target with the same instrumentation and input configuration
multiple times. This is required by Extra-P, to account for
noise in the measurement data and to support the curve fitting
of the PMNF.

As another result of the integration of Extra-P, we improve
the storage organization of the performance profiles generated
during the PIRA process. All profiles are stored with a naming
scheme conforming to Extra-P’s requirements, alleviating the
need for additional scripts. This allows a user to manually use
Extra-P with the profiles generated by PIRA in each iteration
after the overall PIRA process finished.

In subsequent sections, we present more detail about the
design and the components required to enable the automa-
tion. We outline how PIRA implements its instrumentation
refinement, and, also, we explain how PIRA extrapolates and
evaluates the obtained performance models to decide which
functions to prune from subsequent measurements. Lastly,
we explain how PIRA statically expands the instrumentation.
Please note, in the remainder of this paper, PIRA refers to
PIRA II unless stated otherwise.

A. Automation

As in PIRA I, baseline measurements are performed before
an initial, statically determined instrumentation is generated.

In each iteration, the target is built using the instrumentation
generated in the previous iteration. The necessary commands
are generated by the framework and depend on the measure-
ment tool-chain backend. In our case, it is set to Score-P, as
Extra-P consumes profiles generated in that format.

As large application builds can take a considerable amount
of time, PIRA II allows to select between the two modes
(1) compile-time filtering, and, (2) runtime filtering. The first
increases the time required per iteration, because it needs to
rebuild the target at the beginning of each iteration. However,
it only introduces the overhead generated by the measurement
hooks actually requested. On the other hand, with runtime fil-
tering the target is built once, with all functions instrumented.
The functions are then filtered at runtime by employing
Score-P’s filter-file mechanism. The full instrumentation can
significantly slow down the target. Thus, in this work we only
present numbers for compile-time filtering.

After the target has been built, the correct invocation of
the target is required. The arguments are provided in the
configuration file along with the other necessary information.
The extended format includes the definition of parameter series
for both command line options and input files.

After all repetitions for the different combinations of input
parameters have run, PIRA invokes the analysis engine, in
which the new instrumentation is generated. The profiles are
given to the analysis engine and it generates a list of functions
to be instrumented in the next iteration.



Fig. 2. PIRA process: Initial instrumentation is determined by source-feature heuristics, then carry out the build–run–analyze cycle. The rectangular boxes
show the actions happening, the oval shaped boxes outline the generated artifacts, e.g., all necessary profiles to use Extra-P for empirical performance modeling.

In its current version, PIRA iterates for a fixed number
of iterations before stopping. While this is not optimal and
the stopping criterion should be formulated in terms of,
for example, code coverage or measurement perturbation, it
already shows the benefits of an automated iterative refinement
approach to generate filtered performance profiles.

B. Instrumentation Refinement

This work extends the analysis engine to support Extra-P’s
automatic empirical performance modeling. PIRA implements
two different refinement strategies: first, a filter-only mode,
and, second, the filter-and-expand mode, which uses the ap-
plication’s call graph to add functions to the instrumentation.

To generate the initial instrumentation, PIRA uses the fully
static strategy as used before. In subsequent iterations, i.e.,
profile data exists, the analysis engine receives as its input
all profiles generated for the target in the previous iteration. It
constructs the performance models using Extra-P, and attaches
the models to the function nodes of the statically built call
graph. The call graph is used to (1) find and mark all possible
paths from main to a function selected for instrumentation,
and, (2) add new functions to the instrumentation, when PIRA
is set to filter-and-expand mode.

1) Call Graph: To apply the heuristics, PIRA requires a
whole-program call graph, which is built in a pre-processing
step using a Clang-based tool. The nodes in the call graph are
annotated with the number of statements contained within each
function. A statement corresponds to one C/C++ construct that
ends with a semicolon (cf. Listing 1).

Listing 1
PIRA’S NOTION OF STATEMENTS: SHOWING FOUR STATEMENTS.

1 int compute(int a) {
2 int b = 2 * a; // one statement
3 for (int i = 0; i < a; ++i) {
4 b += i; // one statement
5 } // one loop statement
6 return b; // one statement
7 }

The call graph is over-approximated w.r.t. edges for virtual
functions and pointers to function, i.e., in both cases all
potential call targets are considered. Hence, if any of the
two cases is present in the target, the call graph has more
edges than can occur at runtime. Since, we use (1) runtime
information as the primary source of information to filter,

and, (2) use static code information only in aggregate form
as explained in Section V-B4, we do not consider this as a
major problem.

2) Performance Models and Extrapolation: After each in-
strumented iteration, the performance models are generated by
Extra-P and attached to the corresponding function nodes in
the call graph. To use the performance models generated, the
respective model functions need to be evaluated at a point of
interest, i.e., values for the function’s parameters.

PIRA uses extrapolation whenever the analysis engine needs
to decide whether a function is relevant. Currently, it bases the
extrapolation on the data points provided as the original input
to the target. It calculates the average difference d between
two adjacent input parameter values in the sorted sequence
of given input parameters as d = 1

n

∑n
i=1 ||pi − pi−1||. The

value obtained for d is added to the last user-provided value
to result in the extrapolated value pext = pn+d. This value is
then used to evaluate the performance model and decide if the
function is relevant, i.e., if it is above a specified threshold.

3) Filter Only: In filter-only mode, PIRA visits all nodes
in the call graph and marks those for instrumentation for
which the evaluated model is above a specified threshold. After
a node is marked for instrumentation, PIRA finds all paths
from this node to the main function and adds them to the
instrumentation. In the example shown in Fig. 3, the dotted
circles indicate that a performance model was constructed. It is
then evaluated and tested if it qualifies to be kept for the next
iteration. Assuming that the nodes C and F are selected for
instrumentation, PIRA reconstructs the paths from both nodes
to the root node A, and marks them for instrumentation, as
indicated with the gray color. Hence, for all relevant functions,
also their calling contexts are preserved, as they may behave
differently in different contexts. This is important for an
analyst when using the generated measurements to determine
tuning potential in the target.

4) Filter and Expand: In the filter-and-expand mode, shown
in Fig. 4, PIRA first applies the model-based filtering, before it
performs an expansion step using the already explained static
statement aggregation heuristics using a locally determined
threshold. It estimates the amount of work of a function based
on the number of statements within the respective function
itself and all its children in the statically collected call graph.
In the aggregation step, every node in the respective sub tree
is visited once, thus, functions are not counted multiple times



Fig. 3. Filter-only mode: The available performance models are attached to
the corresponding call-graph node. The model is evaluated at an automati-
cally determined point pext to determine if a node is kept for subsequent
measurement based on whether its value satisfies a set threshold criterion.

Fig. 4. Filter-and-expand mode: First, the filter strategy is applied, marking
nodes A, B, and F. Thereafter, starting from those nodes, a static source-
code criterion is evaluated on all its child nodes. For node D, the number of
statements contained in the function satisfies the selection criterion. Hence,
D is added to the instrumentation. Node C is added to the instrumentation as
it is on a call path from F to the root node.

in the presence of cycles. For all selected nodes, all paths to
main are added to the instrumentation.

5) Instrumentation: The resulting instrumentation is passed
to a modified version of the Clang compiler, which emits
the instrumentation while lowering to LLVM IR. Generally,
our approach is independent of the compiler, as long as the
compiler supports selective instrumentation at the function
level. Unfortunately, no major compiler, currently, supports
this feature off the shelve, although the new Score-P version
offers function-level filtering as a GCC plugin.

VI. EVALUATION

In our evaluation, we consider two scenarios: sequential,
single-parameter studies (SPEC CPU 2006 433.milc, 473.astar,
and SU2), and parallel, multi-parameter study (su3 rmd).

In Section I, we outlined three particular challenges that
we address in this work. Limiting the number of functions
instrumented addresses all three challenges. Consequently, we

are interested in whether PIRA is able to significantly reduce
the overhead and guide the instrumentation towards relevant
regions, i.e., such that depend on the input parameters. There-
fore, our evaluation focuses on (1) the runtime overhead posed
on the target application by the instrumentation, (2) the number
of instrumented functions in the final PIRA configuration, and,
(3) if PIRA keeps relevant functions in the instrumentation.
We use PIRA in the filter-and-expand mode, and compare our
measurements to measurements performed with Score-P with
and without compile-time filtering of all inlined functions.

All measurements are carried out on nodes of the Licht-
enberg cluster at TU Darmstadt. Each node consists of two
Intel Xeon E2670 and 32 GB of main memory. The sequential
codes are run with a fixed clock frequency of 2.6 GHz, thread
pinning and disabled HyperThreading. The MPI benchmark
is run without fixed frequencies, due to a technical limitation
when invoking MPI job from within Python scripts.

We report the median over five repetitions as the runtime
and, first, present the evaluation results for the sequential and
single parameter applications, before we show the results we
obtained for the MPI parallel multi parameter study. Table I
lists the accumulated time required to perform all necessary
executions of the target application if no instrumentation is
applied, i.e., the Vanilla runtime, in column one. If a user
instruments the code base using a default Score-P instrumen-
tation without filtering, the executions of the measurements
required for the Extra-P modeling add up to the value given
in the column Score-P, and the respective overhead. The next
column shows the runtime and the overhead generated when
using the standard Score-P with the compile-time filtering, i.e.,
all inline marked functions are filtered. Column seven lists
the total time required to run the iterative refinement process
with PIRA (PIRA Total). This time includes the times spent
in the different stages, and results in an instrumentation that
is used for further measurements. The last column denotes the
time required when the final PIRA instrumentation is used to
perform the Extra-P measurements.

A. Serial Application / Single Parameter

In the case of SU2, we vary the number of iterations in
the solver and use 100, 500, 1k, 2k, and 5k as its inputs. For
the SPEC CPU 2006 codes, we use data sets from the test
and train size. For 433.milc, we vary the number of flavors to
compute from 1 to 5 and for 473.astar, we vary the number
of paths in the map with the values 5k, 10k, 25k, 50k, 75k.

The final instrumentation results in a significantly faster
execution of all our benchmarks, when compared to a full
Score-P instrumentation. Moreover, the full PIRA process
is faster than a full unfiltered Score-P measurement and
sometimes even en par with the filtered measurement. The
final PIRA instrumentation generates less overhead than both
Score-P versions. In particular, the PIRA process needs to
be run once to generate the instrumentation and can be, in
addition, much faster than a full Score-P measurement, e.g.,
PIRA requires 18,132 seconds to generate an instrumentation
for SU2, whereas a full unfiltered Score-P measurement needs



TABLE I
ACCUMULATED TIME (SECONDS) TO EXECUTE MEASUREMENTS FOR EXTRA-P: NO INSTRUMENTATION (Vanilla), FULL INSTRUMENTATION (Score-P),
PIRA I INSTRUMENTATION (PIRA I Final); PIRA II WITH ALL ITERATIONS (PIRA II Total), AND THE FINAL PIRA II CONFIGURATION (PIRA II Final).

Application Vanilla Score-P
w/o Filter

Overhead
Score-P

Score-P
w/ Filter

Overhead
Score-P

PIRA I
Final

Overhead
PIRA I

PIRA II
Total

Overhead
PIRA II

PIRA II
Final

Overhead
PIRA II

SU2 2,835 202,675 7,049% 8,865 212% 3,092 9.1% 18,132 539% 3,144 10.9%

433.milc 10,041 32,304 221% 31,010 208% 11,854 18% 17,905 78% 10,048 0.0%

473.astar 1,034 18,190 1,659% 4,941 377% 1,602 54.9% 4,741 356% 1,219 17.8%

MILC 66 2,611 3,856% 333 405% 347 425% 3,180 4,718% 272 312%

TABLE II
NUMBER OF FUNCTIONS: STATICALLY IN THE CODE BASE, CAPTURED IN

PROFILE WHEN USING SCORE-P, CONTAINED IN THE FINAL PIRA
CONFIGURATION, AND EXECUTED IN THE FINAL PIRA CONFIGURATION.

Application Code
Base

Score-P
w/o Filter

Score-P
w/ Filter

PIRA II
Marked

PIRA II
Executed

SU2 15,775 8,107 281 95 37

433.milc 353 236 113 22 21

473.astar 326 128 95 11 11

MILC 505 64 47 88 30

202,675 seconds. The speed up is roughly 10x for SU2, 2.2x
for 433.milc and almost 14x for 473.astar. Although Score-
P measurements can usually be sped up considerably with
compile-time filtering, 433.milc did not profit from it consider-
ably. Overall, PIRA creates instrumentations that significantly
reduce the runtime overhead of direct instrumentation.

We ran the same measurements given the instrumentation
generated by PIRA I. The overhead generated by PIRA I is
larger if the identified kernels are deeper in a high-frequency
call chain. In the other cases, the higher runtime for PIRA II
is a result of it instrumenting all paths to a target function,
whereas PIRA I instruments only one call path.

In Table II, we compare three different types of occurrences
of functions in the measurement data, i.e., (1) the number of
functions in the code base, (2) the number of functions marked
for instrumentation by PIRA, (3) the number of functions
executed in the final PIRA run, and, (4) the number of func-
tions executed in a fully instrumented target. We can see that,
particularly for larger applications, PIRA significantly reduces
both the number of functions marked for instrumentation and
the number of functions actually executed. In the case of
SU2, for example, the final PIRA instrumentation results in
95 different functions being instrumented from which only
37 are being executed, compared to 8,107 being executed
when using Score-P. Many of the functions recorded by Score-
P in the unfiltered version are functions that do very little
work, e.g., return the file name of the input file. These
functions do not add significant insight to the understanding
of the performance behavior of the target, and are mostly
marked inline. Consequently, also the Score-P compile-time
filter reduces the number of functions recorded to only 281.

As no quality measure for the generated performance

TABLE III
THE VALUES USED AS INPUT FOR MILC IN THE MULTI-PARAMETER
STUDY. ALL COMBINATIONS OF THE PARAMETERS ARE REQUIRED.

Num. MPI Procs. Grid Size

8 16 x 16 x 32 x 16
16 32 x 32 x 32 x 16
32 64 x 64 x 32 x 16
64 128 x 128 x 32 x 16
128 256 x 256 x 32 x 16

models exists, we manually inspected that mostly relevant
functions from the target are preserved in the final profile. We
found that for some of the benchmarks, PIRA keeps functions
that are constant, but still evaluate to values larger than the
specified threshold. Also, some functions that do not add
significant amounts of runtime are instrumented, because they
are on a call path to a relevant function.

B. Parallel Application / Multi Parameter

Our second scenario is a multi-parameter study in which the
combination of varied input parameters and varied number of
MPI processes is investigated. We use fairly small data sets
in our experiments to account for the memory footprint with
smaller numbers of MPI processes, i.e., the largest grid size
and eight MPI processes consumes ~4.5 GB per process.

In the multi parameter case, all combinations of the input
parameters need to be run in order to allow Extra-P to generate
the performance models (cf. Section II). Table III lists the
values used to generate the required 25 measurements.

The runtimes obtained are listed in the last row of Table I
and show that the average impact of the final PIRA instrumen-
tation is considerably large (312%). However, compared to the
influence of the Score-P measurement overhead of 3,856%, it
is about a factor of 10x smaller.

In the multi parameter setting, the total time PIRA takes
to construct the final configuration is larger than the time
necessary to conduct all measurements with Score-P. However,
the influence of the measurement system in the selectively
instrumented binary generated by PIRA should be lower than
for the fully instrumented one, decreasing its overall influence
on the modeling process. Also, the number of functions
presented to the user is reduced by PIRA. although the number
of functions in the full profile is not overwhelmingly large.



VII. DISCUSSION

In our experiments we found that the approach worked
well in most cases. An important goal it achieved is to limit
the number of functions for performance modeling and final
presentation to the analyst. The benchmarks taken from SPEC
CPU 2006 are comparably small in code size and number of
functions. Thus, the filter-and-expand strategy does add nearly
no functions in the expand phase, and, the overhead of the
initial instrumentation cannot be reduced much further without
a final filter step. However, the SU2 case shows that also for
larger programs, the approach is able to greatly reduce the
number of functions instrumented when compared to both the
unfiltered and the compile-time filtered Score-P versions.

The filtering reliably reduced the number of functions
marked for instrumentation in subsequent measurements. This
significantly reduces per-run runtime overhead. While the total
experiment time was not reduced in all cases, compared to
the filtered Score-P version, the final configuration showed
significantly reduced overhead for the sequential applications.

The extrapolation for the filtering worked reasonably well
for the sequential targets. However, in the multi-parameter
case, the simple linear interpolation seems to be too limited
to extrapolate the number of processes adequately. This can
be improved by making the extrapolation configurable or by
adding support for user-defined extrapolation functions.

The approach is still sensitive to the inputs: the extra-
polation-based filter uses a threshold to determine which
functions to instrument, i.e., in the current implementation
large constant models can end up in the profile as well.
However, as the modeling is based on runtime measurements,
it will always be sensitive to input data.

Since we commonly started with many functions in the
initial instrumentation configuration, the expansion step did
not contribute as much to the refinement process. This is
particularly interesting, as the lacking loop information for
instrumentation expansion is not as severe in this case.

VIII. RELATED WORK

In [23] the authors define filters to configure which parts
of a target should be instrumented. Opposed to our approach,
these filters have to be constructed manually by taking into
account, e.g., loop nesting and cyclomatic complexity, to
define which parts of the target to instrument. The target is then
instrumented at the binary level by employing binary rewriting.
Compared to our approach the selection is fully based on
static features, whereas our approach mainly relies on runtime
information. However, the additional consideration of loops in
the static expansion could greatly benefit the expansion and
lead to better initial guesses in the instrumentation.

The work presented in [20] also applies call-graph analysis
prior to instrumentation. However, the authors rely on direct
instrumentation only for MPI calls and employ call-stack un-
winding to restore the call context for every instrumented call
to an MPI function. As a result, the communication behavior
can be restored with full information, while the remaining
execution is sampled. Compared to our approach, the goal is to

capture communication behavior, whereas, our approach tries
to find an instrumentation configuration that enables Extra-P
to produce performance models for the functions that are most
likely relevant when increasing the data sets. Using sampling
to reconstruct the call paths to the main function is interesting,
and might be considered further in future work.

The approaches presented in [24]–[26] consider the dynamic
adjustment of the instrumentation at runtime. Our approach
on the other hand requires post-mortem analysis of several
measurements for the performance model construction, thus,
it cannot be adjusted on the fly.

In addition, many more frameworks and tools to imple-
ment instrumentation filters and analyses exist. TAU [27] is
used for many projects and has shown its capabilities to
implement program analyses based on its Program Database
Toolkit (PDT) [28]. PathWAY [29] is another framework
that enables developers and analysts to define workflows and
implement program analyses together with instrumentation
transformations. COMPASS [30] is a framework for automatic
performance modeling and prediction. Compared to our ap-
proach, the framework relies on source code scanning, whereas
our approach employs performance measurement to derive the
performance models.

IX. CONCLUSION

We extended the tool PIRA to automatically construct
instrumentation filters, using empirically determined perfor-
mance models, to reduce jitter in performance measurements
used for empirical performance modeling. In most of our test
cases, the resulting instrumentation filters significantly reduced
the runtime overhead for the experiments required.

We showed that the iterative filtering and refinement can
reliably reduce the number of functions marked for instrumen-
tation, when compared to a Score-P instrumentation. Applying
performance modeling during the iterative refinement of the
instrumentation configuration helps to identify relevant regions
w.r.t. the particular parameters varied in the modeling. In
this work, we varied the application’s input parameters to
find those functions of the target that consume increasing
amounts of runtime with larger input data. PIRA filters the
target application’s functions based on metric values obtained
from evaluating the performance model at extrapolated points
based on the user-provided input parameters.

Extra-P requires that all processes generate the same call
paths to successfully construct a performance model. Thus, the
analyst needs to be aware of the interplay of input parameters
and MPI processes when setting up the experiments.

PIRA is somewhat sensitive to input data in the sense that
the modeling is based on runtime measurements. Hence, the
input data should be chosen carefully enough and the results
still should be validated by the analyst after PIRA has finished.

In conclusion, we showed that PIRA effectively reduces the
number of functions instrumented, thus, reducing the runtime
influence of the measurement system and, consequently, can
be helpful to obtain at least a reasonable starting point for



adequate measurements for empirical performance modeling.
Obtained results should, however, be inspected for validity.

X. FUTURE WORK

Currently, the static analysis takes not into account loops,
although knowledge of their presence can improve the static
selection step. Moreover, identifying loops without a constant
or pre-determined loop bound is of interest, and can be
integrated into the call-graph collector.

Allowing a more flexible notion of region to instrument is
of interest. This would enable the generation of performance
models for aspects of the code not tied to a single function.

Since PIRA already records the overhead generated by the
instrumentation in much detail, the modeling capabilities of
Extra-P can be used to identify a particular correspondence
between input parameters and instrumentation overhead. This
would enable the analyst to very specifically control how much
overhead a measurement would introduce.
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