
DeepRace: Finding Data Race Bugs via Deep Learning

Ali Tehrani
Computer Science

Department
Iowa State University

Ames, IA, USA
tehrani@iastate.edu

Mohammed Khaleel
Computer Science

Department
Iowa State University

Ames, IA, USA
mkhaleel@iastate.edu

Reza Akbari
IT & Computer Engineering

Shiraz University of
Technology
Shiraz, Iran

akbari@sutech.ac.ir

Ali Jannesari
Computer Science

Department
Iowa State University

Ames, IA, USA
jannesari@iastate.edu

ABSTRACT

With the proliferation of multi-core hardware, parallel programs

have become ubiquitous. These programs have their own type of

bugs known as concurrency bugs and among them, data race bugs

have been mostly in the focus of researchers over the past decades.

In fact, detecting data races is a very challenging and important

task. There have been several research paths in this area with

many sophisticated tools designed and utilized that focus on

detecting data race at the file level. In this paper, we propose

DeepRace, a novel approach toward detecting data races in the

source code. We build a deep neural network model to find data

races instead of creating a data race detector manually. Our model

uses a one-layer convolutional neural network (CNN) with

different window size to find data races method. Then we adopt

the class activation map function with global average pooling to

extract the weights of the last convolutional layer and

backpropagate it with the input source code to extract the line of

codes with a data race. Thus, the DeepRace model can detect the

data race bugs on a file and line of code level. In addition, we

noticed that DeepRace successfully detects several buggy lines of

code at different locations of the file. We tested the model with

OpenMP and POSIX source code datasets which consist of more

than 5000 and 8000 source code files respectively. We were able

to successfully classify buggy source code files and achieve

accuracies ranging from 81% and 86%. We also measured the

performance of detecting and visualizing the data race at the line

of code levels and our model achieved promising results. We only

had a small number of false positives and false, ranging from 1 to

10. Furthermore, we used the intersection of union to measure the

accuracy of the buggy lines of code, our model achieved promising

results of 66 percent.

KEYWORDS

Data race, bug detection, deep learning, OpenMP, POSIX

1 Introduction

With the ubiquity of multicore processors, the demand for multi-

threaded programming that capable of fully using the power of

modern systems is constantly on the rise. However, the prevalence

of concurrent software has led to the emergence of bugs known as

concurrency bugs. These bugs have caused some serious problems

such as Northeast blackout [1] and NASDAQ's Facebook glitch [2].

Since these types of bugs are more common than ever in

concurrent software [3], tackling them has been in the focus of

researchers over the past years. One of the major sources of

concurrency bugs is data race [4]. A data race bug occurs when two

parallel accesses to one particular memory location are executed

without an appropriate synchronization and at least one of the

accesses is a write operation. It could often result in erroneous

outputs [5].

Generally, data race detectors can be divided broadly into two

categories. On one hand, there are static data race detectors [6]–

[9] which typically examine source code or bytecode without

executing the code. On the other hand, dynamic data race

detectors [5], [10]–[13] observe and monitor the execution of the

code either offline or online, we provide more details in the coming

section.

With recent advancement in deep learning and the abundant

source code available, researchers have been developing various

deep learning models to tackle wide variety of software

engineering and quality assurance tasks such as defect prediction

[14], code clone detection [15] and code completion [16].

However, to the best of our knowledge, no significant work has

been done on using deep learning to detect concurrency bugs,

more specifically data race.

Figure 1 shows an example of a data race in a simple two-

dimensional array computing program [17] which has one nested

loop. Both variables i and j are declared outside of the parallel

region but i, which is an index variable for the parallelized loop, is

automatically private due to OpenMP implementation. The second

loop, however, is not parallelized and its variable j is shared among

all threads. Therefore, in line 9, when read and write operations

are executed, the value of j could be anything assigned by any

thread. This data race could be resolved by defining j as a private

variable to each. Consequently, each thread would have its own

copy of variable j.

In this paper, we introduce DeepRace, a data race detector that

addresses the problem of detecting data race bugs by leveraging

the power of deep learning. For this purpose, we created a corpus

of source code files from OpenMP and POSIX programs with

specific synchronization patterns. Then, we built two classes of

buggy and bug-free source code samples out of the corpus, i.e. a

class for code samples that contain data races and another one for

those files without data races. For simplicity will call the files with

data race the buggy files and files without data race the bug-free

files throughout the paper. We generated Abstract Syntax Trees

(ASTs) for all the source code files. Then token vectors are created

by extracting the class name of nodes from ASTs. Finally, we

trained a deep learning model by feeding these vectors to the

model.

Our first goal is to have a trained detector which can distinguish

programs containing a data race from those without a data race.

Unlike the previous works of deep learning and code analysis

which classify source code files at method-level, our second goal is

to further extend the approach to find the source of the bug at the

line-level. To achieve this goal, we have adopted the class activates

map method presented in [36] to extract the spatial location of the

last convolutional layer neuron of the CNN classifier that reflects

the location of the data race lines. We created three different

datasets with three different data race bug patterns for OpenMP

and POSIX programs. For this reason, we collected more than

15,800 source code files from GitHub and trained and test

DeepRace with them. In addition, a test set of 60 sample programs

with and without data race is created to compare DeepRace with

state-of-the-art race detector tools to confirm the efficiency of our

approach.

Our contributions in this work are summarized as follows:

 We implemented an efficient one-layer CNN classifier that

applies various window size to detect the data race bugs related

to three different synchronization patterns: omp private clause,

omp critical directives, and posix mutex locks.

 While the recent works on code analysis with deep learning

typically classify source-code at method-level, our model focus

on detecting the data race at the line of code level. We achieved

that by adapting the class activation map method to extract the

weights of the various windows size convolutional layers and

project it with the source code file to generate the line of codes

that triggered the data race bugs. In addition, we noticed that

DeepRace successfully detects several buggy lines of code at

different locations at the file.

 With the lack of publicly available labeled source code dataset,

we have collected dataset with three different data race bug

patterns for OpenMP and POSIX programs. The dataset has

15,800 source code files, collected from GitHub. We equally

divided the files to two categories: with and without data races,

to address the problem of data imbalance that widely exists in

the real-word datasets. We use the mutation method to generate

source code files with data races. The dataset will be publicly

available for researchers.1

The paper is structured as follows: In the next section (Section 2),

we describe related works on data race bug detection and provide

an overview of using deep learning models on other software

engineering areas. Our approach is explained in Section 3. In

Section 4, implementation details are outlined and discussed. The

experimental results are presented in this section. Finally, in

Section 5, we conclude the paper and outline the prospects of our

future works.

2 Related Works

1 Download link of the dataset will be shown in the final version of the paper

Many approaches of detecting the data races bugs exist in the

literature. These approaches are commonly divided into two

categories: dynamic and static detectors. For dynamic race

detectors, happens-before and lockset algorithms are considered as

a base for most of these tools [18]. A comprehensive description of

these algorithms is provided in [12]. The static race detectors try

to detect data races via analyzing source code without executing

the code [19]. For our approach, since no code execution happens

while analyzing the source code, we could consider DeepRace to

be a kind of static detectors.

Recent advancements in machine learning and software analytics

have led to address various software development challenges such

as code completion and code clone detection. In the code

completion, an intelligence feature in programming environments

that helps to speed up the process of developing by suggesting

fixes, Lie et al [16] have introduced an approach based on neural

networks in particular LSTM [20]. LSTM is a type of neural

network with state cells that act as long term and short term

memory. Lie et al formulate the code completion problem as a

sequential prediction task over the traversal of ASTs generated

from JavaScript source codes. In [21] Reychev et al apply LSTM

networks on a sequence of method calls to address the code

completion for programs which are using APIs. Their work was

later improved by introducing an approach based on decision tree

learning [22]. Moving to the bug localization works, the procedure

of locating buggy files considering a particular bug report, Lam et

al [23] combine deep learning with an information retrieval

technique called rVSM. Whereas in [24], since the characteristics

of natural languages is different from that of programming

languages, Huo et al applied two different convolution network

architectures, considering the differences in the structure of

programming language and natural languages. The intra-language

features generated by convolution networks were fed to a fusion

layer to indicate whether the source code file is related to a bug

report or not.

Deep learning is also applied in code clone detection, the process

of identifying duplicated code. Li et al [15] introduce CCLearner,

an approach based on Deep Learning. It computes similarity

vectors based on tokens for both clone pairs and non-clone pairs.

These vectors are fed to the deep neural network in order to train

a classifier to detect clone pairs and non-clone pairs. In the defect

prediction context. Wang et al [25] applied Deep Belief Network

[26] on token vectors which were generated by extracting tokens

from source code’s ASTs. Li et al [14] applied CNN on tokens vector

combined by traditional features to improve the accuracy of file

level defect prediction. Tingting Yu et al [37] for the first time

proposed features for concurrency defect prediction. They

1

2

3

4

5

6

7

8

9

10

int a[100][100];

int main()

{

 int i,j;

#pragma omp parallel for

 for (i=0;i<100;i++)

 for (j=0;j<100;j++)

 a[i][j]=a[i][j]+1;

 return 0;

}

1

2

3

4

5

6

7

8

9

10

int a[100][100];

int main()

{

 int i,j;

#pragma omp parallel for private(j)

 for (i=0;i<100;i++)

 for (j=0;j<100;j++)

 a[i][j]=a[i][j]+1;

 return 0;

}

Figure 1: An example of a data race in OpenMP program (left), resolving the data race via synchronization primitive
(right)

proposed static and dynamic features in order to predict whether

a method has defects or not. The prediction task was done using

Machin Learning models namely: Bayesian Network, Decision

Tree, Logistic Regression and Random Forest. The main drawback

of their work is that the prediction is done only of method-level

granularity meaning that it is not possible to predict which lines of

code are involved in a concurrent defect.

While deep learning is applied to address various software

development issues, to the best of our knowledge, no significant

work has been done on detecting concurrency bugs specifically

those which are related to data races.

3 Approach

In this section, we present the DeepRace, an approach built upon

a CNN model which automatically learn structural and semantic

information from programs and predict whether a program has an

instance of data race pattern or not. The overall procedure of

DeepRace is depicted in Figure 2.

We first collected a corpus containing OpenMP and POSIX source

files with specific synchronization patterns from GitHub. The

majority of these files are bug-free which leads to high data

imbalance in terms of source code with and without data races. We

address this problem by manually generating source code files

with data races from the collected files for the training purposes

using the mutation method presented in [38]. Next, the source

code files are parsed, and an AST is generated for each file. Then, a

vector containing nodes of AST is constructed which is fed to the

following encode phase. In this phase, each token is embedded to

a vector of a numerical values that is input to the CNN classifier.

Semantic and structural features are automatically learned by the

CNN. After training DeepRace, it would be able to probabilistically

distinguish whether a source code contains data race or not given

unseen source code. We also used the class activation map method

[36] with the global average pooling to extract the weight of the

neurons at the last convolutional layer and backpropagate it to the

input layer to determine the line of codes that contain the data

races. In the following sections, we explain each phase of our

framework in details.

3.1 Collecting Data

The amount of training data used to train a deep learning model

plays a crucial role in how well and accurate a model is trained. A

number of datasets (consist of source codes and ASTs) exists in

literature such as ETH JavaScript dataset [27] and Python source

code dataset [28]. However, to the best of our knowledge, there is

no publicly available dataset for the purpose of data race bug

detection. Fortunately, many developers use a type of version

control hosting service to keep track of their source codes and

their corresponding versions. GitHub is known to be one of the

most popular repositories hosting among developers. We

implement a tool which utilizes GitHub’s search feature and

extracts source code files from open source projects available on

GitHub. This tool, in particular, looks for source code files within

particular synchronization patterns in it and downloads that file.

These patterns are explained in the following subsections. In this

research, the focus is on collecting files written in C which make

use of parallel programming models OpenMP or POSIX threads.

We leave collecting and training our model with more different

types of concurrent bugs as future work. We believe the

aforementioned concurrent bugs that cause the data races

problem is very important to address in this paper. We collected

an overall of 15,800 source code files written in C and created 3

datasets, namely OpenMP dataset 1, OpenMP dataset 2 and POSIX

dataset.

OpenMP Dataset 1: In OpenMP, all variables are shared by

default. Therefore, it is essential to declare a variable private (by

using OpenMP private clause) to each thread where a concurrent

write or read and write operation is performed on it. Missing or

neglecting this clause could lead to a data race. Table 1 shows a

total number of 5710 OpenMP programs with total 456,591 lines

of code (LOC) are downloaded from GitHub. All of them make use

of OpenMP private clause. 4568 of these files are used for training

DeepRace while the rest are left for validation which means the

split of roughly 80% / 20%.

OpenMP Dataset 2: For some synchronization scenarios a specific

region of code has to be executed by only one thread at a time, this

can be achieved via critical directive in OpenMP. Table 1 shows in

total there are 1824 source code files in our OpenMP corpus,

which consists 150,902 overall LOC, downloaded from projects

Figure 2: The overview of DeepRace workflow

available on GitHub. 1459 of those files are separated for training

the model and validation is done on 365 files (80% / 20%).

POSIX Dataset: Mutexes is a way to protect shared variables.

Pthread_mutex_lock() locks a mutex object and the thread calling

this function becomes the owner of the mutex object until the

same thread unlocks the object. If a thread tries to lock a mutex

object which is already locked, that thread will wait until that

object becomes available. A total of 8266 source code files

containing pthread_mutex_lock() and pthread_mutex_unlock() are

collected into our POSIX corpus. This includes 671,945 LOC totally.

6612 and 1654 files are used for training and validating the model

respectively.

3.2 Creating Buggy and Bug-free Samples

Most of the collected source code files can be considered data race

free since their source code style follow particular

synchronization patterns (for OpenMP they either use private

clause or critical directive and for POSIX programs they use POSIX

lock primitive). To create the category for buggy files, we adopt the

mutation generation method to generate data races source code

by removing statements corresponding to synchronization

primitives [38]. We apply the mutation generation method to the

50 percent of those source code files to generate buggy source

code. In this way, we will have equal numbers of buggy samples

(i.e. with data race) and bug-free samples (i.e. without data race).

For OpenMP dataset 1, we intentionally injected a data race bug by

removing the private clause from the source code using a regular

expression (regex). Whereas for OpenMP dataset 2, buggy samples

are generated by removing statements declaring critical sections

and finally for POSIX dataset, those lines which are related to

locking and unlocking mutex objects are removed. Since a data

race is seeded only to half of the available files in datasets,

therefore the data in both categories i.e. buggy and bug-free is

balanced.

3.3 Parsing Source Code

The source code needs to be presented as vectors for the input of

the neural network. This representation can be created on

different degrees of granularity such as character level, token

level, and nodes of AST. Mou Le et al [29] have shown that in order

to keep both structural and syntactic information, using nodes of

AST is a proper granularity. We follow their method as well. We

deploy a C programming language parser Pycparser [30] and

Clang [39] to generate the AST of the source code files for POSIX

thread and OpenMP respectively. We have used the Clang parser

since Pycparser is unable to parse OpenMP pragmas. It is worth

mentioning that for POSIX programs ASTs are generated at file

level but for OpenMP since a section of a method’s body is usually

parallelized, as a result, ASTs generated for OpenMP programs are

at the method level. A token vector is generated by traversing the

tree in depth first order and extracting the class name of AST's

nodes (token types) such as FuncDecl, TypeDecl,

IdentifierType, Compound, and FuncCall thus at the end of

this phase for each source code we have a token vector. Figure 3

shows a part of AST of the Figure 1-left with its corresponding

token vector (below AST). Since, generally the ASTs and their

token vectors are so long, for the purpose of illustration, only a

small part of the AST and its token vector is shown here. This AST

is generated by utilizing Clang. The number of different token

types for OpenMP dataset 1 and OpenMP dataset 2 are 209 and

151 respectively, but this number is 46 for POSIX dataset which

probably indicates that using another parser might result in

having more token types leading to having more information in

the constructed dataset.

3.4 Encoding Token Vectors

Processing text and strings in almost all deep learning algorithms

are not possible. Therefore, token vectors of a string type cannot

be fed directly to CNN. To present tokens in integer, a mapping

technique is implemented to map each token in a vector to a

specific integer. The values of the integer are from 1 to the total

number of token types. As a result, each token has a unique

identifier. Also, a word embedding layer is employed. Word

embedding represents a fixed dense vector which is the projection

of a word in a continues vector space. A word’s position in the

vector space is learned from the context of that specific word in

the input vector.

3.5 Convolutional Neural Network (CNN)

Diverse vector size issue: The source code files are diverse in

terms of their length, resulting in vector embeddings of a wide

length variety. To train a CNN model, the input training samples

(token vectors) required to have the same length. One possible

solution is to pad all vectors to the size of the longest vector. This

might not be the most efficient way to tackle the problem, because

some vectors might be too long, and this could waste the resources

for handling dummy tokens. Another solution is to calculate the

average length of all vectors, therefore vectors with length less

than the average will be padded whereas those with longer length

are shrunken by discarding exceeding tokens. We experimented

with both models and observed that although padding all vectors

to the longest vector consumes more resources and increases the

Table 1: Statistics of three datasets

Datasets Training files Validation files Total Tokens LOC
OpenMP dataset 1 4,568 1,142 5,710 209 456,591
OpenMp dataset 2 1,459 365 1,824 151 150,902

POSIX dataset 6,612 1,654 8,266 46 671,945

OMPParallelForDirective CapturedStmt DeclRefExpr … ForStmt BinaryOperator

Figure 3: A fraction of motivating example's AST and its
corresponding token vector

training time, overall it helps to achieve better results, as it

captures all the features information from the source code in

contrast with the averaging solution some information might be

discarded. Therefore, we chose the longest vector solution and

padded all the vectors to the longest one. While Long-Short Term

Memory (LSTM) would have the better characteristic of handling

the various length input, the CNN ability to capture the spatial

information makes it more suitable to capture the exact line of

code which is causing the data races.

CNN architecture: The proposed CNN model is implemented in

Keras [31] backed by TensorFlow [32]. There are many complex

deep learning architectures introduced in some theoretical

approaches such as [33] and [34]. we employ the common existing

architectures of CNN. A CNN model generally consists of several

layers such as embedding, convolution, pooling, fully-connected

and output. In our model, the first layer is the embedding which

embeds the source code tokens into a dense vector of fixed-size.

These dense vectors are then fed into the convolution layer, where

different window size kernels are applied to find and detect

important features of various code tokens.

The number of convolution and pooling layers are diverse and

highly dependent on the training data and the field of study. A

typical architecture in Figure 4 that is more prevalent in text

classification field is that the output of embedding layer is usually

fed to several parallel convolution layers each of which could be

followed by a maximum pooling layer. The architecture and

implementation details are provided in Table 2. After training,

DeepRace will be able to probabilistically distinguish a file

containing a specific data race from a bug-free file.

Detecting the line-of-code data race: What distinguished our

model than the other presented in the literature is that DeepRace

not only efficiently detect the buggy file but highlight the lines of

code that causing the bugs. As a result, fixing the bugs of the source

is time efficient and saving human effort trying to locate the error.

To achieve that, we have adopt the class activation map method

[36]. The class activation map function will simply identify the

lines of code of the file that is being used by the CNN to classify a

particular category. We first get the output of the softmax

classification layer based on the classifier prediction. Then we do

multiplication sum to the softmax layer weights with the values of

the last convolutional layer of the CNN. Finally, we averaged the

values of the several windows size layers and project it with the

input source code to generate heat-map for each line of the source

code.

More formally, given a source code file x, we need to visualize the

lines of code that cause the data races problem based on the

prediction f(x) = 1, where 1 indicate the classification of buggy file.

Let gk(xi) be the activation function output of neuron k of the last

convolutional layer. Then, we average the output values of

neurons k of all the ith filters at the last convolutional layer as

follows:

𝐻𝑘 = ∑ 𝑔
𝑘
(𝑖)

𝑖

We feed the average pooling value Hk of the last convolutional

layer to the softmax function to predict the category of the source

code file as follows:

𝑆𝑐 =
𝑒𝑥𝑝(∑ 𝑤𝑘

𝑐 𝐻𝑘𝑘)

∑ 𝑒𝑥𝑝(∑ 𝑤𝑘
𝑐 𝐻𝑘𝑘)𝑐

Where wk is the weight of the softmax layer that directly connects

the neuron i of the convolutional network to class c. From the

given equation, we notice that the score of class c is highly related

to the weight 𝑤𝑘
𝑐 which represents the importance of Hk.

We generate the class activation map Gc of class c = 1 at the spatial

location i as follows:

𝐺𝑐(𝑖) = ∑ 𝑤𝑘
𝑐 𝑔

𝑘
(𝑖)

𝑘

Finally, we back-distribute the importance weights Gc for each

neuron k of the convolutional network to the input layer that

represents the source code file to detect the buggy line of the

entire code.

4 Evaluation

In this section, we describe the metrics within which we evaluate

the effectiveness of DeepRace. Then, we outline the parameters

used to train DeepRace and present the results. Moreover, we

evaluate and discuss the capability of DeepRace by testing it

against 60 programs which are not included in training or

validation sets, 30 out of the 60 programs have data race.

Furthermore, we test DeepRace using microbenchmarks available

in DataraceBench [17].

4.1 Evaluation Metrics

To evaluate the effectiveness of DeepRace we define the following

metrics:

Precision: The ratio of the number of data race methods classified

correctly to the total number of data race predicted (either true or

false).

Precision =
FP)(TP predicted race data total of Number

(TP) predicted race data true of Number


 (1)

Recall: Measures the ratio of a number of truly predicted data race

to the total number of all data races.

Figure 4: DeepRace CNN Architecture: Convolution layers
are independent of each other

Recall =
races data total of Number

(TP) predicted race data true of Number
 (2)

Accuracy: Measures the ratio of correctly predicted data race and

data race free files to the total number of all files.

Accuracy =
FN) FP TN (TP files total of Number

TN) (TP files classifedcorrectly of Number




 (3)

We also evaluate the performance of our model in detecting the

lines of code that cause the data races in the method. For this

purpose, we adopt the Intersect of Union method for class c and

sample t:

IoU c = Avg (A / ((A + B) + (C / N))) (4)

Where A is the buggy code token in the source code detected by

the model, B is the buggy code token in the source code that is not

detected by the model, C is the not a buggy code but detected by

the model as a buggy code, and N is all the lines of code in the

method.

4.2 Hyper-Parameter of DeepRace CNN

Table 2 outlines the values used for different parameters of

DeepRace CNN architecture. The value of these parameters is set

experimentally that means by training the model several times

and experimenting with different values for each parameter.

4.3 Results

Table 3 summarizes the results according to the metrics defined in

section 4.1.

In general, the best accuracies of the datasets range from 81% to

86%, which indicates DeepRace is effective in recognizing source

code files containing data race from bug-free. The OpenMP dataset

2 achieved the least accuracy among others. This is due to the

insufficient training samples. How well a deep model is trained

and generalized is highly dependable on the size of the data set.

The more training samples being available to feed to the model,

the better the results could be achieved.

Figure 5 shows the accuracy rate of training and validation of

DeepRace. The accuracy improves as the number of epochs

increases. Setting the number epochs beyond 40 could result in

slight improvement for accuracy but will also increase the training

time significantly.

Additionally, to evaluate and compare our approach with other

data race detectors, we examined each trained data race detector

against 60 source code files which we call test set. This test set was

neither included in training nor in the validation set and 30 out of

the 60 files in this test set include data races. The existence of data

race in OpenMP files was confirmed by Archer [35], a state-of-the-

art data race detector for OpenMP programs and for the POSIX

files, all files were analyzed by the popular tool ThreadSanitizer

[18].

Table 4 to 6 show results of DeepRace in terms of True Positive

(predicting the existence of data race correctly), False Negative

(incorrectly predicting a racy file as clean, so-called missing a data

race), True Negative (correctly predicting a file without data race)

and False Positive (predicting a clean file as having data race

incorrectly). Overall, it can be observed that our approach is

effective in identifying buggy and bug-free files correctly and

yields a low number of a false positive and false negative.

For example, in Table 4, DeepRace only misclassified one buggy

file out of 30 buggy files (1 false negative) and only predicted 2

bug-free files incorrectly as a buggy file (false positive). The results

achieved by DeepRace for critical directive races in Table 5, is a bit

worse than DeepRace for the private clause. As mentioned the

Table 2: Hyperprameters

Layer Parameters

Embedding dimension=64

Conv1 # of filters=512, filter size=3x32

Conv2 # of filters=512, filter size=4x32

Conv3 # of filters=512, filter size=5x32

MaxPool1 shape=1x512

MaxPool2 shape=1x512

MaxPool3 shape=1x512

Concatenate shape=3, 512

Flatten shape=1x1536

Dropout rate=0.5

Dense Shape=1x2

Table 3: Results of datasets based on two architectures

Dataset Precision Recall Accuracy

OpenMP #1 %85 %86 %86

OpenMP #2 %79 %82 %81

POSIX dataset %81 %83 %83

Figure 5: Training and validation accuracy of DeepRace for three datasets based on number of epochs (OMP #1, OMP #2,
POSIX)

number of source code files in the training set was not sufficient

and this could be the main reason why the detector performed

worse. Finally, DeepRace POSIX for lock primitives in Table 6,

produced 6 false negatives and 10 false positives.

We also calculate the effectiveness of the DeepRace model ability

to detect the lines of code that causing the bugs using the metric

mentioned in section 3. We found that our model is detecting all

the lines of code that causing the bug or missing only one line per

method for some samples, as shown in Figure 6. However, in very

few scenarios, we have noticed that the model was missing the

lines that cause the problem. This show that the classifier is

considering other features for classifying the file as buggy. The

advantage of our model is that it shows the cases that the classifier

could be misled by other features. Furthermore, we have also

notice that our model is efficiently able to detect a method with

several buggy lines of code at different locations in the method.

This gives our model the effectiveness of handling long methods

with a hundred lines of codes, as shown in Figure 7. Using the

modified IoU for the buggy files, our model achieved 0.66.

We also tested DeepRace against microbenchmarks available in

DataraceBench. DataraceBench is a set of OpenMP

microbenchmarks with and without data race. There are a variety

of data race bug patterns in these microbenchmarks. At this stage,

DeepRace is capable of detecting data races based on the 3

aforementioned data race bug patterns. So, we tested DeepRace

against microbenchmarks with data races similar to those 3 data

race bug patterns and left detecting other data races for future

work. Among microbenchmarks, only 3 of them have data race due

to missing private clause. Unfortunately, no microbenchmark with

data race originated from missing critical directive was available

in this benchmark suite. All 3 microbenchmarks with data race

have been detected as buggy by DeepRace. We also tested 17 files

without data race with DeepRace and they were correctly

classified as not buggy. Table 7 shows a list of files in

DataraceBench which were analyzed by DeepRace.

Figure 8 shows file DRB073-doall2-orig-yes.c, which is a

microbenchmark with data race in DataraceBench. The variable j

in the second loop is not private and is shared among threads. This

variable needs to be declared private. DeepRace shows the

variable involved in the data race by highlighting the line where

that variable is defined. Therefore, variable j is highlighted on line

4 where this variable is defined. However, since j and i variables

both are defined in the same line, we can see that variable i is also

highlighted. This means that although highlighting buggy lines is

helpful in detecting bugs, reducing the granularity to words in the

lines will help to gain more accuracy. The beginning of the parallel

region is also highlighted by DeepRace, this shows where the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

int main()

{

 int thread_num;

 #pragma omp parallel

 {

 thread_num = omp_get_thread_num();

 …

 #pragma omp master

 {

 …

 }

 ;

 }

 …

 int a;

 int rang;

 #pragma omp parallel

 {

 rang = omp_get_thread_num();

 a = 1;

 #pragma omp single

 {

 a = 2;

 …

 }

 ;

 …

 }

 …

 #pragma omp parallel

 {

 rang = omp_get_thread_num();

 a = 1;

 #pragma single copyprivate()

 {

 a = 2;

 }

 …

 }

}

Figure 7: Highlighted source code with several buggy
lines of code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

int main()

{

 int i = 0;

 omp_set_num_threads(4);

 int *values = (int *)

malloc((sizeof(int)) *

omp_get_num_threads());

 int threadNum = 0;

 #pragma omp parallel shared(values)

 {

 threadNum = omp_get_thread_num();

 printf("Thread %d\n", threadNum);

 values[threadNum] =

doComputation((1 + threadNum) *

100000000);

 }

 for (i = 0; i < 4; i++)

 {

 printf("Thread %d calculated %d\n",

i, values[i]);

 }

}

Figure 6: Highlighted source code

Table 4: Results of DeepRace on OpenMP data races
(private clause)

Ground Truth

buggy Not-buggy

Predicted
buggy 29 1

Not-buggy 2 28

Table 5: Results of DeepRace on OpenMP data races
(critical directive)

Ground Truth

buggy Not-buggy

Predicted
buggy 26 4

Not-buggy 1 29

Table 6: Results of DeepRace on POSIX data races
(lock primitives)

Ground Truth

buggy Not-buggy

Predicted
buggy 24 6

Not-buggy 10 20

parallel region begins. DeepRace was also able to detect data races

in files which initially were thought to be free of these types of data

race bug patterns. These files were later fixed in later versions2.

OpenMP is mostly used by developers to parallelize for loops and

these loops are inside the body of a method. Whereas in POSIX

programs there is a main method which is run by the master

thread. This master thread creates worker threads and for each of

them assigns a method to run. Based on these explanations, we

decided to generate ASTs for OpenMP programs on method-level,

that means for each method in OpenMP program an AST is created,

while for POSIX programs these ASTs are generated at file-level.

This indicates that generally token vectors for POSIX programs are

longer which could affect the result of training, predicting, and the

time required for training. Another point needs to be considered

is that the prediction is probabilistic. Consequently, there is a need

for a threshold set. The higher threshold will result in less data

race report which means some buggy files may be missed, whereas

the lower threshold will lead to higher data race report which may

increase false alarms. Here the threshold is set to 0.5 which is a

common threshold for classification tasks.

It is worth mentioning that DeepRace automatically learns to

distinguish between files with/without data races. This means

that unlike current debugging tools and race detectors which often

involve sophisticated static and dynamic analyses and algorithms,

DeepRace can detect other data race patterns in source codes if

appropriate training dataset for those patterns is provided.

Efficiency: Table 8 shows how long it takes to train DeepRace as

well as how long it takes to perform validation meaning to expose

DeepRace to previously unseen codes. Running training and

2 https://github.com/LLNL/dataracebench/issues/1

validation on the number of files which are described in Table 1

takes less than an hour per each dataset except for POSIX dataset

because of the availability of a higher number of training files and

the longer length of token vectors. This table indicates that most

of the time will be consumed for training DeepRace, and once

DeepRace is trained, deploying it for new source code files for

debugging purposes will not take much time as one may require

with dynamic race detectors to execute the programs.

Discussion: Our experiments with DeepRace were conducted

using a corpus of C files collected from GitHub. For each C file, an

AST was generated and then nodes of that AST were extracted to

create a token vector. To keep the ASTs small, we downloaded

small size files from GitHub. This might cause some biases in the

dataset. In the future, we plan to collect more files especially

larger. Moreover, the information that is extracted from ASTs can

be improved. For instance, we can also include the relations

between the nodes. We believe adding these steps will further

improve the results achieved by DeepRace. From another aspect,

in this research, 3 data race bug patterns were targeted. These

data race bug patterns cannot and will not fully represent all data

race types in multi-threaded C programs. Analyzing more

sophisticated patterns and creating datasets accordingly is

planned to conduct in the future. Finally, not all C parsers produce

the same ASTs, experimenting with disparate parsers might lead

to higher or lower accuracies.

5 Conclusion

In this paper, we propose an approach to predict data races in

source codes via deep learning. We leverage the power of the

convolutional neural network to train DeepRace, a data race

detector which can predict whether a source code file contains a

data race or not, we expand the approach further that it is able to

highlight the lines of codes which are involved in the data race. As

the experimental results confirm, the trained DeepRace is efficient

in classifying buggy or clean source code correctly comparable to

the state-of-the-art tools, achieving accuracies between 81% and

86%. DeepRace automatically learns to discriminate between

buggy and bug-free source code. Considering the effort and cost of

developing conventional data race detectors with sophisticated

algorithms, building and training DeepRace for identifying other

patterns of data races is more convenient and feasible and does

not require designing complex algorithms or code analysis.

Furthermore, the DeepRace model was efficiently able to detect all

the lines of code that causing the bugs or missing only one line for

some samples. However, in very few scenarios, we have noticed

that the model was missing the lines that causing the problem, we

leave these cases as future work.

Table 7: List of microbenchmarks analyzed by
DeepRace

File name Groundtruth DeepRace

Result

1 DRB020-privatemissing-var-yes Data race Data race

2 DRB028-privatemissing-orig-yes Data race Data race

3 DRB073-doall2-orig-yes Data race Data race

4 DRB041-3mm-parallel-no No data race No data race

5 DRB042-3mm-tile-no No data race No data race

6 DRB043-adi-parallel-no No data race No data race

7 DRB044-adi-tile-no No data race No data race

8 DRB046-doall2-orig-no No data race No data race

9 DRB055-jacobi2d-parallel-no No data race No data race

10 DRB056-jacobi2d-tile-no No data race No data race

11 DRB057-jacobiinitialize-orig-no No data race No data race

12 DRB058-jacobikernel-orig-no No data race No data race

13 DRB059-lastprivate-orig-no No data race No data race

14 DRB060-matrixmultiply-orig-no No data race No data race

15 DRB061-matrixvector1-orig-no No data race No data race

16 DRB063-outeronly1-orig-no No data race No data race

17 DRB064-outeronly2-orig-no No data race No data race

18 DRB065-pireduction-orig-no No data race No data race

19 DRB067-restrictpointer1-orig-no No data race No data race

20 DRB076-flush-orig-no No data race No data race

Table 8: Time required for training and validation of a
data race detector (min:sec:ms)

Dataset Training Validation

OpenMP Dataset 1 06:35:78 00:00:35

OpenMP Dataset 2 01:50:59 00:00:13

POSIX Dataset 23:52:06 00:00:86

1

2

3

4

5

6

7

8

9

10

int a[100][100];

int main()

{

 int i,j;

#pragma omp parallel for

 for (i=0;i<100;i++)

 for (j=0;j<100;j++)

 a[i][j]=a[i][j]+1;

 return 0;

}

Figure 8: Microbenchmark with data race

REFERENCES
[1] K. Poulsen (2004). Software bug contributed to blackout. Secure. Focus.

[2] J. Constine (2013). NASDAQ’s Glitch Cost Facebook Investors ~$500M.

Available: https://techcrunch.com/2013/03/25/ip-oh-my-gosh-all-that-

money-just-disappeared/. [Accessed: 27-Dec-2017].

[3] S. Lu, S. Park, E. Seo, and Y. Zhou (2008). Learning from mistakes: a

comprehensive study on real-world concurrency bug characteristics. In

ASPLOS. ACM. 329–339.

[4] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder (2007).

Automatically classifying benign and harmful data races using replay analysis.

in PLDI. ACM. 22–31.

[5] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson (1997). Eraser:

A dynamic data race detector for multithreaded programs, ACM Trans. Comput.

Syst.. 15(4). 391–411.

[6] D. Engler and K. Ashcraft (2003). RacerX: effective, static detection of race

conditions and deadlocks. in SOSP. ACM. 237–252.

[7] M. Abadi, C. Flanagan, and S. N. Freund (2006). Types for safe locking: Static

race detection for Java. ACM Trans. Program. Lang. Syst. 28(2). 207–255.

[8] V. Kahlon, N. Sinha, E. Kruus, and Y. Zhang (2009). Static data race detection for

concurrent programs with asynchronous calls. In ESEC/FSE. ACM. 13–22.

[9] M. Naik, A. Aiken, and J. Whaley (2006). Effective static race detection for Java.

in PLDI. ACM. 308-319.

[10] Y. Yu, T. Rodeheffer, and W. Chen (2005). Racetrack: efficient detection of data

race conditions via adaptive tracking. In SOSP. ACM. 221–234.

[11] M. D. Bond, K. E. Coons, and K. S. McKinley (2010). PACER: proportional

detection of data races. In PLDI. ACM. 255–268.

[12] R. O’Callahan and J.D. Choi (2003). Hybrid dynamic data race detection. In

PPoPP. ACM. 167–178.

[13] A. Jannesari and W. F. Tichy (2014). Library-independent data race detection.

IEEE Trans. Parallel Distrib. Syst. 25(10). 2606–2616.

[14] J. Li, P. He, J. Zhu, and M. R. Lyu (2017). Software Defect Prediction via

Convolutional Neural Network. In QRS. IEEE. 318–328.

[15] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder (2017). CCLearner: A Deep

Learning-Based Clone Detection Approach. In ICSME. IEEE. 249–260.

[16] C. Liu, X. Wang, R. Shin, J. E. Gonzalez, and D. Song (2016). Neural Code

Completion.

[17] “DataRaceBench.” Available: https://github.com/LLNL/dataracebench.

[Accessed: 27-Dec-2017].

[18] K. Serebryany and T. Iskhodzhanov (2009). ThreadSanitizer: data race

detection in practice. In WBIA. ACM. 62–71.

[19] Kahlon, Vineet, Yu Yang, Sriram Sankaranarayanan, and Aarti Gupta (2007).

Fast and accurate static data-race detection for concurrent programs. In CAV.

Berlin, Heidelberg: Springer. 226-239.

[20] S. Hochreiter and J. Schmidhuber (1997). Long short-term memory. Neural

Comput. 9(8). 1735–1780.

[21] V. Raychev, M. Vechev, and E. Yahav (2014). Code completion with statistical

language models. In PLDI. ACM. 419–428.

[22] V. Raychev, P. Bielik, and M. Vechev (2016). Probabilistic model for code with

decision trees. In OOPSLA. ACM. 731–747.

[23] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen (2015). Combining deep

learning with information retrieval to localize buggy files for bug reports. In

ASE. IEEE. 476–481.

[24] X. Huo, M. Li, and Z. H. Zhou (2016). Learning unified features from natural and

programming languages for locating buggy source code. In IJCAI, ACM. 1606–

1612.

[25] S. Wang, T. Liu, and L. Tan (2016). Automatically learning semantic features for

defect prediction. In ICSE. IEEE. 297–308.

[26] G. E. Hinton, S. Osindero, and Y.-W. The (2006). A fast learning algorithm for

deep belief nets. Neural Comput. 18(7). 1527–1554.

[27] “150k JavaScript Dataset.” [Online]. Available:

https://www.sri.inf.ethz.ch/js150.php. [Accessed: 23-Apr-2018].

[28] “150k Python Dataset.” [Online]. Available: https://www.sri.inf.ethz.ch/py150.

[Accessed: 23-Apr-2018].

[29] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin (2015). Building program vector

representations for deep learning. In KSEM. Springer, Cham. 547–553.

[30] pycparser. Available: https://github.com/eliben/pycparser. [Accessed: 23-

Apr-2018].

[31] Keras: The Python Deep Learning library. Available: https://keras.io/.

[Accessed: 27-Dec-2017].

[32] An open-source software library for Machine Intelligence. Available:

https://www.tensorflow.org/. [Accessed: 27-Dec-2017].

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning

applied to document recognition. Proc. IEEE. 86(11). 2278–2324.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton (2012). Imagenet classification

with deep convolutional neural networks. In NIPS. Curran Associates. 1097–

1105.

[35] S. Atzeni et al. (2016). ARCHER: effectively spotting data races in large OpenMP

applications. In IPDPS. IEEE. 53–62.

[36] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba

(2016). Learning deep features for discriminative localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. 2921-

2929.

[37] Yu, Tingting, Wei Wen, Xue Han, and Jane Hayes (2018). ConPredictor:

Concurrency Defect Prediction in Real-World Applications. IEEE Transactions

on Software Engineering.

[38] Kusano, Markus, and Chao Wang (2013). CCmutator: A mutation generator for

concurrency constructs in multithreaded C/C++ applications. In Proceedings of

the 28th IEEE/ACM International Conference on Automated Software

Engineering. 722-725.

[39] Lattner, Chris (2008). LLVM and Clang: Next generation compiler technology.

In The BSD conference.

