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Abstract. Deep-learning models with convolutional networks are
widely used for many artificial-intelligence tasks, thanks to the increas-
ing adoption of high-throughput GPUs, even in mobile phones. CUDA
and OpenCL are the two largely used programming interfaces for access-
ing the computing power of GPUs. However, attaining code portability
has always been a challenge, until the introduction of the Vulkan API.
Still, performance portability is not necessarily provided. In this paper,
we investigate the unique characteristics of CUDA, OpenCL, and Vulkan
kernels and propose a method for abstracting away syntactic differences.
Such abstraction creates a single-source kernel which we use for gen-
erating code for each GPU programming interface. In addition, we ex-
pose auto-tuning parameters to further enhance performance portability.
We implemented a selection of convolution operations, covering the core
operations needed for deploying three common image-processing neural
networks, and tuned them for NVIDIA, AMD, and ARM Mali GPUs.
Our experiments show that we can generate deep-learning kernels with
minimal effort for new platforms and achieve reasonable performance.
Specifically, our Vulkan backend is able to provide competitive perfor-
mance compared to vendor deep-learning libraries.

Keywords: GPU · deep learning · performance portability.

1 Introduction

Differences across GPU architectures and programming interfaces, such as
CUDA and OpenCL, make the efficient execution of tensor operations, the con-
stituents of convolutional neural networks (CNN), a challenging task. While
CUDA works only on NVIDIA devices, the latter has been designed with porta-
bility in mind to run on any OpenCL compatible device. Nonetheless, per-
formance is not necessarily portable [4]. Furthermore, some vendors, such as
NVIDIA, are reluctant to fully support OpenCL as they see it as a rival to their
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own standard. This becomes even worse on a number of mobile GPUs for which
there is no official support.

The Khronos group released a new programming API called Vulkan [19] along
with an intermediate language named SPIR-V [18] to address the portability of
GPU programs. Vulkan is inherently a low-level graphics and compute API,
much closer to the behavior of the hardware, and claims to be cross-platform
yet efficient on modern GPUs. Unlike others, Vulkan is supported by all major
mobile and desktop GPUs. This single feature makes Vulkan a more attrac-
tive programming interface compared with OpenCL, not to mention its unique
low-level optimizations. However, such worthwhile features come at a price, as
it requires significantly higher programming effort. Particularly for newcomers,
rewriting their code with Vulkan is a cumbersome task.

CNN inference frameworks such as TVM [1], PlaidML [7], and Tensor Com-
prehensions [20], which provide support for coding new tensor operations, have
been optimized in many ways that allow a more efficient use of the underly-
ing hardware. Important steps in that regard were the use of compiler tech-
niques [7, 20] as well as device-specialized kernels written in shader assembly
instead of high-level programming languages [2] or platform-independent inter-
mediate representations. However, implementations that work on multiple plat-
forms are often optimized for certain architectures or vendors. This reduces the
portability and performance predictability of CNN execution on server-/desktop-
grade GPUs and mobile GPUs alike.

In this paper, we conduct a comparative analysis of CUDA, OpenCL, and
Vulkan, which we call target APIs in the rest of the paper. We then use the
outcome to extend Boda [13], a CNN inference framework, and propose an ab-
straction layer that enables GPU tensor code generation using any of the target
APIs. Equipped with meta-programming and auto-tuning, our code generator
can create multiple implementations and select the best performing version on
a given GPU. Therefore, we enhance programmability and provide better per-
formance portability with code auto-tuning. Our experiments show that our
approach eases the overall burden of targeting NVIDIA, AMD and Mali GPUs
while achieving modest performance. We also achieve competitive performance
using Vulkan in comparison to existing deep-learning vendor libraries. In some
cases, our method achieved higher speedups, by up to 1.46× and 2.28× rela-
tive to cuDNN and AMD’s MIOpen libraries. In essence, this paper makes the
following major contributions:

– Programmability comparison of CUDA, OpenCL, and Vulkan code
– CUDA, OpenCL, and Vulkan code generation using an abstract single-source

approach, which reduces the required programming effort by up to 98%
– Acceleration of convolution layers using Vulkan’s new features such as kernel

batching
– Performance portability analysis of our code generator for each of the three

programming interfaces on latest architectures, including mobile GPUs

In the remainder of the paper, we first provide a comparative code analysis
for the target APIs. Then, in Section 3 our code generation method will be
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introduced, followed by an evaluation in Section 4. A concise review of related
works is presented in Section 5. Finally, we conclude the paper in Section 6.

2 Comparison of CUDA, OpenCL, and Vulkan

CUDA and OpenCL share a range of core concepts, such as the platform, mem-
ory, execution, and programming model. Furthermore, their syntax and built-in
functions are fairly similar to each other. Thus, it is relatively straightforward to
convert a CUDA to an OpenCL program, and vice versa [5,9]. On the other hand,
Vulkan does not fully conform to CUDA and OpenCL standards, as it is geared
both towards general-purpose computation and graphics while being portable
and efficient. Various OpenCL offline compilers exist for converting C code to an
intermediate language, from which later platform-specific assembly code can be
easily generated. In contrast, Vulkan is able to target different platforms using
a single input code and SPIR-V, a new platform-independent intermediate rep-
resentation for defining shaders and compute kernels. Currently, SPIR-V code
can be generated from HLSL, GLSL and C with OpenCL.

Vulkan has been designed from scratch with asynchronous multi-threading
support [10, 16]. Moreover, each Vulkan-capable device exposes one or more
queues that can also process work asynchronously to each other. Each queue
carries a set of commands and acts as a gateway to the execution engine of a
device. These commands can represent many actions, from data transfer and
compute-shader execution to draw commands. Each command specifies the re-
quested action along with input/output data. The information about the avail-
able actions and the corresponding data is encapsulated in a so-called pipeline.
This pipeline is then bound to a command buffer, which represents a sequence of
commands that should be sent in batches to the GPU. These buffers are created
prior to execution and, to save in time, can be submitted to a queue for execu-
tion as many times as required. Creating command buffers is a time-consuming
task. Therefore, the host code often employs multiple threads, working asyn-
chronously, to construct command buffers in parallel. Once finished, a thread
may submit these command buffers to a queue for execution. Right after the
submission, the commands within a command buffer execute without any inter-
ruption in order or out of order—depending on the ordering constraints.

Despite these conceptual design differences, we prepared a mapping for the
key concepts within each API in terms of memory regions and execution models
in Table 1. The table shows that the memory hierarchy abstractions of the three
interfaces are quite similar. Figure 1 illustrates the kernel execution space of the
target APIs in more detail. Each point in the space is occupied by a thread/work-
item/invocation. Each item is an execution instance of the kernel, with multiple
of them combined into a thread block or group. The whole execution space is
called grid or NDRange. Note that this mapping only covers the concepts shared
among these APIs and does not fully cover the features of Vulkan.
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Table 1: A comparison of the terminology used in
CUDA, OpenCL, and Vulkan
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Fig. 1: Kernel execution
space for (1) CUDA, (2)
OpenCL, and (3) Vulkan

Further comparison shows that Vulkan is more explicit in nature rather than
depending on hidden heuristics in the driver. Vulkan provides a more fine-grained
control over the GPU on a much lower level. This enables programmers to en-
hance performance across many platforms. Even though such privilege comes
with an extra programming effort, this feature can immensely increase the over-
all performance. Operations such as resource tracking, synchronization, memory
allocation, and work submission internals benefit from being exposed to the user,
which makes the application behavior more predictable and easier to control.
Similarly, unnecessary background tasks such as error checking, hazard track-
ing, state validation, and shader compilation are removed from the runtime and
instead can be done in the development phase, resulting in lower driver overhead
and less CPU usage [10] compared with other APIs.

Particularly, synchronization mechanisms require the developer to be explicit
about the semantics of the application but in return save a significant amount
of overhead. While other APIs tend to insert implicit synchronization primitives
between invocations and constructs, such as kernel executions and buffer reads,
Vulkan is by default asynchronous. All synchronization between kernels or buffer
I/O must be added explicitly to their respective command buffer via built-in
synchronization primitives, including fences, barriers, semaphores, and events.
Therefore, if no synchronization is required, we can strictly avoid the overhead
of such operations.

Another difference is how Vulkan allocates memory, both on the host and
the device. While CUDA and OpenCL often provide a single device buffer type
and primitive functions for copying data between the host and device buffers,
Vulkan puts the programmer in full control of memory management, including
buffer creation, buffer type selection, memory allocation, and buffer binding.
Furthermore, by making an explicit distinction between host-transparent device
buffers and device-local buffers, we can implement explicit staging buffers or
decide if they are not necessary—either because the amount of I/O to the buffer
is negligible or because host memory and device memory are actually shared, as
it is the case on many mobile platforms. Such explicit querying and handling of
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CUDA

__global__ void matrixMul(
        float* C, 
        float* A, 
        float* B, 
        int wA, int wB)
{
 int tx = blockDim.x*blockIdx.x+
            threadIdx.x; 
 int ty = blockDim.y*blockIdx.y+
            threadIdx.y;
 __shared__ float in_smem[wA*wA];
 for (int k = 0; k < wA; ++k) {
    float elementA = A[ty*wA+k];
    float elementB = B[k*wB+tx];
    value += elementA*elementB;
 }
 C[ty * wA + tx] = value;
}

Vulkan (GLSL)
#version 450
layout(local_size_x = 16,
       local_size_y = 16,
       local_size_z = 1) in;
layout(set=0, binding=0) readonly 
       buffer matrix_a{
  float A[];
} a;
...
shared float in_smem[wA*wA];

void main() {
 uint tx=gl_GlobalInvocationID.x;
 uint ty=gl_GlobalInvocationID.y;
 for (int i = 0; i < wA; i++)
   sum +=a.A[ty*wA+i]*b.B[i*wB+tx];
 c.C[ty*wB + tx] = sum;  
}

OpenCL

kernel void matrixMul(
        global float* C, 
        global float* A, 
        global float* B, 
        int wA, int wB) 
{
 int tx = get_global_id(0); 
 int ty = get_global_id(1);

 local float in_smem[wA*wA];

 for (int k = 0; k < wA; ++k) {
    float elementA = A[ty*wA+k];
    float elementB = B[k*wB+tx];
    value += elementA*elementB;
 }
 C[ty * wA + tx] = value;
}

1

2

3

4

5

Fig. 2: A SGEMM kernel implemented with CUDA, OpenCL, and Vulkan (GLSL).
Numbers on the left denote: (1) function declaration, (2) kernel arguments and data
layout, (3) API-specific keywords, (4) shared-memory allocation.

the underlying hardware can reduce unnecessary work and utilize the hardware
more efficiently.

Programming conventions. In contrast to other APIs, Vulkan has its own
programming conventions. Therefore, code similarities might not seem obvious
at the first glance. Figure 2 shows a näıve matrix-multiplication kernel imple-
mented using each programming interface. For Vulkan, we chose GLSL as our
kernel language because of its better compatibility. We trimmed off some parts
of the code for brevity. Regions with the same color and number share the same
functionality. Syntactically, GLSL is similar to OpenCL and CUDA. However,
GLSL is more restricted in certain ways, which requires rewriting some parts of
the code. The biggest three differences are:

– Arguments to a kernel are not declared in the function header. Instead, they
are declared in the global scope as so-called bindings, which can then be
set with Vulkan. The compiler expects the entry function for the kernel to
take no arguments. However, accessing the arguments within the kernel is
the same as in other APIs.

– Workgroup dimensions have to be defined in the kernel and not in the host
code. Each workgroup contains many work items or compute-shader invoca-
tions.

– GLSL does not provide explicit support for pointer objects. Instead, all
pointers are represented as arrays of undefined length.

– Shared-memory objects are not declared within the kernel body. Instead,
they are defined in the bindings.

Due to the conceptual discrepancies between Vulkan and the other APIs, the
host code of Vulkan is radically different. For example, we can create a simple
buffer in CUDA (cudaMalloc) or OpenCL (clCreateBuffer) with a single line of
code. To create the same buffer in Vulkan, we have to: (1) create a buffer object,
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Fig. 3: The workflow behind our approach. Highlighted (dark) boxes denote the ex-
tensions in the Boda framework.

(2) get the memory requirements for that object, (3) decide which memory heap
to use, (4) allocate memory on the selected heap, and (5) bind the buffer object
to the allocated memory. This requires more than 40 lines of code. Clearly, host
code programming in Vulkan is proportionally more complex, which stems from
its explicit nature. Such code verbosity not only increases the programming effort
but also makes the code more error-prone.

3 Code Generation

To generate tensor kernels, we use Boda [13] as the main engine. Boda is a CNN
inference framework that uses template meta-programming to generate efficient
GPU tensor code. Relying only on meta-programming made Boda a lightweight
framework with minimal external software dependencies. The major required
software packages comprise a C++ compiler, Python for building Boda itself,
and a compatible GPU backend compiler, such as NVCC, Clang with OpenCL
enabled, or GLSL to compile GPU tensor codes. We extended this framework by
adding new components to provide Vulkan backend support as well as a kernel-
abstraction layer to generate GPU code for each target API. Figure 3 depicts
a high-level overview of our method. In the following, we will explain the key
components.

MetaGPU abstraction layer. Considering the code discrepancies among the
target APIs (see Figure 2), we propose MetaGPU, a compatibility layer over
our target APIs. It abstracts away the syntactic differences for the basic GPU
programming concepts shared by our target APIs. We did not want to invent a
new language because it creates additional learning overhead for programmers.
Instead, we keep the coding convention very similar to CUDA and OpenCL
and simply ask the user to separate the code into three regions using #pragma
directives, similar to OpenMP. Figure 4 shows a MetaGPU code sample.

1. Tuning parameters: The first region defines tuning parameters. We can either
access them in the kernel code or in the host program.

2. Data layout : The kernel arguments and required memories which need to be
allocated in the shared memory are defined within this region. Additionally,
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#pragma metagpu tuning_knobs
{
 int wg_size_x;
 int unroll_lvl;

}

1  Tuning parameters

#pragma metagpu data_layout \
in(a,b) out(c) shared(in_smem)
{
 float const * const a;
 float const * const b;
 float * c;

  float in_smem[%(dim)*%(dim)];
}

2  Data layout

#pragma metagpu kernel_body {

 for(k=0;k<%(dim);k+=unroll_lvl){

   %(sm_loads);

   BARRIER_SYNC;

   %(inner_loop_body);

 } 

}

3  Kernel body

Fig. 4: A trivial sample of MetaGPU code.

Table 2: The list of pre-defined keywords in the kernel body alongside their corre-
sponding value within each target API.

CUDA OpenCL Vulkan

GLOB ID 1D blockDim.x*blockIdx.x+threadIdx.x get global id(0) gl GlobalInvocationID.x
LOC ID 1D threadIdx.x get local id(0) gl LocalInvocationID.x
GRP ID 1D blockIdx.x get group id(0) gl WorkGroupID.x
LOC SZ 1D blockDim.x get local size(0) gl WorkGroupSize.x
BARRIER SYNC syncthreads() barrier(CLK LOCAL MEM FENCE) barrier()

the scope of each argument should be defined with any of in, out or shared
keywords.

3. Kernel body : As the name suggests, this region contains the actual kernel
logic. A subtle difference is that using pointers is not allowed. Furthermore,
the user has to use pre-defined keywords for accessing the GPU threads,
workgroups and synchronization barriers. Table 2 shows the list of keywords
and their corresponding string in each target API. MetaGPU also supports
template meta-programming to generate adaptive code. Template placehold-
ers are defined by %(placeholder name)% and, using Boda, the user can pop-
ulate them with C instructions or any desired string. Such a feature can help
dynamically generate code and unroll loops to further improve performance.

Code generation. We first parse the input MetaGPU code and extract the
three regions. The tuning parameters can later be used for auto-tuning. Then,
the data layout of the kernel is parsed to find out the kernel arguments for
CUDA/OpenCL code and the bindings for Vulkan GLSL code. Based on the
target programming interface, we can then generate the kernel by generating
corresponding argument declarations and merging them with the kernel body.
All those template placeholders and abstract keywords will be replaced by their
values as well.

We also added Vulkan support to Boda by creating a new backend to support
host programming. All the required buffers, synchronizations, and timings will
be handled by the Vulkan backend within Boda. Therefore, the end user does
not have to write any host code using Vulkan. Since the programming effort of
Vulkan is very high, this feature will greatly enhance programmer productivity.
Furthermore, we use the kernel batching feature in Vulkan and submit up to eight
compute shaders at once to the GPU. We believe that this simple optimization
will greatly reduce the kernel-invocation overhead.
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Auto-tuning. Tensor operations have a wide range of possible input sizes and
parameters. It is generally difficult, even with meta-programming, to write code
that runs well across more than a limited range of input sizes. Such tuning
parameters might control thread blocking, memory access patterns, or load/-
store/compute vector widths. Thus, the auto-tuner automatically searches the
tuning space to find the right values for the given tuning knobs in the MetaGPU
code and even across different implementation variants. This is an important
step towards higher performance portability.

The key feature of our autotuning method is automatic per-platform variant
selection and automated sweeping over tuning parameters. Currently, we apply
a simple brute-force search over a fixed set of configurations, combined with a
heuristic parameter selection method, to reduce the search space to a tractable
size.

4 Experimental Results

To evaluate the programmability and performance portability of our approach,
we selected a range of convolution operations and generated the corresponding
GPU code for each of the target APIs. We extracted 43 unique convolutions
from AlexNet, Network-in-Network, and the InceptionV1 networks, which have
(1) a batch size of five, and (2) more than 1e8 FLOPS. The rationale behind this
selection is that we wanted these convolutions to model a streaming deployment
scenario with high computational load but some latency tolerance. The exact
specifications for each of these 43 convolutions can be found in Table 3.

For the sake of precision, we measured the execution times using GPU timers.
Furthermore, to counter run-to-run variation, we executed each kernel five times
and reported the average of the runtimes we obtained. Because Vulkan GPU
timers were not supported on our mobile platform, we had to use its CPU timers
instead. All the average speedups reported across the convolutions are computed
using the geometric mean. Our evaluation artifacts, including source code and
instructions on how to rerun the experiments, are available on Figshare [11].

Experimental setup. We chose NVIDIA GTX 1080 Ti and AMD Radeon RX
580, two recent desktop GPUs. We also used a mobile platform based on the
Hikey 960 development kit, which contains an ARM Mali-G71 MP8 GPU. Table
4 summarizes the configuration details of the target platforms.

Programmability analysis. Our method offers performance portability while
easing the burden of rewriting the program for each API. However, to quan-
titatively evaluate the programming effort required to generate efficient deep-
learning kernels, we propose a metric based on total lines of code. Inspired
by Memeti et al. [12], we use cloc to determine the lines of MetaGPU code
LOCMetaGPU and the total unique lines of code LOCTotalUniqueLines needed to
be written for our target APIs to provide code portability. We then define the
programming effort as follows.
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Table 3: KSZ, S, OC and B are the kernel size, stride, number of output channels, and
batch size of each convolution operation. in and out are the sizes of input and output,
specified as y×x×chan; FLOPs is the per-operation FLOP count.

KSZ S OC B in out FLOPs

5 1 32 5 28×28×16 28×28×32 1.00352e+08
5 1 64 5 14×14×32 14×14×64 1.00352e+08
1 1 256 5 7×7×832 7×7×256 1.04366e+08
1 1 112 5 14×14×512 14×14×112 1.12394e+08
1 1 128 5 14×14×512 14×14×128 1.28451e+08
1 1 64 5 28×28×256 28×28×64 1.28451e+08
1 1 64 5 56×56×64 56×56×64 1.28451e+08
1 1 128 5 14×14×528 14×14×128 1.32465e+08
1 1 144 5 14×14×512 14×14×144 1.44507e+08
1 1 96 5 28×28×192 28×28×96 1.44507e+08
1 1 384 5 7×7×832 7×7×384 1.56549e+08
1 1 160 5 14×14×512 14×14×160 1.60563e+08
1 1 160 5 14×14×528 14×14×160 1.65581e+08
1 1 4096 5 1×1×4096 1×1×4096 1.67772e+08
1 1 192 5 14×14×480 14×14×192 1.80634e+08
5 1 128 5 14×14×32 14×14×128 2.00704e+08
3 1 320 5 7×7×160 7×7×320 2.25792e+08
1 1 384 5 13×13×384 13×13×384 2.49201e+08
1 1 128 5 28×28×256 28×28×128 2.56901e+08
1 1 256 5 14×14×528 14×14×256 2.64929e+08
1 1 96 5 54×54×96 54×54×96 2.68739e+08
3 1 384 5 7×7×192 7×7×384 3.2514e+08
3 1 208 5 14×14×96 14×14×208 3.52236e+08
1 1 1000 5 6×6×1024 6×6×1000 3.6864e+08
1 1 1024 5 6×6×1024 6×6×1024 3.77487e+08
6 1 4096 5 6×6×256 1×1×4096 3.77487e+08
3 1 224 5 14×14×112 14×14×224 4.42552e+08
1 1 256 5 27×27×256 27×27×256 4.77757e+08
3 1 256 5 14×14×128 14×14×256 5.78028e+08
5 1 96 5 28×28×32 28×28×96 6.02112e+08
3 1 288 5 14×14×144 14×14×288 7.31566e+08
3 1 128 5 28×28×96 28×28×128 8.67041e+08
3 1 320 5 14×14×160 14×14×320 9.03168e+08
11 4 96 5 224×224×3 54×54×96 1.01617e+09
11 4 96 5 227×227×3 55×55×96 1.05415e+09
7 2 64 5 224×224×3 112×112×64 1.18014e+09
3 1 1024 5 6×6×384 6×6×1024 1.27402e+09
3 1 256 5 13×13×384 13×13×256 1.4952e+09
3 1 384 5 13×13×256 13×13×384 1.4952e+09
3 1 192 5 28×28×128 28×28×192 1.73408e+09
3 1 384 5 13×13×384 13×13×384 2.24281e+09
3 1 192 5 56×56×64 56×56×192 3.46817e+09
5 1 256 5 27×27×96 27×27×256 4.47898e+09
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Table 4: Experimental setup.
Nvidia GTX 1080Ti AMD RX 580 ARM Mali G71 MP8

OS Ubuntu 16.04 64-bit Android 7.0
CPU Intel Xeon Gold 6126, 12Core @ 2.6GHz 4 Cortex A73 + 4 Cortex A53

Host Memory 64 GB 3GB LPDDR4 SDRAM

GPU Memory 11GB GDDR5X 8GB GDDR5 -

Driver Linux Display Driver 410.66 AMDGPU-PRO Driver 17.40 Native driver

CUDA CUDA 10.0 - -

OpenCL OpenCL 1.2 OpenCL 2.0 OpenCL 2.0

Vulkan SDK Vulkan 1.1.97 Vulkan 1.1.97 Vulkan 1.1.97

Table 5: Lines-of-code comparison for different convolution implementations alongside
computed effort metric.

LOCMetaGPU LOCCUDA LOCOpenCL LOCV ulkan LOCTotalUniqueLines Effort

Direct convolution 113 562 631 1137 2330 4.84
Tiled convolution 115 548 618 1119 2285 5.03
GEMM convolution 89 1103 1172 1666 3941 2.25
1x1 convolution 160 1190 1259 1761 4210 3.80

Effort[%] = (LOCMetaGPU/LOCTotalUniqueLines) × 100 (1)

In most CNN frameworks, including Boda, multiple convolution variants ex-
ist, each specialized for a specific case. For instance, Boda provides direct, tiled,
GEMM, and 1×1 convolution variants. We counted the LOCs for each variant
and target API. The results are shown in Table 5. For a fair programming effort
analysis, we used total unique lines between all the target APIs. The results
indicate that using our method requires on average 4% of the total effort needed
to implement the code with all of the target APIs.

Performance portability analysis. We now present per-convolution-
operation runtime results across hardware targets and programming interfaces
to illustrate the performance portability of our method. We sorted the operations
by FLOP count, a reasonable proxy for the difficulty of the operations.

A runtime comparison of CUDA, OpenCL, and Vulkan on our benchmark set
of operations is given in Figure 5. All runtimes are for running each operation
using the best function generated by our method for that operation, selected
by auto-tuning. The implementations are the same and only the backend API
is different. We also added cuDNN runtimes as the baseline to show the per-
formance of our method relative to the highly-tuned vendor CNN library. The
results clearly show that our Vulkan backend often yields lower runtime in com-
parison to the other two, and closer to cuDNN’s performance. We believe that
this is owed to kernel batching and the optimizations provided by Vulkan. Note
that we are slower especially in cases with 3×3 kernel sizes, where cuDNN is
using Winograd convolution, which we have not yet implemented. On average,
Vulkan outperformed CUDA and OpenCL kernels by a factor of 1.54 and 1.86,
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Fig. 5: The runtime comparison of kernels generated by our method and cuDNN vendor
library on Nvidia GTX 1080 Ti.
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Fig. 6: The runtime comparison of kernels generated by our method and the MIOpen
vendor library on AMD Radeon RX 580.

respectively. Although cuDNN was able to operate 1.38× faster than Vulkan, we
noticed that in some cases, Vulkan can be up to 1.46× faster than cuDNN.

Figure 6 compares the runtimes of our benchmark using OpenCL and Vulkan
on the AMD GPU. We also show MIOpen runtimes as the baseline to show
the performance of our method relative to the optimized AMD CNN library.
Again, we notice that Vulkan outperforms OpenCL by a factor of 1.51 on aver-
age. Presumably benefiting from Winograd convolutions and a highly-optimized
MIOpenGEMM, MIOpen performs better than our Vulkan implementation for
25 out of 43 operations. For the 18 remaining operations, however our Vulkan
version runs up to 2.28× faster than MIOpen.

Together, Figures 5 and 6 illustrate that we were able to achieve competitive
performance compared to the vendor libraries on two different platforms. This
observation confirms that our method achieves good performance portability. To
further validate the effect of auto-tuning on performance portability, we executed
the Vulkan code generated by our backend with and without auto-tuning. The
final results after selecting the right variant and tuning parameters are shown
in Figure 7. Note that runtimes are reported using CPU timers, because Vulkan
GPU timestamps are not supported on Mali G71. Auto-tuning requires much less
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Fig. 7: Vulkan performance with and without auto-tuning on Mali G71.

effort than manual tuning and improves performance significantly—on average
by a factor of 3.11.

5 Related Work

With the increasing popularity of GPUs, several authors compared CUDA and
OpenCL programming models [3–5, 8, 9, 12, 15, 17], but none of them studied
Vulkan. Karimi et al. [8] and Fang et al. [5] compared CUDA with OpenCL,
focusing on their performance on conventional desktop GPUs. Du et al. [4] were
among the first who studied OpenCL performance portability and showed that
performance is not necessarily portable across different architectures. In contrast
to these studies, we carried out our experiments on recent architectures and in-
cluded mobile GPUs to augment the performance portability analysis. Kim et
al. [9] proposed a one-to-one translation mechanism for converting CUDA to
OpenCL kernels, but they do not employ any meta-programming and code gen-
eration to achieve higher efficiency as we do. To the best of our knowledge,
VComputeBench [10] is the only work which investigates Vulkan from the com-
pute perspective and proposes it as a viable cross-platform GPGPU program-
ming model. However, the authors concentrated more on creating a benchmark
suite and did not provide a method for code translation and enhancing perfor-
mance portability.

The amount of work published on the portable execution of CNNs as well
as the use of Vulkan in this context is very limited. In recent years, a number
of tensor compilers and frameworks, such as PlaidML [7], Tensor Comprehen-
sions [20], TVM [1], DeepMon [6], and Boda [13, 14] have been introduced to
address the portability issue of deep-learning frameworks using code genera-
tion and compiler optimizations. However, none of them are able to generate
code for our target APIs using a single-source approach for the kernel defini-
tion. PlaidML and Tensor Comprehension do not support Vulkan at all. TVM
and DeepMon are able to generate Vulkan code, but they require different in-
put code for each programming model, demanding extra programming effort to
introduce new tensor operations. Boda, on the other hand, has a compatibility
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layer on top of OpenCL and CUDA. Its approach is based on writing lowest-
common-denominator code that is compatible between the two and uses macro
definitions to abstract away syntactic differences. However, because of its larger
code divergence such an approach is definitely not extendable to include Vulkan
as well.

6 Conclusion and Outlook

This paper presents a comparative analysis of the GPU programming interfaces
CUDA, OpenCL, and Vulkan. We let this comparison guide us in developing a
method for generating tensor GPU kernels coded in any of those APIs from a sin-
gle source that abstracts away the syntactic differences between these APIs. We
implemented our approach in a state-of-the-art CNN inference framework called
Boda and analyzed the programmability and performance portability of the gen-
erated kernels. Based on our experiments, our method reduces the programming
effort by 98% when code portability between different APIs is demanded. Fur-
thermore, we showed that Vulkan offers better performance compared with other
APIs on our convolution benchmarks and sometimes performs better than CNN
vendor libraries.

Acknowledgment. This research has been supported by the Klaus Tschira
Foundation, the Hessian LOEWE initiative within the Software-Factory 4.0
project, and the German Research Foundation (DFG) through the Program
Performance Engineering for Scientific Software.

References

1. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E.Q., Shen, H., Cowan, M., Wang,
L., Hu, Y., Ceze, L., Guestrin, C., Krishnamurthy, A.: Tvm: An automated end-
to-end optimizing compiler for deep learning. In: 13th USENIX Symposium on
Operating Systems Design and Implementation. pp. 578–594. OSDI’18 (2018)

2. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
Shelhamer, E.: cuDNN: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

3. Da Silva, H.C., Pisani, F., Borin, E.: A comparative study of sycl, OpenCL,
and OpenMP. In: Proc. of International Symposium on Computer Architecture
and High-Performance Computing Workshops. pp. 61–66. SBAC-PADW’16, IEEE
(2016)

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Computing 38(8), 391–407 (2012)

5. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance comparison of
CUDA and OpenCL. In: Proc. of International Conference on Parallel Processing
(ICPP). pp. 216–225. IEEE (2011)



14 A. Mazaheri et al.

6. Huynh, L.N., Lee, Y., Balan, R.K.: Deepmon: Mobile gpu-based deep learning
framework for continuous vision applications. In: Proc. of 15th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services. pp. 82–95. Mo-
biSys’17, ACM (2017)

7. Intel: PlaidML (2019), https://www.intel.ai/plaidml
8. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and

OpenCL. arXiv preprint arXiv:1005.2581 (2010)
9. Kim, J., Dao, T.T., Jung, J., Joo, J., Lee, J.: Bridging OpenCL and CUDA: a

comparative analysis and translation. In: Proc. of International Conference for
High Performance Computing, Networking, Storage and Analysis. pp. 1–12. SC’15,
ACM (2015)

10. Mammeri, N., Juurlink, B.: VComputeBench: A Vulkan benchmark suite for
GPGPU on mobile and embedded GPUs. In: Proc. of International Symposium on
Workload Characterization. pp. 25–35. IISWC’18, IEEE (2018)

11. Mazaheri, A., Schulte, J., Moskewicz, M., Wolf, F., Jannesari, A.: Artifact Evalu-
ation (2019), https://doi.org/10.6084/m9.figshare.8490146

12. Memeti, S., Li, L., Pllana, S., Ko lodziej, J., Kessler, C.: Benchmarking OpenCL,
OpenACC, OpenMP, and CUDA: programming productivity, performance, and
energy consumption. In: Proc. of Workshop on Adaptive Resource Management
and Scheduling for Cloud Computing. pp. 1–6. ACM (2017)

13. Moskewicz, M.W., Jannesari, A., Keutzer, K.: A metaprogramming and au-
totuning framework for deploying deep learning applications. arXiv preprint
arXiv:1611.06945 (2016)

14. Moskewicz, M.W., Jannesari, A., Keutzer, K.: Boda: A holistic approach for im-
plementing neural network computations. In: Proc. of International Conference on
Computing Frontiers. pp. 53–62. CF’17, ACM (2017)

15. Oliveira, R.S., Rocha, B.M., Amorim, R.M., Campos, F.O., Meira, W., Toledo,
E.M.a., dos Santos, R.W.: Comparing CUDA, OpenCL and OpenGL implemen-
tations of the cardiac monodomain equations. In: Proc. of 9th International Con-
ference on Parallel Processing and Applied Mathematics. pp. 111–120. PPAM’11,
Springer-Verlag (2011)

16. Sampson, A.: Let’s fix OpenGL. In: Leibniz International Proceedings in Informat-
ics. LIPIcs ’17, vol. 71. Schloss Dagstuhl, Leibniz-Zentrum füer Informatik (2017)

17. Su, C.L., Chen, P.Y., Lan, C.C., Huang, L.S., Wu, K.H.: Overview and comparison
of OpenCL and CUDA technology for GPGPU. In: Proc. of Asia Pacific Conference
on Circuits and Systems. pp. 448–451. APCCAS’12, IEEE (2012)

18. The Khronos Group: Khronos SPIR-V registry (2019),
https://www.khronos.org/registry/spir-v

19. The Khronos Group: Khronos Vulkan registry (2019),
https://www.khronos.org/registry/vulkan

20. Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z., Moses, W.S.,
Verdoolaege, S., Adams, A., Cohen, A.: Tensor comprehensions: Framework-
agnostic high-performance machine learning abstractions. arXiv preprint
arXiv:1802.04730 (2018)


