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ABSTRACT 

With the proliferation of multi-core hardware, parallel programs 

have become ubiquitous. These programs have their own type of 

bugs known as concurrency bugs and among them, data race bugs 

have been mostly in the focus of researchers over the past decades. 

In fact, detecting data races is a very challenging and important 

task. There have been several research paths in this area with 

many sophisticated tools designed and utilized that focus on 

detecting data race at the file level. In this paper, we propose 

DeepRace, a novel approach toward detecting data races in the 

source code. We build a deep neural network model to find data 

races instead of creating a data race detector manually. Our model 

uses a one-layer convolutional neural network (CNN) with 

different window size to find data races method. Then we adopt 

the class activation map function with global average pooling to 

extract the weights of the last convolutional layer and 

backpropagate it with the input source code to extract the line of 

codes with a data race. Thus, the DeepRace model can detect the 

data race bugs on a file and line of code level. In addition, we 

noticed that DeepRace successfully detects several buggy lines of 

code at different locations of the file. We tested the model with 

OpenMP and POSIX source code datasets which consist of more 

than 5000 and 8000 source code files respectively. We were able 

to successfully classify buggy source code files and achieve 

accuracies ranging from 81% and 86%. We also measured the 

performance of detecting and visualizing the data race at the line 

of code levels and our model achieved promising results. We only 

had a small number of false positives and false, ranging from 1 to 

10. Furthermore, we used the intersection of union to measure the 

accuracy of the buggy lines of code, our model achieved promising 

results of 66 percent. 
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1 Introduction 

With the ubiquity of multicore processors, the demand for multi-

threaded programming that capable of fully using the power of 

modern systems is constantly on the rise. However, the prevalence 

of concurrent software has led to the emergence of bugs known as 

concurrency bugs. These bugs have caused some serious problems 

such as Northeast blackout [1] and NASDAQ's Facebook glitch [2]. 

Since these types of bugs are more common than ever in 

concurrent software [3], tackling them has been in the focus of 

researchers over the past years. One of the major sources of 

concurrency bugs is data race [4]. A data race bug occurs when two 

parallel accesses to one particular memory location are executed 

without an appropriate synchronization and at least one of the 

accesses is a write operation. It could often result in erroneous 

outputs [5]. 

Generally, data race detectors can be divided broadly into two 

categories. On one hand, there are static data race detectors [6]–

[9] which typically examine source code or bytecode without 

executing the code. On the other hand, dynamic data race 

detectors [5], [10]–[13] observe and monitor the execution of the 

code either offline or online, we provide more details in the coming 

section. 

With recent advancement in deep learning and the abundant 

source code available, researchers have been developing various 

deep learning models to tackle wide variety of software 

engineering and quality assurance tasks such as defect prediction 

[14], code clone detection [15] and code completion [16]. 

However, to the best of our knowledge, no significant work has 

been done on using deep learning to detect concurrency bugs, 

more specifically data race.  

Figure 1 shows an example of a data race in a simple two-

dimensional array computing program [17] which has one nested 

loop. Both variables i and j are declared outside of the parallel 

region but i, which is an index variable for the parallelized loop, is 

automatically private due to OpenMP implementation. The second 

loop, however, is not parallelized and its variable j is shared among 

all threads. Therefore, in line 9, when read and write operations 

are executed, the value of j could be anything assigned by any 

thread. This data race could be resolved by defining j as a private 

variable to each. Consequently, each thread would have its own 

copy of variable j. 

In this paper, we introduce DeepRace, a data race detector that 

addresses the problem of detecting data race bugs by leveraging 

the power of deep learning. For this purpose, we created a corpus 

of source code files from OpenMP and POSIX programs with 

specific synchronization patterns. Then, we built two classes of 

buggy and bug-free source code samples out of the corpus, i.e. a 

class for code samples that contain data races and another one for 

those files without data races. For simplicity will call the files with 

data race the buggy files and files without data race the bug-free 

files throughout the paper. We generated Abstract Syntax Trees 

(ASTs) for all the source code files. Then token vectors are created 

by extracting the class name of nodes from ASTs. Finally, we 

trained a deep learning model by feeding these vectors to the 

model. 

Our first goal is to have a trained detector which can distinguish 

programs containing a data race from those without a data race. 

Unlike the previous works of deep learning and code analysis 

which classify source code files at method-level, our second goal is 

to further extend the approach to find the source of the bug at the 

line-level. To achieve this goal, we have adopted the class activates 



map method presented in [36] to extract the spatial location of the 

last convolutional layer neuron of the CNN classifier that reflects 

the location of the data race lines. We created three different 

datasets with three different data race bug patterns for OpenMP 

and POSIX programs. For this reason, we collected more than 

15,800 source code files from GitHub and trained and test 

DeepRace with them. In addition, a test set of 60 sample programs 

with and without data race is created to compare DeepRace with 

state-of-the-art race detector tools to confirm the efficiency of our 

approach. 

Our contributions in this work are summarized as follows: 

 We implemented an efficient one-layer CNN classifier that 

applies various window size to detect the data race bugs related 

to three different synchronization patterns: omp private clause, 

omp critical directives, and posix mutex locks. 

 While the recent works on code analysis with deep learning 

typically classify source-code at method-level, our model focus 

on detecting the data race at the line of code level. We achieved 

that by adapting the class activation map method to extract the 

weights of the various windows size convolutional layers and 

project it with the source code file to generate the line of codes 

that triggered the data race bugs. In addition, we noticed that 

DeepRace successfully detects several buggy lines of code at 

different locations at the file. 

 With the lack of publicly available labeled source code dataset, 

we have collected dataset with three different data race bug 

patterns for OpenMP and POSIX programs. The dataset has 

15,800 source code files, collected from GitHub. We equally 

divided the files to two categories: with and without data races, 

to address the problem of data imbalance that widely exists in 

the real-word datasets. We use the mutation method to generate 

source code files with data races. The dataset will be publicly 

available for researchers.1 

The paper is structured as follows: In the next section (Section 2), 

we describe related works on data race bug detection and provide 

an overview of using deep learning models on other software 

engineering areas. Our approach is explained in Section 3. In 

Section 4, implementation details are outlined and discussed. The 

experimental results are presented in this section. Finally, in 

Section 5, we conclude the paper and outline the prospects of our 

future works. 

2 Related Works 

                                                           
1 Download link of the dataset will be shown in the final version of the paper 

Many approaches of detecting the data races bugs exist in the 

literature. These approaches are commonly divided into two 

categories: dynamic and static detectors. For dynamic race 

detectors, happens-before and lockset algorithms are considered as 

a base for most of these tools [18]. A comprehensive description of 

these algorithms is provided in [12]. The static race detectors try 

to detect data races via analyzing source code without executing 

the code [19]. For our approach, since no code execution happens 

while analyzing the source code, we could consider DeepRace to 

be a kind of static detectors. 

Recent advancements in machine learning and software analytics 

have led to address various software development challenges such 

as code completion and code clone detection. In the code 

completion, an intelligence feature in programming environments 

that helps to speed up the process of developing by suggesting 

fixes, Lie et al [16] have introduced an approach based on neural 

networks in particular LSTM [20]. LSTM is a type of neural 

network with state cells that act as long term and short term 

memory. Lie et al formulate the code completion problem as a 

sequential prediction task over the traversal of ASTs generated 

from JavaScript source codes. In [21] Reychev et al apply LSTM 

networks on a sequence of method calls to address the code 

completion for programs which are using APIs. Their work was 

later improved by introducing an approach based on decision tree 

learning [22]. Moving to the bug localization works, the procedure 

of locating buggy files considering a particular bug report, Lam et 

al [23] combine deep learning with an information retrieval 

technique called rVSM. Whereas in [24], since the characteristics 

of natural languages is different from that of programming 

languages, Huo et al applied two different convolution network 

architectures, considering the differences in the structure of 

programming language and natural languages. The intra-language 

features generated by convolution networks were fed to a fusion 

layer to indicate whether the source code file is related to a bug 

report or not. 

Deep learning is also applied in code clone detection, the process 

of identifying duplicated code. Li et al [15] introduce CCLearner, 

an approach based on Deep Learning. It computes similarity 

vectors based on tokens for both clone pairs and non-clone pairs. 

These vectors are fed to the deep neural network in order to train 

a classifier to detect clone pairs and non-clone pairs. In the defect 

prediction context. Wang et al [25] applied Deep Belief Network 

[26] on token vectors which were generated by extracting tokens 

from source code’s ASTs. Li et al [14] applied CNN on tokens vector 

combined by traditional features to improve the accuracy of file 

level defect prediction. Tingting Yu et al [37] for the first time 

proposed features for concurrency defect prediction. They 
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int a[100][100]; 

int main() 

{ 

  int i,j; 

#pragma omp parallel for 

  for (i=0;i<100;i++) 

    for (j=0;j<100;j++) 

      a[i][j]=a[i][j]+1; 

  return 0; 

} 
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int a[100][100]; 

int main() 

{ 

  int i,j; 

#pragma omp parallel for private(j) 

  for (i=0;i<100;i++) 

    for (j=0;j<100;j++) 

      a[i][j]=a[i][j]+1; 

  return 0; 

} 

Figure 1: An example of a data race in OpenMP program (left), resolving the data race via synchronization primitive 
(right) 



proposed static and dynamic features in order to predict whether 

a method has defects or not. The prediction task was done using 

Machin Learning models namely: Bayesian Network, Decision 

Tree, Logistic Regression and Random Forest. The main drawback 

of their work is that the prediction is done only of method-level 

granularity meaning that it is not possible to predict which lines of 

code are involved in a concurrent defect. 

While deep learning is applied to address various software 

development issues, to the best of our knowledge, no significant 

work has been done on detecting concurrency bugs specifically 

those which are related to data races. 

3 Approach 

In this section, we present the DeepRace, an approach built upon 

a CNN model which automatically learn structural and semantic 

information from programs and predict whether a program has an 

instance of data race pattern or not. The overall procedure of 

DeepRace is depicted in Figure 2. 

We first collected a corpus containing OpenMP and POSIX source 

files with specific synchronization patterns from GitHub. The 

majority of these files are bug-free which leads to high data 

imbalance in terms of source code with and without data races. We 

address this problem by manually generating source code files 

with data races from the collected files for the training purposes 

using the mutation method presented in [38]. Next, the source 

code files are parsed, and an AST is generated for each file. Then, a 

vector containing nodes of AST is constructed which is fed to the 

following encode phase. In this phase, each token is embedded to 

a vector of a numerical values that is input to the CNN classifier. 

Semantic and structural features are automatically learned by the 

CNN. After training DeepRace, it would be able to probabilistically 

distinguish whether a source code contains data race or not given 

unseen source code. We also used the class activation map method 

[36] with the global average pooling to extract the weight of the 

neurons at the last convolutional layer and backpropagate it to the 

input layer to determine the line of codes that contain the data 

races. In the following sections, we explain each phase of our 

framework in details. 

 

3.1 Collecting Data 

The amount of training data used to train a deep learning model 

plays a crucial role in how well and accurate a model is trained. A 

number of datasets (consist of source codes and ASTs) exists in 

literature such as ETH JavaScript dataset [27] and Python source 

code dataset [28]. However, to the best of our knowledge, there is 

no publicly available dataset for the purpose of data race bug 

detection. Fortunately, many developers use a type of version 

control hosting service to keep track of their source codes and 

their corresponding versions. GitHub is known to be one of the 

most popular repositories hosting among developers. We 

implement a tool which utilizes GitHub’s search feature and 

extracts source code files from open source projects available on 

GitHub. This tool, in particular, looks for source code files within 

particular synchronization patterns in it and downloads that file. 

These patterns are explained in the following subsections. In this 

research, the focus is on collecting files written in C which make 

use of parallel programming models OpenMP or POSIX threads. 

We leave collecting and training our model with more different 

types of concurrent bugs as future work. We believe the 

aforementioned concurrent bugs that cause the data races 

problem is very important to address in this paper. We collected 

an overall of 15,800 source code files written in C and created 3 

datasets, namely OpenMP dataset 1, OpenMP dataset 2 and POSIX 

dataset. 

OpenMP Dataset 1: In OpenMP, all variables are shared by 

default. Therefore, it is essential to declare a variable private (by 

using OpenMP private clause) to each thread where a concurrent 

write or read and write operation is performed on it. Missing or 

neglecting this clause could lead to a data race. Table 1 shows a 

total number of 5710 OpenMP programs with total 456,591 lines 

of code (LOC) are downloaded from GitHub. All of them make use 

of OpenMP private clause. 4568 of these files are used for training 

DeepRace while the rest are left for validation which means the 

split of roughly 80% / 20%. 

OpenMP Dataset 2: For some synchronization scenarios a specific 

region of code has to be executed by only one thread at a time, this 

can be achieved via critical directive in OpenMP. Table 1 shows in 

total there are 1824 source code files in our OpenMP corpus, 

which consists 150,902 overall LOC, downloaded from projects 

 

Figure 2: The overview of DeepRace workflow 



available on GitHub. 1459 of those files are separated for training 

the model and validation is done on 365 files (80% / 20%). 

POSIX Dataset: Mutexes is a way to protect shared variables. 

Pthread_mutex_lock() locks a mutex object and the thread calling 

this function becomes the owner of the mutex object until the 

same thread unlocks the object. If a thread tries to lock a mutex 

object which is already locked, that thread will wait until that 

object becomes available. A total of 8266 source code files 

containing pthread_mutex_lock() and pthread_mutex_unlock() are 

collected into our POSIX corpus. This includes 671,945 LOC totally. 

6612 and 1654 files are used for training and validating the model 

respectively. 

3.2 Creating Buggy and Bug-free Samples 

Most of the collected source code files can be considered data race 

free since their source code style follow particular 

synchronization patterns (for OpenMP they either use private 

clause or critical directive and for POSIX programs they use POSIX 

lock primitive). To create the category for buggy files, we adopt the 

mutation generation method to generate data races source code 

by removing statements corresponding to synchronization 

primitives [38]. We apply the mutation generation method to the 

50 percent of those source code files to generate buggy source 

code. In this way, we will have equal numbers of buggy samples 

(i.e. with data race) and bug-free samples (i.e. without data race). 

For OpenMP dataset 1, we intentionally injected a data race bug by 

removing the private clause from the source code using a regular 

expression (regex). Whereas for OpenMP dataset 2, buggy samples 

are generated by removing statements declaring critical sections 

and finally for POSIX dataset, those lines which are related to 

locking and unlocking mutex objects are removed. Since a data 

race is seeded only to half of the available files in datasets, 

therefore the data in both categories i.e. buggy and bug-free is 

balanced. 

3.3 Parsing Source Code 

The source code needs to be presented as vectors for the input of 

the neural network. This representation can be created on 

different degrees of granularity such as character level, token 

level, and nodes of AST. Mou Le et al [29] have shown that in order 

to keep both structural and syntactic information, using nodes of 

AST is a proper granularity. We follow their method as well. We 

deploy a C programming language parser Pycparser [30] and 

Clang [39] to generate the AST of the source code files for POSIX 

thread and OpenMP respectively. We have used the Clang parser 

since Pycparser is unable to parse OpenMP pragmas. It is worth 

mentioning that for POSIX programs ASTs are generated at file 

level but for OpenMP since a section of a method’s body is usually 

parallelized, as a result, ASTs generated for OpenMP programs are 

at the method level. A token vector is generated by traversing the 

tree in depth first order and extracting the class name of AST's 

nodes (token types) such as FuncDecl, TypeDecl, 

IdentifierType, Compound, and FuncCall thus at the end of 

this phase for each source code we have a token vector. Figure 3 

shows a part of AST of the Figure 1-left with its corresponding 

token vector (below AST). Since, generally the ASTs and their 

token vectors are so long, for the purpose of illustration, only a 

small part of the AST and its token vector is shown here. This AST 

is generated by utilizing Clang. The number of different token 

types for OpenMP dataset 1 and OpenMP dataset 2 are 209 and 

151 respectively, but this number is 46 for POSIX dataset which 

probably indicates that using another parser might result in 

having more token types leading to having more information in 

the constructed dataset. 

3.4 Encoding Token Vectors 

Processing text and strings in almost all deep learning algorithms 

are not possible. Therefore, token vectors of a string type cannot 

be fed directly to CNN. To present tokens in integer, a mapping 

technique is implemented to map each token in a vector to a 

specific integer. The values of the integer are from 1 to the total 

number of token types. As a result, each token has a unique 

identifier. Also, a word embedding layer is employed. Word 

embedding represents a fixed dense vector which is the projection 

of a word in a continues vector space. A word’s position in the 

vector space is learned from the context of that specific word in 

the input vector. 

3.5 Convolutional Neural Network (CNN) 

Diverse vector size issue: The source code files are diverse in 

terms of their length, resulting in vector embeddings of a wide 

length variety. To train a CNN model, the input training samples 

(token vectors) required to have the same length. One possible 

solution is to pad all vectors to the size of the longest vector. This 

might not be the most efficient way to tackle the problem, because 

some vectors might be too long, and this could waste the resources 

for handling dummy tokens. Another solution is to calculate the 

average length of all vectors, therefore vectors with length less 

than the average will be padded whereas those with longer length 

are shrunken by discarding exceeding tokens. We experimented 

with both models and observed that although padding all vectors 

to the longest vector consumes more resources and increases the 

Table 1: Statistics of three datasets 

Datasets Training files Validation files Total Tokens LOC 
OpenMP dataset 1 4,568 1,142 5,710 209 456,591 
OpenMp dataset 2 1,459 365 1,824 151 150,902 

POSIX dataset 6,612 1,654 8,266 46 671,945 

 

 
OMPParallelForDirective CapturedStmt DeclRefExpr … ForStmt BinaryOperator 

Figure 3: A fraction of motivating example's AST and its 
corresponding token vector 



training time, overall it helps to achieve better results, as it 

captures all the features information from the source code in 

contrast with the averaging solution some information might be 

discarded. Therefore, we chose the longest vector solution and 

padded all the vectors to the longest one. While Long-Short Term 

Memory (LSTM) would have the better characteristic of handling 

the various length input, the CNN ability to capture the spatial 

information makes it more suitable to capture the exact line of 

code which is causing the data races.  

CNN architecture: The proposed CNN model is implemented in 

Keras [31] backed by TensorFlow [32]. There are many complex 

deep learning architectures introduced in some theoretical 

approaches such as [33] and [34]. we employ the common existing 

architectures of CNN. A CNN model generally consists of several 

layers such as embedding, convolution, pooling, fully-connected 

and output. In our model, the first layer is the embedding which 

embeds the source code tokens into a dense vector of fixed-size. 

These dense vectors are then fed into the convolution layer, where 

different window size kernels are applied to find and detect 

important features of various code tokens. 

The number of convolution and pooling layers are diverse and 

highly dependent on the training data and the field of study. A 

typical architecture in Figure 4 that is more prevalent in text 

classification field is that the output of embedding layer is usually 

fed to several parallel convolution layers each of which could be 

followed by a maximum pooling layer. The architecture and 

implementation details are provided in Table 2. After training, 

DeepRace will be able to probabilistically distinguish a file 

containing a specific data race from a bug-free file. 

Detecting the line-of-code data race: What distinguished our 

model than the other presented in the literature is that DeepRace 

not only efficiently detect the buggy file but highlight the lines of 

code that causing the bugs. As a result, fixing the bugs of the source 

is time efficient and saving human effort trying to locate the error. 

To achieve that, we have adopt the class activation map method 

[36]. The class activation map function will simply identify the 

lines of code of the file that is being used by the CNN to classify a 

particular category. We first get the output of the softmax 

classification layer based on the classifier prediction. Then we do 

multiplication sum to the softmax layer weights with the values of 

the last convolutional layer of the CNN. Finally, we averaged the 

values of the several windows size layers and project it with the 

input source code to generate heat-map for each line of the source 

code.  

More formally, given a source code file x, we need to visualize the 

lines of code that cause the data races problem based on the 

prediction f(x) = 1, where 1 indicate the classification of buggy file. 

Let gk(xi) be the activation function output of neuron k of the last 

convolutional layer. Then, we average the output values of 

neurons k of all the ith filters at the last convolutional layer as 

follows: 

𝐻𝑘 =  ∑ 𝑔
𝑘
(𝑖)

𝑖

 

We feed the average pooling value Hk of the last convolutional 

layer to the softmax function to predict the category of the source 

code file as follows: 

𝑆𝑐 =  
𝑒𝑥𝑝(∑ 𝑤𝑘

𝑐 𝐻𝑘𝑘 )

∑ 𝑒𝑥𝑝(∑ 𝑤𝑘
𝑐 𝐻𝑘𝑘 )𝑐

 

Where wk is the weight of the softmax layer that directly connects 

the neuron i of the convolutional network to class c. From the 

given equation, we notice that the score of class c is highly related 

to the weight 𝑤𝑘
𝑐  which represents the importance of Hk. 

We generate the class activation map Gc of class c = 1 at the spatial 

location i as follows: 

𝐺𝑐(𝑖) =  ∑ 𝑤𝑘
𝑐 𝑔

𝑘
(𝑖)

𝑘

 

Finally, we back-distribute the importance weights Gc for each 

neuron k of the convolutional network to the input layer that 

represents the source code file to detect the buggy line of the 

entire code. 

 

4 Evaluation 

In this section, we describe the metrics within which we evaluate 

the effectiveness of DeepRace. Then, we outline the parameters 

used to train DeepRace and present the results. Moreover, we 

evaluate and discuss the capability of DeepRace by testing it 

against 60 programs which are not included in training or 

validation sets, 30 out of the 60 programs have data race. 

Furthermore, we test DeepRace using microbenchmarks available 

in DataraceBench [17]. 

4.1  Evaluation Metrics 

To evaluate the effectiveness of DeepRace we define the following 

metrics: 

Precision: The ratio of the number of data race methods classified 

correctly to the total number of data race predicted (either true or 

false). 

Precision =
FP)(TP predicted race data total of Number

(TP) predicted race data true of Number


 (1) 

Recall: Measures the ratio of a number of truly predicted data race 

to the total number of all data races. 

 

Figure 4: DeepRace CNN Architecture: Convolution layers 
are independent of each other                                                           

 



Recall = 
races data total of Number

(TP) predicted race data true of Number
        (2) 

Accuracy: Measures the ratio of correctly predicted data race and 

data race free files to the total number of all files. 

Accuracy = 
FN)  FP TN (TP files total of Number

TN) (TP files classifedcorrectly  of Number




  (3) 

We also evaluate the performance of our model in detecting the 

lines of code that cause the data races in the method. For this 

purpose, we adopt the Intersect of Union method for class c and 

sample t: 

IoU c = Avg (A / ((A + B) + (C / N))) (4) 

Where A is the buggy code token in the source code detected by 

the model, B is the buggy code token in the source code that is not 

detected by the model, C is the not a buggy code but detected by 

the model as a buggy code, and N is all the lines of code in the 

method. 

4.2 Hyper-Parameter of DeepRace CNN 

Table 2 outlines the values used for different parameters of 

DeepRace CNN architecture. The value of these parameters is set 

experimentally that means by training the model several times 

and experimenting with different values for each parameter. 

 

4.3 Results 

Table 3 summarizes the results according to the metrics defined in 

section 4.1.    

In general, the best accuracies of the datasets range from 81% to 

86%, which indicates DeepRace is effective in recognizing source 

code files containing data race from bug-free. The OpenMP dataset 

2 achieved the least accuracy among others. This is due to the 

insufficient training samples. How well a deep model is trained 

and generalized is highly dependable on the size of the data set. 

The more training samples being available to feed to the model, 

the better the results could be achieved. 

Figure 5 shows the accuracy rate of training and validation of 

DeepRace. The accuracy improves as the number of epochs 

increases. Setting the number epochs beyond 40 could result in 

slight improvement for accuracy but will also increase the training 

time significantly.  

Additionally, to evaluate and compare our approach with other 

data race detectors, we examined each trained data race detector 

against 60 source code files which we call test set. This test set was 

neither included in training nor in the validation set and 30 out of 

the 60 files in this test set include data races. The existence of data 

race in OpenMP files was confirmed by Archer [35], a state-of-the-

art data race detector for OpenMP programs and for the POSIX 

files, all files were analyzed by the popular tool ThreadSanitizer 

[18]. 

 

Table 4 to 6 show results of DeepRace in terms of True Positive 

(predicting the existence of data race correctly), False Negative 

(incorrectly predicting a racy file as clean, so-called missing a data 

race), True Negative (correctly predicting a file without data race) 

and False Positive (predicting a clean file as having data race 

incorrectly). Overall, it can be observed that our approach is 

effective in identifying buggy and bug-free files correctly and 

yields a low number of a false positive and false negative. 

For example, in Table 4, DeepRace only misclassified one buggy 

file out of 30 buggy files (1 false negative) and only predicted 2 

bug-free files incorrectly as a buggy file (false positive). The results 

achieved by DeepRace for critical directive races in Table 5, is a bit 

worse than DeepRace for the private clause. As mentioned the 

Table 2: Hyperprameters 

Layer Parameters 

Embedding dimension=64 

Conv1 # of filters=512, filter size=3x32 

Conv2 # of filters=512, filter size=4x32 

Conv3 # of filters=512, filter size=5x32 

MaxPool1 shape=1x512 

MaxPool2 shape=1x512 

MaxPool3 shape=1x512 

Concatenate shape=3, 512 

Flatten shape=1x1536 

Dropout rate=0.5 

Dense Shape=1x2 

 

Table 3: Results of datasets based on two architectures 

Dataset Precision Recall Accuracy 

OpenMP #1 %85 %86 %86 

OpenMP #2 %79 %82 %81 

POSIX dataset %81 %83 %83 

 

   

Figure 5: Training and validation accuracy of DeepRace for three datasets based on number of epochs (OMP #1, OMP #2, 
POSIX) 



number of source code files in the training set was not sufficient 

and this could be the main reason why the detector performed 

worse. Finally, DeepRace POSIX for lock primitives in Table 6, 

produced 6 false negatives and 10 false positives. 

We also calculate the effectiveness of the DeepRace model ability 

to detect the lines of code that causing the bugs using the metric 

mentioned in section 3. We found that our model is detecting all 

the lines of code that causing the bug or missing only one line per 

method for some samples, as shown in Figure 6. However, in very 

few scenarios, we have noticed that the model was missing the 

lines that cause the problem. This show that the classifier is 

considering other features for classifying the file as buggy. The 

advantage of our model is that it shows the cases that the classifier 

could be misled by other features. Furthermore, we have also 

notice that our model is efficiently able to detect a method with 

several buggy lines of code at different locations in the method. 

This gives our model the effectiveness of handling long methods 

with a hundred lines of codes, as shown in Figure 7. Using the 

modified IoU for the buggy files, our model achieved 0.66.  

We also tested DeepRace against microbenchmarks available in 

DataraceBench. DataraceBench is a set of OpenMP 

microbenchmarks with and without data race. There are a variety 

of data race bug patterns in these microbenchmarks. At this stage, 

DeepRace is capable of detecting data races based on the 3 

aforementioned data race bug patterns. So, we tested DeepRace 

against microbenchmarks with data races similar to those 3 data 

race bug patterns and left detecting other data races for future 

work. Among microbenchmarks, only 3 of them have data race due 

to missing private clause. Unfortunately, no microbenchmark with 

data race originated from missing critical directive was available 

in this benchmark suite. All 3 microbenchmarks with data race 

have been detected as buggy by DeepRace. We also tested 17 files 

without data race with DeepRace and they were correctly 

classified as not buggy. Table 7 shows a list of files in 

DataraceBench which were analyzed by DeepRace.  

Figure 8 shows file DRB073-doall2-orig-yes.c, which is a 

microbenchmark with data race in DataraceBench. The variable j 

in the second loop is not private and is shared among threads. This 

variable needs to be declared private. DeepRace shows the 

variable involved in the data race by highlighting the line where 

that variable is defined. Therefore, variable j is highlighted on line 

4 where this variable is defined. However, since j and i variables 

both are defined in the same line, we can see that variable i is also 

highlighted. This means that although highlighting buggy lines is 

helpful in detecting bugs, reducing the granularity to words in the 

lines will help to gain more accuracy. The beginning of the parallel 

region is also highlighted by DeepRace, this shows where the 
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int main() 

{ 

  int thread_num; 

  #pragma omp parallel 

  { 

    thread_num = omp_get_thread_num(); 

    … 

    #pragma omp master 

    { 

     … 

    } 

    ; 

  } 

  … 

  int a; 

  int rang; 

  #pragma omp parallel 

  { 

    rang = omp_get_thread_num(); 

    a = 1; 

    #pragma omp single 

    { 

      a = 2; 

      … 

    } 

    ; 

    … 

  } 

  … 

  #pragma omp parallel 

  { 

    rang = omp_get_thread_num(); 

    a = 1; 

    #pragma single copyprivate() 

    { 

      a = 2; 

    } 

    … 

  } 

} 

Figure 7: Highlighted source code with several buggy 
lines of code 
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int main() 

{ 

  int i = 0; 

  omp_set_num_threads(4); 

  int *values = (int *) 

malloc((sizeof(int)) * 

omp_get_num_threads()); 

  int threadNum = 0; 

  #pragma omp parallel shared(values) 

  { 

    threadNum = omp_get_thread_num(); 

    printf("Thread %d\n", threadNum); 

    values[threadNum] = 

doComputation((1 + threadNum) * 

100000000); 

  } 

  for (i = 0; i < 4; i++) 

  { 

    printf("Thread %d calculated %d\n", 

i, values[i]); 

  } 

} 

Figure 6: Highlighted source code 

Table 4: Results of DeepRace on OpenMP data races 
(private clause) 

 
Ground Truth 

buggy Not-buggy 

Predicted 
buggy 29 1 

Not-buggy 2 28 

 

Table 5: Results of DeepRace on OpenMP data races 
(critical directive) 

 
Ground Truth 

buggy Not-buggy 

Predicted 
buggy 26 4 

Not-buggy 1 29 

 

Table 6: Results of DeepRace on POSIX data races 
(lock primitives) 

 
Ground Truth 

buggy Not-buggy 

Predicted 
buggy 24 6 

Not-buggy 10 20 

 



parallel region begins.  DeepRace was also able to detect data races 

in files which initially were thought to be free of these types of data 

race bug patterns. These files were later fixed in later versions2. 

OpenMP is mostly used by developers to parallelize for loops and 

these loops are inside the body of a method. Whereas in POSIX 

programs there is a main method which is run by the master 

thread. This master thread creates worker threads and for each of 

them assigns a method to run. Based on these explanations, we 

decided to generate ASTs for OpenMP programs on method-level, 

that means for each method in OpenMP program an AST is created, 

while for POSIX programs these ASTs are generated at file-level. 

This indicates that generally token vectors for POSIX programs are 

longer which could affect the result of training, predicting, and the 

time required for training. Another point needs to be considered 

is that the prediction is probabilistic. Consequently, there is a need 

for a threshold set. The higher threshold will result in less data 

race report which means some buggy files may be missed, whereas 

the lower threshold will lead to higher data race report which may 

increase false alarms. Here the threshold is set to 0.5 which is a 

common threshold for classification tasks. 

It is worth mentioning that DeepRace automatically learns to 

distinguish between files with/without data races. This means 

that unlike current debugging tools and race detectors which often 

involve sophisticated static and dynamic analyses and algorithms, 

DeepRace can detect other data race patterns in source codes if 

appropriate training dataset for those patterns is provided. 

Efficiency: Table 8 shows how long it takes to train DeepRace as 

well as how long it takes to perform validation meaning to expose 

DeepRace to previously unseen codes. Running training and 

                                                           
2 https://github.com/LLNL/dataracebench/issues/1 

validation on the number of files which are described in Table 1 

takes less than an hour per each dataset except for POSIX dataset 

because of the availability of a higher number of training files and 

the longer length of token vectors. This table indicates that most 

of the time will be consumed for training DeepRace, and once 

DeepRace is trained, deploying it for new source code files for 

debugging purposes will not take much time as one may require 

with dynamic race detectors to execute the programs. 

Discussion: Our experiments with DeepRace were conducted 

using a corpus of C files collected from GitHub. For each C file, an 

AST was generated and then nodes of that AST were extracted to 

create a token vector. To keep the ASTs small, we downloaded 

small size files from GitHub. This might cause some biases in the 

dataset. In the future, we plan to collect more files especially 

larger. Moreover, the information that is extracted from ASTs can 

be improved. For instance, we can also include the relations 

between the nodes. We believe adding these steps will further 

improve the results achieved by DeepRace. From another aspect, 

in this research, 3 data race bug patterns were targeted. These 

data race bug patterns cannot and will not fully represent all data 

race types in multi-threaded C programs. Analyzing more 

sophisticated patterns and creating datasets accordingly is 

planned to conduct in the future. Finally, not all C parsers produce 

the same ASTs, experimenting with disparate parsers might lead 

to higher or lower accuracies. 

5 Conclusion 

In this paper, we propose an approach to predict data races in 

source codes via deep learning. We leverage the power of the 

convolutional neural network to train DeepRace, a data race 

detector which can predict whether a source code file contains a 

data race or not, we expand the approach further that it is able to 

highlight the lines of codes which are involved in the data race. As 

the experimental results confirm, the trained DeepRace is efficient 

in classifying buggy or clean source code correctly comparable to 

the state-of-the-art tools, achieving accuracies between 81% and 

86%. DeepRace automatically learns to discriminate between 

buggy and bug-free source code. Considering the effort and cost of 

developing conventional data race detectors with sophisticated 

algorithms, building and training DeepRace for identifying other 

patterns of data races is more convenient and feasible and does 

not require designing complex algorithms or code analysis. 

Furthermore, the DeepRace model was efficiently able to detect all 

the lines of code that causing the bugs or missing only one line for 

some samples. However, in very few scenarios, we have noticed 

that the model was missing the lines that causing the problem, we 

leave these cases as future work. 

Table 7: List of microbenchmarks analyzed by 
DeepRace 

# File name Groundtruth DeepRace 

Result 

1 DRB020-privatemissing-var-yes Data race Data race 

2 DRB028-privatemissing-orig-yes Data race Data race 

3 DRB073-doall2-orig-yes Data race Data race 

4 DRB041-3mm-parallel-no No data race No data race 

5 DRB042-3mm-tile-no No data race No data race 

6 DRB043-adi-parallel-no No data race No data race 

7 DRB044-adi-tile-no No data race No data race 

8 DRB046-doall2-orig-no No data race No data race 

9 DRB055-jacobi2d-parallel-no No data race No data race 

10 DRB056-jacobi2d-tile-no No data race No data race 

11 DRB057-jacobiinitialize-orig-no No data race No data race 

12 DRB058-jacobikernel-orig-no No data race No data race 

13 DRB059-lastprivate-orig-no No data race No data race 

14 DRB060-matrixmultiply-orig-no No data race No data race 

15 DRB061-matrixvector1-orig-no No data race No data race 

16 DRB063-outeronly1-orig-no No data race No data race 

17 DRB064-outeronly2-orig-no No data race No data race 

18 DRB065-pireduction-orig-no No data race No data race 

19 DRB067-restrictpointer1-orig-no No data race No data race 

20 DRB076-flush-orig-no No data race No data race 

 

Table 8: Time required for training and validation of a 
data race detector (min:sec:ms) 

Dataset Training Validation 

OpenMP Dataset 1 06:35:78 00:00:35 

OpenMP Dataset 2 01:50:59 00:00:13 

POSIX Dataset 23:52:06 00:00:86 
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int a[100][100]; 

int main() 

{ 

  int i,j; 

#pragma omp parallel for 

  for (i=0;i<100;i++) 

    for (j=0;j<100;j++) 

      a[i][j]=a[i][j]+1; 

  return 0; 

} 

Figure 8: Microbenchmark with data race 
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