
Automatic Construct Selection and Variable Classification
in OpenMP

Mohammad Norouzi
Technische Universitaet Darmstadt

Darmstadt, Germany
norouzi@cs.tu-darmstadt.de

Felix Wolf
Technische Universitaet Darmstadt

Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Ali Jannesari
Iowa State University

Ames, Iowa
jannesari@iastate.edu

ABSTRACT
A major task of parallelization with OpenMP is to decide where in
a program to insert which OpenMP construct such that speedup is
maximized and correctness is preserved. Another challenge is the
classification of variables that appear in a construct according to
their data-sharing semantics. Manual classification is tedious and
error prone. Moreover, the choice of the data-sharing attribute can
significantly affect performance. Grounded on the notion of parallel
design patterns, we propose a method that identifies code regions
to parallelize and selects appropriate OpenMP constructs for them.
Also, we classify variables in the chosen constructs by analyzing
data dependences that have been dynamically extracted from the
program. Using our approach, we created OpenMP versions of 49
sequential benchmarks and compared them with the code produced
by three state-of-the-art parallelization tools: Our codes are faster
in most cases with average speedups relative to any of the three
ranging from 1.8 to 2.7. Additionally, we automatically reclassified
variables of OpenMP programs parallelized manually or with the
help of these tools, improving their execution time by up to 29%.

KEYWORDS
parallelization, OpenMP, design patterns, data-sharing semantics
ACM Reference Format:
Mohammad Norouzi, Felix Wolf, and Ali Jannesari. 2019. Automatic Con-
struct Selection and Variable Classification in OpenMP. In 2019 International
Conference on Supercomputing (ICS ’19), June 26–28, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3330345.3330375

1 INTRODUCTION
Multi-core systems have become the mainstream architecture in the
computer industry, and OpenMP is a major programming paradigm
for this architecture. It provides a set of compiler directives, library
routines, and environment variables that allow sequential source
code to be incrementally parallelized with little effort.

An important step during the parallelization with OpenMP is
selecting the right constructs (e.g., worksharing loop or task) and
inserting them at the right position into the program. The goal is
to achieve maximum speedup without violating correctness. An
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OpenMP construct instructs the compiler and the runtime system
how to enable parallel execution of the enclosed code block. Usually,
the decision where to insert which construct is made by the pro-
grammer without tool support [23, 25], which is time consuming
and error prone. Compiler-based methods exist [2, 4, 16] but are too
conservative because they usually assume parallelism-preventing
dependences where they do not occur in practice. Further meth-
ods [26] are confined to the worksharing-loop construct. Another
step during OpenMP parallelization is the classification of vari-
ables that appear inside a construct according to their data-sharing
semantics. OpenMP defines a default attribute for each variable,
but this might not always be correct or the most efficient choice.
Therefore, programmers should reconsider the default. This pro-
cess is tedious and error-prone, considering the large number of
variables that can potentially appear in a construct. To ease the bur-
den, automatic methods have been proposed. A majority of them
are based on static data-dependence analysis [2–4, 16, 23, 25], but
fail due to variable aliasing or when dependences stretch across
multiple compilation units. On the other hand, existing methods
based on dynamic data dependences [26] do not classify variables
that require program-scope analysis. Also, they classify variables
only in worksharing-loop constructs. In this paper, we propose
a novel approach that automatically selects appropriate OpenMP
constructs, fits them into the code, and classifies variables used
in their dynamic extent. It leverages an existing technique that
suggests possible design patterns that are suitable to parallelize
a sequential program [8]. We extend this work in that we now
identify components of a pattern in the code and map them onto
an OpenMP construct. We determine the memory access pattern of
variables belonging to each construct from dynamically acquired
data dependences and derive suitable data-sharing attributes. In
this way, we move from a mere suggestion of patterns towards their
semi-automatic implementation. We assessed the performance of
our approach in comparison to previously parallelized versions
of the benchmarks and three parallelization tools: PLUTO [4], au-
toPar [16], and Mercurium [3]. We make the following specific
contributions beyond the state of the art:

• In comparison to the three competitors, the parallel version
produced by our tool chain achieves superior performance
in most cases with average speedups relative to any of the
three ranging from 1.8 to 2.7.
• Unlike the compilers, which parallelize programs using ei-
ther worksharing-loop or task constructs but not both in
combination, our tool chain chooses between loop and task
construct. This allows more parallelization opportunities to
be exploited in a broader spectrum of programs.
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• Our variable classification method is not limited to specific
types of variables, clauses, or constructs, further reducing
the classification effort.
• Our classification method makes more efficient choices. Re-
classifying variables in programs parallelized by any of the
three tools or in their pre-existing parallel versions, made
the programs up to 29% faster.

The remainder of the paper is organized as follows. We discuss
related work in Section 2. In Section 3, we explain the methods our
approach is built on top of. Section 4 presents our approach, which
is followed by an evaluation in Section 5. Finally, we review our
achievements in Section 6.

2 RELATED WORK
In the field of parallel computing, design patterns have been intro-
duced to identify and express parallelism on different levels, ranging
from the decomposition of an abstract computational problem down
to the selection of specific parallel-programing constructs. Mattson
et al. [18] and McCool et al. [19] collected numerous design pat-
terns, including DOALL, reduction, pipeline, and task parallelism,
and discussed their implementation using OpenMP. In this paper,
we refer to a more recent feature set of OpenMP, including tasking
and multi-dimensional array reduction, which helps avoid some of
the code restructuring described in their work.

There are several methods that identify parallelizable code sec-
tions and choose suitable OpenMP constructs. Some of them require
substantial programmer support—either to identify the regions to
be parallelized [25] or to address correctness problems pinpointed
without providing precise resolution instructions [23]. Both con-
sume considerable time and limit programmer productivity. Our
approach also involves the programmer, but rather at the end to
insert OpenMP constructs according to precise specifications includ-
ing data-sharing attributes. Auto-parallelizing tools [4, 13, 16, 21]
accomplish the task automatically, but may miss parallelization
opportunities because the values of pointers and array indices are
often not visible at compile time, making parallelization more con-
servative than it needs to be. The polyhedral model, themain vehicle
of popular auto-parallelizing compilers such as PLUTO [4], is lim-
ited to loop nests with affine loop bounds and array accesses [4].
Surprisingly, methods based on dynamic data-dependence analysis
do not reach beyond loops either [26]. Our approach also lever-
ages dynamic data dependences, but can choose between OpenMP
worksharing-loop and task constructs.

Furthermore, there are methods for automatic variable classifi-
cation. We divide them into two groups. The first group uses static
data-dependence analysis. For example, autoPar [16], a tool based
on the ROSE compiler framework [20], inserts worksharing-loop
and task constructs into sequential programs. It applies use-def
chain and liveness analysis to classify variables in loop constructs.
These techniques, however, are not sufficient to determine the data-
sharing attribute of all types of variables, for example, they struggle
with pointers that appear under different names or global variables
affected by inter-procedural dependences. Wang et al. [25] apply
the same set of techniques to classify variables in task constructs,
while Royuela et al. [22, 23] extended the Mercurium compiler to
classify variables in task constructs. Both groups of authors classify

SA P DA

Figure 1: The relation between static and dynamic data de-
pendences. SA contains data dependences that static analy-
sis cannot rule out. P includes data dependences that occur
in practice with the set of all possible inputs of a program.
DA contains data dependences identified via dynamic anal-
ysis with a limited set of inputs.

variables in task constructs that have been previously inserted into
the program, without identifying task dependences. PLUTO also
classifies variables in loop constructs [4], but it identifies neither
firstprivate, lastprivate, nor reduction variables. In general, static
classification methods are likely to fail when the program contains
pointer and global variables [24].

To overcome these limitations, the second group of classifica-
tion methods resorts to dynamic data-dependence analysis. Wang
et al. [26] profile memory accesses inside loops to classify vari-
ables. Aldea et al. [1] identify the data-sharing attribute of variables
by speculatively monitoring memory accesses inside loops. These
methods, however, are again limited to loops. Also, they cannot tell
whether a variable should be declared lastprivate or firstprivate.
Using dynamic data-dependence analysis, we are able to classify
pointers and global variables. In addition, we cover variables in
both worksharing-loop and task constructs and distinguish among
private, shared, reduction, lastprivate, and firstprivate variables.

3 BACKGROUND AND OBJECTIVES
Our approach builds on top of DiscoPoP [14], a parallelism discov-
ery tool. DiscoPoP abandons the idea of fully automatic paralleliza-
tion and instead points programmers to likely parallelization oppor-
tunities that it identifies by analyzing dynamic dependences. In this
way, it considers only data dependences that actually occur. From
these dynamic dependences, DiscoPoP derives possible parallel de-
sign patterns that programmers should consider for parallelization.
In this sense, one can think of DiscoPoP as a recommender system
for parallelization.

Figure 1 shows the relationship between the date dependences
that static and dynamic analyses obtain. To better understand the
relation shown in the figure, consider the example in Listing 1:

1 for(i=0;i<n;i++){
2 w = a[f(i)];

3 a[g(i)]=v;

4 }

Listing 1: Code example that illustrates the limitations
of static data-dependence analysis.

Depending on the return values of functions f and g, there may
be a data dependence between lines 2 and 3 arising from array a.
Static analysis cannot not rule out data dependences in such cases.
In fact, to be on the safe side, it conservatively assumes that there
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is a data dependence. Dynamic approaches, on the other hand, take
the opportunity to investigate if a data dependence actually appears
in practice with given inputs. As we increase the diversity of inputs,
the set of data dependences identified by dynamic analysis may
become larger and larger, approximating and eventually becoming
equal to the set of possible data dependences, as depicted in Figure 1.

However, as Kim et al. [12] demonstrated, data dependences in
frequently executed code regions do not change noticeably with
respect to different inputs, a result we confirm in the evaluation of
this paper in Section 5. Nevertheless, to minimize the risk of missing
dependences, state-of-the-art parallelism discovery tools [8, 11] in-
cluding DiscoPoP address input sensitivity of dynamic dependences
by running the program with a range of representative inputs, con-
sidering all dependences that occur. Numerous earlier case studies
support that implementing the design patterns that DiscoPoP sug-
gests can reproduce manual parallelization strategies [8, 9]. This is
consistent with the results of related tools [11, 12] that recreated
manual parallelizations as well. We conclude that parallelism dis-
covery based on dynamic dependences presents a viable alternative
to static methods in those cases where the latter are too rigid or too
conservative. Of course, the risk of missing dependences cannot be
fully eliminated, but we argue later in Section 5 that the validation
effort is not higher than with manual parallelization, while sav-
ing substantial time through automatic selection of parallelization
opportunities and their guided implementation.

The approach we present here takes the output of DiscoPoP,
essentially a set of code pieces annotated with patterns, as input
and maps them onto suitable OpenMP constructs. Then, it classifies
all variables that would be accessed in the dynamic extent of the
constructs according to their data-sharing semantics. The overall
workflow and the precise relationship between our approach and
DiscoPoP is sketched in Figure 2, where our contributions appear
highlighted.

As the first step of the workflow, a low-overhead profiler (with
an average slowdown of around 90x) [15] determines data depen-
dences with representative program input vectors. This includes
dependences that stretch over multiple files. Afterwards, the source
code is translated into LLVM IR and then statically decomposed
into so-called computational units (CUs). CUs are short pieces of
code without appreciable parallelization at the thread level. Finally,
a matching procedure [8, 9] is used to identify possible design pat-
terns in a graph which is formed of the CUs as vertices and the
dependences between them as edges.

As the basis for the method presented in this paper, we extract
an internal data structure of DiscoPoP, called program execution tree
(PET), henceforth briefly referred to as execution tree or simply tree
if the context allows. Figure 3 shows an example. It is called a tree
because it reflects the execution flow of the program like a call tree.
Its nodes can be of the following types: function, loop, conditional
block, or CU. Function, loop, and conditional-block nodes have CUs
that lexically appear inside them as children. The tree is annotated
with dependences that exist among the CUs, including both data
and control dependences. Because of these dependences, which
connect its nodes beyond mere parent-child relationships, the tree
exhibits properties of both a tree and a more general graph.

To implement a parallel design pattern in OpenMP, a program-
mer must select the right construct (e.g., loop or task) and insert it

Program
1 - 427

Function
45 - 107

Loop
15 - 40

Loop
87 - 105

Tree node CU
Data

dependence

else
72 - 83

if
65 - 71

Conditional block
64 - 85

Figure 3: An example execution tree.

at the right position into the program, that is, fit it into the code.
Moreover, the programmer must classify variables that are accessed
during construct execution according to their data-sharing seman-
tics. These two steps are where we make our main contributions.
We automate both (i) construct selection plus fitting and (ii) variable
classification. To support the fitting process, we also had to (iii) fur-
ther elaborate the pattern matching procedure for several patterns.
Moreover, to reduce the risk of missing critical but input-sensitive
dependences, we now also (iv) perform code-coverage analysis that
verifies which CUs have actually been executed with a given input
deck and which not. This helps choose a representative set of inputs.
All four new contributions are highlighted with dark background
in Figure 2. The recommendations produced as the output of our
tool chain can be directly implemented in OpenMP. Thus, we move
substantially closer towards the final parallel program.

4 APPROACH
Below, we focus on our two main contributions (i) construct selec-
tion and fitting and (ii) variable classification. In Section 4.1, we
explain how we map the patterns onto OpenMP worksharing-loop
and task constructs, after which we describe in Section 4.2 how we
classify variables occurring in these constructs according to their
data-sharing semantics. The input to these two steps is the execu-
tion tree of the program produced by DiscoPoP, annotated with
possible (abstract) design patterns that DiscoPoP recommends as
foundation of the parallelization. As a prerequisite for the construct
selection, we extended the pattern matching procedure in contribu-
tion (iii) to identify more complex cases of reduction and determine
the reduction operator and the names of reduction variables, a task
which was left to the programmer in the previous version of Dis-
coPoP. In addition, we now detect dependences between recursive
tasks and further improve the efficiency of pipelines by merging
their stages. The refinements of the pattern matching process are
presented inmore detail alongside the construct selection in the first
subsection, whereas the discussion of the code-coverage analysis
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Figure 2: The relation between DiscoPoP and our approach. The dark boxes show our contribution.

we apply to counter input sensitivity (contribution (iv)) is deferred
to the evaluation in Section 5.

4.1 Construct Selection and Fitting
Themain task of this step is to translate the relatively coarse pattern
information into precise OpenMP constructs. This involves identify-
ing the components of each pattern in the source code and deciding
where exactly to insert directives. Table 1 shows our suggested
OpenMP constructs for each pattern. We explain each pattern in
more details as follows.

Table 1: OpenMP constructs suggested for various parallel
design patterns.

Parallel
pattern Components OpenMP

construct
DOALL Loop Worksharing loop

Reduction Loop + reduction
operation

Worksharing loop
+ reduction clause

Task parallelism Workers Task +
depend clause

Barriers Taskwait
directive

Pipeline Pipeline stages
Task +
depend clause
Worksharing loop

DOALL. The DOALL pattern can be applied to loops of a pro-
gram. A loop node in the execution tree is reported as DOALL if
there is no inter-iteration dependence in the loop. We merge all
child CUs that belong to a DOALL loop into a single loop node.
We then enclose the loop with a worksharing-loop construct. We
obtain the start and end lines of the construct from the tree.

The programmer can use the schedule clause to specify how the
loop iterations are assigned to threads, taking into account both
data locality and load balance as the most fundamental scheduling
criteria [5]. Possible schedules can be broadly divided into two cat-
egories: static and dynamic. A static schedule assigns the iterations
before the loop starts. A dynamic schedule assigns the iterations to
unoccupied threads while the loop is running. Dynamic schedules
can balance the load even if the iterations take an unpredictable
amount of time, but they incur periodic synchronization overhead,
which is why static schedules are preferable if the amount of work
is always the same or follows a regular pattern that can be exploited.
To determine the scheduling strategy, we measure the load balance

across the iterations of a loop. Unless the loop contains a condi-
tional statement or the boundaries of inner loops depend on the
outer loop index, the load is balanced because all iterations execute
the same number of instructions. In this case, we suggest static
scheduling and dynamic scheduling otherwise. We will consider
data locality and uneven but regular load distributions in our future
work.

Reduction. Reduction patterns are suitable for a loop with a spe-
cific type of inter-iteration dependence, that is, the loop uses an
associative binary operator to reduce all elements of a container
to a single scalar value. This happens, for example, when a loop
adds all the elements of an array. The original version of DiscoPoP
already identifies the simplest version of a reduction (i.e., an array
reduced to a scalar variable). Here, we cover more complex cases
of reduction, including the reduction of a multi-dimensional array
into a one-dimensional one. For this purpose, we instrument all
LLVM-IR instructions that create inter-iteration dependences in a
loop. We record the source-line numbers for each read and write
operation on every variable. The variables can be scalar or arrays
with any number of dimensions. If a memory address is written
only in a single source line and read only at the same source line,
we mark the loop as a possible candidate for a reduction. We also
remember the reduction variable and operation (e.g., +).

The OpenMP worksharing-loop construct provides a reduction
clause. To implement a reduction pattern, we merge the child CUs
in a reduction loop into a single loop node. We then enclose the loop
with a parallel for construct and add a reduction clause containing
the reduction operator plus the variable(s).

Task parallelism. The task-parallelism pattern can be applied to
a collection of CUs within a hotspot function that are arranged in a
roughly diamond-shaped dependence structure. DiscoPoP classifies
the CUs that belong to such a diamond as worker, barrier, or fork.
A fork represents the entry point of the pattern (i.e., the top of
the diamond). CUs that depend on the fork CU are classified as
workers. They form the body of the diamond. CUs that depend
on at least two workers are classified as barriers. The bottommost
barrier closes the pattern. Note that workers and barriers need not
be disjoint. This role assignment occurs before the execution tree
is passed on to the construct-selection and fitting unit, the first of
the two main contributions of this paper.

Unfortunately, recursive functions, where task parallelism exists
abundantly, previously lacked the dependence information needed
to recognize such a diamond because DiscoPoP reserved only a
single node to represent the execution of such a function, collapsing
all related data dependences. Thus, it was impossible to determine
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whether recursive function calls depended on each other. Static
analysis is insufficient to provide such details either. For this rea-
son, we developed an LLVM pass that identifies data dependences
between recursive function calls such that we can determine which
call of a function depends on which other calls. The pass receives
as input the list of recursive functions. It first assigns a unique iden-
tifier call ID to each function call and then instruments read and
write instructions that appear inside these functions. To determine
dependences, we maintain a map that stores a call ID for every
memory address. Whenever a memory address x is written or read,
we update the map with the call ID of the writer/reader. If a read
happens after a write on x, we report a RAW dependence between
the reader and the writer.

Once we have determined the dependences between workers
and confirmed the diamond structure, we suggest enclosing each
worker with a task construct. We refrain from mutual-exclusion
synchronization (e.g., critical construct) to resolve data dependences
between two workers because this would not preserve the order in
which workers access memory. Instead, we propose depend clauses
with a specific dependence type, including in, out and inout to
maintain dependences between workers. The dependence type
indicates how a task is related to a sibling task, that is, whether it
prepares data for or receives data from another task. We explain
how we identify dependence types in Section 4.2. Moreover, our
approach recommends inserting a taskwait directive before barriers.
This directive lets the current task region wait on the completion
of child tasks generated since the beginning of the current task.
Furthermore, we enclose the fork CU with only an OpenMP single
directive nested inside a parallel construct. The parallel construct
creates the team of threads that will execute the tasks. The single
directive ensures that only one thread in the team creates the tasks.

Pipeline. In a loop with inter-iteration dependences, it may still
be possible to partly overlap the execution of consecutive iterations
with each other, resulting in pipeline parallelism. A pipeline is
a sequence of stages, where each stage consumes data from the
previous stage and supplies data to the next. If the stages of a
pipeline are executed many times, parallelism can be exploited
by overlapping the processing of different inputs as they travel
through the pipeline.

The stages identified by DiscoPoP, which identifies patterns at
the level of single CUs, are often too small to make the pipeline
efficient and may still contain forward dependences. A forward
dependence is a data dependence that exists between two stages
Sj and Sk with j < k if in loop iteration i , Sj needs a result of Sk
produced in the previous iteration i − 1. A forward dependence
adversely affects the execution of the pipeline because an earlier
stage of an iteration has to wait for the results of a later stage of
the previous iteration.

We resolve forward dependences by merging pipeline stages. We
try to merge different combinations of pipeline stages. To verify
whether merging has reduced the number of the forward depen-
dences, we compare their number before and after we merge. We
keep trying different combination until there is no forward depen-
dence left, which can amount to the elimination of the pipeline in
the worst case.

After resolving forward dependences and reaching the appro-
priate granularity, we suggest how to parallelize the pipeline in
OpenMP. We enclose each stage with a task construct. Most impor-
tant, we propose depend clauses including correctness-preserving
dependence types to maintain data dependences between stages.
Finally, we enclose the loop in which the pipeline pattern has been
identified with a single directive nested inside a parallel construct
for the same reasons we mentioned above: to create the team of
concurrent threads executing the pipeline only once.

4.2 Variable Classification
Unlike existing methods, our variable classification goes beyond
liveness and use-def analyses because they are insufficient to de-
termine the data-sharing semantics in all situations. For example,
global variables accessed from different functions or pointers that
appear under different names can cause trouble. Instead, we rely on
the execution tree of a program, which, in addition to the results of
the above analyses, contains inter-procedural and alias information.
Using the tree, we identify the data-sharing attribute of variables—
regardless of the number of files in which they appear and their
number of aliases.

To classify variables, we consider RAW dependences available in
the tree. We preserve other dependences by keeping the sequential
order of their memory accesses intact. We first explain our approach
for worksharing-loop, then for task constructs.

Worksharing-loop construct. Algorithm 1 shows how we classify
variables in loop constructs. Figure 4a serves as an illustrating
example. According to our algorithm, we first receive the list of
identified DOALL and reduction loops from the execution tree.
Then, we collect all the child CUs in the dynamic extent of an
identified loop node. We then traverse the dynamic extent of the
loop to identify variables that should be classified. In the example,
a, b, c, d, iter, i, and init should be classified. iters, p, and q do
not belong to the loop and, therefore, do not require classification.

To prepare the classification, we traverse the execution tree for
each loop node using depth-first search (DFS). We put CUs visited
before the loop node into its left subtree. Also, we put CUs visited
after the loop into its right subtree. In Figure 4a, the left and right
subtrees of the loop node contain the CUs in functions foo and
bar, respectively. We create the left and right subtrees because data
dependences may span over multiple files in the program and this
is why we cannot use source-code line numbers for classification.

For each variable, we then check the source and destination of
every RAW dependence. If a variable is written in the left subtree
of a loop node and is only read inside the loop node, then its value
is passed into the loop. We mark the variable as firstprivate or
shared, depending on whether it is local or global. In cc-NUMA
architectures, it is preferred to classify local read-only variables as
firstprivate [5]. This is because their cache controllers communi-
cate to keep memory coherent when more than one cache holds
a copy of the same memory location. For this reason, ccNUMA
systems may perform poorly when multiple processors attempt to
access the same memory location in rapid succession. To improve
performance, we declare a read-only local variable firstprivate. The
variable can be an array or a scalar variable. In this way, each
processor will access its private memory, which is much faster. In
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Algorithm 1: Variable classification for the worksharing-loop
construct
loops = PET .дetDOALLAndReductionLoops ()

for each loop ∈ loops do
variables = loop.collectVariables ()

riдhtSubTree = PET .visitedCUsInDFSAf ter (loop)

le f tSubTree = PET .visitedCUsInDFSBe f or (loop)

for each var ∈ variables do
if var .isWrittenIn(le f tSubTree )

& var .isReadOnlyIn(loop) then
if var .isGlobal () then

var .mark (shared )

else
var .mark ( f irstprivate )

else if var .isWrittenIn(loop)

& var .isReadIn(riдhtSubTree ) then
var .mark (lastprivate )

else if var .isFirstWrittenIn(loop) then
if var .isScalar () then

var .mark (private )

else
var .mark (shared )

if var .isLoopIndexIn(loop) then
var .mark (private )

else if var .isReductionIn(loop) then
var .mark (reduction)

Figure 4a, we mark a as firstprivate because it is written in the left
subtree and only read inside the loop. iter is also written in the
left subtree and only read inside the loop. Nevertheless, because it
is a global variable, we mark it as shared.

To identify lastprivate variables, we check if a variable is written
inside the loop and read in the right subtree of the loop, that is, a
value is produced inside the loop and consumed after the loop. In
Figure 4a, b is lastprivate because it is written inside the loop and
read after the loop in function bar.

If a variable is first written inside the loop but never read after
it, then it is useful only for the loop. We mark it as private if it is a
scalar. If the variable is an array and every loop iteration accesses
only the elements that correspond to the loop index, we mark it as
shared because parallel threads will process disjoint chunks of the
array. In the figure, array init is shared. c is private because it is
scalar and first written in the loop.

Finally, if a variable is the loop index or a reduction variable,
we mark it as private or reduction, respectively. In the example,
i is private because it is the loop index. d is reduction because it
creates an inter-iteration dependence that can be resolved using the
reduction clause. The actual identification of reduction variables
occurs earlier during the refined pattern matching procedure for
reduction, as explained before.

Task construct. Algorithm 2 shows how we classify variables in
task constructs, illustrated using the example in Figure 4b. The code
in the example contains a loop in which a three-stage pipeline has
been identified. Our construct selection suggests creating a task
for each stage. Our algorithm first obtains the list of tasks from
the execution tree. For each task, we collect the child CUs in its
dynamic extent. We then traverse the dynamic extent of the task
to identify variables that should be classified (a, b, c, d, e, and i
in the example). For each task, we traverse the tree again using
DFS. We place CUs that are visited before the task node into its left
subtree. Because the task construct of OpenMP does not support
lastprivate variables, we do not have to maintain a right subtree.
We also determine the sibling tasks, which make up the stages in
the example. In Figure 4b, Tasks 1-3 make up the pipeline. The left
subtrees of Tasks 1 and 3 contain CU1 and CU0, respectively.

We identify the dependence type of variables in a task by looking
for the source and destination of RAWdependences. If the task reads
the value of a variable which is written in a sibling task, the task
should wait for the sibling task to produce the value first. In this
case, we mark the dependence type of the variable as in. On the
other hand, if a variable is written in the task and read by a sibling,
the task should produce a value for the sibling. In this case, we mark
the dependence type of the variable as out. In the example, there
is a RAW dependence between Tasks 1 and 2 concerning variable
a; the result of the call to function f1 is stored in a, which is later
read in the call to function f2. We mark the dependence type of a
as out for Task 1 and in for Task 2. We find variable b in a similar
situation, which implies a dependence between Tasks 2 and 3.

If a variable is first read and then written in a task, then every
instance of the task shouldwait for its previously generated instance
to produce the value of the variable. In this case, we mark the
dependence type of the variable as inout. In the figure, we mark
the dependence type of c as inout for Task 3 because the value of
c, which is read as function parameter in Task 3, should be received
from a previously generated instance of the same task.

Also, we classify variables in a task by looking for the source and
destination of RAW dependences. We mark a variable as private if
it is first written inside a task. In the example, e is private in task 3.
Finally, if a variable is only read inside a task and written in a CU
in its left subtree, then a value is passed into the task by the thread
that created the task. We mark the variable as firstprivate or shared,
depending on whether it is local or global. In Figure 4b, i and d are
only read in Tasks 1 and 3, respectively. We mark i as firstprivate
because it is a local variable and d as shared because it is global.

5 EVALUATION
Below, we summarize our experimental results and provide details
of the test environment and the benchmarks that we used. Our eval-
uation criteria are the performance and correctness of the bench-
marks that we parallelize or whose variables we classify. We ran
our tests with benchmarks from three suites, including Polybench
3.2, NPB 3.3, and BOTS 1.1.2. We compare our approach with three
state-of-the-art tools that parallelize sequential programs using
OpenMP or classify variables in OpenMP constructs: PLUTO 0.11.4,
autoPar, which is part of ROSE 0.9.9.13, and the variable classifier
of Mercurium 2.0.0. In addition, we compare our approach with
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  OUT = *q; CU
6

for (i = 1; i < iter; i++) CU
1

     init[i] = a * 100; CU
2

     d = d + init[i]; CU
5

     c = a * 0.1; CU
3

     *b = c + init[i]; CU
4

foo(&a, 100000);

}
bar(&b);

void bar(int *q) {

}

iter = iters;
*p = IN;

CU
0

extern int iter;
void foo(int *p, int iters) {

}

left_subtree
right_subtree

{

(a) A loop in which a reduction pattern is identified. To parallelize the loop, we suggest the
worksharing-loop construct with reduction clause.

d = 90; 

for (i = 1; i < N; i++) 

     c = f3(b, c);
     e = c * d;
     printf(“%d\n”, e);

}

     a = f1(i);

     b = f2(a);

CU
1

CU
0

Task 1

Task 2

Task 3

{

(b) A loop in which a three-stage
pipeline is identified. We suggest
the task construct to exploit paral-
lelism among the the stages.

Figure 4: Variable classification.

Algorithm 2: Variable classification for the task construct
tasks = дetTasks (PET )

for each task ∈ tasks do
variables = task .дetVariables ()

le f tSubTree = PET .visitedCUsInDFSBe f or (task )

siblinдs = task .дetSiblinдs ()

for each var ∈ variables do
if var .isWrittenIn(siblinдs )

& var .isReadIn(task ) then
var .markDepType (in)

else if var .isWrittenIn(task )

& var .isReadIn(siblinдs ) then
var .markDepType (out )

else if var .isFirstReadIn(task )
& var .isWrittenIn(task ) then

var .markDepType (inout )

else if var .isFirstWritten(task ) then
var .mark (private )

else if var .isWrittenIn(le f tSubTree )

& var .isReadOnlyIn(task ) then
if var .isGlobal () then

var .mark (shared )

else
var .mark ( f irstprivate )

manual parallelization, that is, pre-existing OpenMP versions of the
benchmarks. The NBP and BOTS suites already contain OpenMP
versions. Moreover, we considered the OpenMP version of Poly-
bench developed by Grauer-Gray et al. [6]. Since Polybench has
been designed as a test suite for polyhedral compilers, it is well
suited for comparison with PLUTO. NBP, which offers paralleliza-
tion potential in nested loops, is a good match for autoPar. BOTS, a

set of programs designed for tasking, is the yardstick of our com-
parison with the classifier of Mercurium, which targets tasking. We
compiled the benchmarks using gcc 4.9.3. Experiments were run on
an Intel(R) Xeon(R) Gold 6126 2.60 GHz double socket with 64 GB
memory, running Ubuntu 14.04 (64-bit edition). Reported execution
times are the median of five isolated executions with 48 threads
for Polybench and NPB and 24 threads for BOTS, respectively. To
compare the different parallelization approaches quantitatively, we
calculate average speedups across entire benchmark suites using
the geometric mean [7].

5.1 Full Parallelization
The first set of experiments has been designed to evaluate our
full parallelization tool chain, including all steps shown in Figure 2.
However, before we compare in Section 5.1.2 the speedups achieved
by DiscoPoP with those of its competitors, including the manually
parallelized versions, we first validate the correctness of the code
we produce in Section 5.1.1.

5.1.1 Correctness. First, we establish the output equivalence in
comparison to the serial versions. Then, we investigate how sensi-
tively the data dependences respond to changes of the input, before
we apply a common data race detector to check whether the paral-
lelized codes are free of races. Finally, we inspect the source code of
the parallelized programs manually to see whether their behavior
would differ from the hand-crafted versions.

Output equivalence. We ran each program with five different
inputs, a number an overwhelming majority of benchmarks (45 out
of 49) readily provided. Most of the benchmarks work on arrays and
their inputs determine the size and the dimension of those arrays.
However, they fill the arrays themselves, either randomly or based
on a specific pattern. In the few cases without a sufficient number
of predefined inputs, we generated the missing inputs randomly or
we constructed them ourselves (e.g., for sort in BOTS). The output
of the parallel code produced with the help DiscoPoP consistently
matched the output of the serial version.
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Table 2: Data races reported by Intel Inspector for DiscoPoP
and manual parallelization.

Benchmark
suites

DiscoPoP Manual parallelization
Min Max Avg Min Max Avg

Polybench 0 4 1.36 0 4 1.23
NPB 1 13 7.50 1 13 7.50
BOTS 0 11 2.36 0 12 2.27

Input sensitivity. An expected source of input sensitivity is code
coverage, which we analyze at the level of CUs, the sources and
sinks of the data dependences we extract. For this purpose, we
traversed the sequential code of each benchmark statically to obtain
the set of all CUs in the program. Again, we ran each program with
five different inputs and, during each run, marked all the CUs that
were visited. It turned out that every benchmark touched all the
CUs of the program—regardless of the input. In a next step, we
compared the data dependences collected with different inputs
one by one. Although we noticed some differences, varying the
input did not change dependences for the code regions subject to
parallelization.

Data races. Data races constitute one of the most important and
harmful classes of parallelization errors. To uncover potential data
races, we ran both the parallel versions produced with DiscoPoP
and the hand-written parallel benchmarks under the control of Intel
Inspector [10], a widely used data-race detector, which, however,
is known to report false positives. The results are summarized in
Table 2.We scrutinized each single data race reported for the parallel
code we produced and could not verify any of them to be true. Given
that Intel Inspector reported a comparable number of races for the
manually parallelized programs, we argue that checking the code
produced with our approach for the occurrence of data races is not
more laborious than checking hand-crafted parallel code. In fact, it
might even be less if the hand-written versions already underwent
significant debugging cycles earlier.

Behavioral differences. Lastly, we visually examined the source
code of the parallel versions created with the help of DiscoPoP and
found no behavioral differences in comparison with the source code
of the hand-crafted parallel versions.

5.1.2 Performance. Some auto-parallelizing tools failed to paral-
lelize some benchmarks. We confirmed the failure of tools by con-
tacting their developers. PLUTO, which is designed for polyhedral
parallelization, failed to parallelize NPB and BOTS because the loops
in these program suites usually do not satisfy the constraints of the
polyhedral model (i.e., affine loop bounds and array accesses). au-
toPar failed to parallelize BOTS and Polybench. In addition, it failed
to parallelize LU, SP, BT, and FT fromNPB. The classifier component
in Mercurium only classifies variables in OpenMP task constructs.
Nevertheless, it failed to classify variables in most benchmarks in
BOTS. Grauer-Gray et al. missed to parallelize two benchmarks
(i.e., deriche and heat-3d) in Polybench, which they confirmed upon
request. Now, we evaluate how the parallel code produced with
DiscoPoP performs in comparison to the other three tools and the

manually parallelized versions for each benchmark suite. To mea-
sure performance, we chose a medium-sized input from the five
inputs.

Polybench. Figure 5 shows how our approach performs on Poly-
bench in comparison to PLUTO and parallel versions created by
Grauer-Gray et al.. The base line is the serial version of the bench-
marks with the same input which we used for their parallel ver-
sion. We parallelized the benchmarks by PLUTO with --parallel
--tile (with default settings for tile sizes).

Compared with PLUTO, our codes are faster in most cases.
PLUTO performs optimizations including tiling and vectorization
as part of its parallelization process. However, the optimizations
allowed PLUTO to achieve better speedup for several benchmarks
(e.g., trmm and syr2k) in which hotspot loops are DOALL. For these
benchmarks, however, our parallelized version is still better than
the manually parallelized version. Our parallelization of the bench-
mark correlation outperforms the manually parallelized version by
a factor of 12.5.

For all benchmarks (e.g., seidel and adi) in which the outer
hotspot loops are not DOALL while the loops nested inside are, our
approach suggested the insertion of OpenMP constructs at slightly
different code locations than the manual parallelization did, leading
to better performance. In these cases, our approach outperformed
PLUTO by a factor of 2.1 on average.

PLUTO leaves the loop-scheduling strategy unspecified, in which
case the implementation-defined default applies. In this situation,
most implementations schedule statically. Our approach, in contrast,
specifies the scheduling strategy individually for each parallel loop.
It suggested static scheduling for the loops of jacobi, seidel-2d,
heat-3d, floyd-warshall, adi, gemver, and gesummv because their
iterations have identical workloads. For the remaining benchmarks
in which the DOALL pattern was identified, our approach proposed
dynamic scheduling because the workload varies across iterations.
We ran the benchmarks with both scheduling strategies (i.e., static
and dynamic) and confirmed ours to be superior.

In some benchmarks, we identified complex cases of reduction
(e.g., a two dimensional array being reduced to one dimension)
stretching across an entire loop nest. However, Grauer-Gray et al.
did not parallelize the reduction hidden in nested loops. PLUTO
resolved inter-iteration dependences related to possible reductions
in the course of other optimizations, forgoing the chance to apply
a reduction clause. Using the reduction clause for benchmarks
wherewe identified a reduction pattern, our approach outperformed
PLUTO by a factor of 1.9 on average.

We parallelized some benchmarks using the task construct.
These include fdtd-2d, ludcmp, and reg_detect, where we identified
pipeline patterns. Moreover, we applied the task construct to fdtd-
2d, where four DOALL loops are nested inside a non-DOALL loop.
The manually parallelized version saw only the DOALL loops par-
allelized. On the other hand, DiscoPoP found a four-stage pipeline
with two forward dependences in the non-DOALL loop. After re-
solving the forward dependences, DiscoPoP recommended a two-
stage pipeline in addition to parallelizing the loops nested inside.
This enabled superior speedup in comparison to the manually
parallelized version. Similar situations were found in ludcmp and
reg_detect. Finally, we discovered task parallelism in deriche and
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Table 3: Number and type of OpenMP constructs each approach chose for parallelization. For Polybench, NPB, and BOTS, the
competitors are always PLUTO, autoPar, and Mercurium, respectively.

Benchmark
suites

# worksharing-loop constructs
(w/ reduction clause)

# worksharing-loop constructs
(w/o reduction clause) # task constructs

DiscoPoP Competitor Manual DiscoPoP Competitor Manual DiscoPoP Competitor Manual
Polybench 7 0 0 61 96 60 27 0 0
NPB 15 20 16 140 74 149 2 0 0
BOTS 1 0 0 1 0 0 62 62 62

Figure 5: Parallelization of Polybench using our approach vs. PLUTO vs. manual parallelization by Grauer-Gray et al. [6] with
48 threads.

mvt. The latter contains two independent DOALL loops. In the man-
ually parallelized version, each loopwas parallelized separately. Our
approach suggested running them in parallel to each other using
the task construct – in addition to their individual parallelization.
Again, this made it faster than the handcrafted version. A similar
situation was found in deriche. In all benchmarks where we identi-
fied pipeline or task-parallelism patterns, PLUTO and the manually
created parallel versions preferred the worksharing-loop construct.
Relative to PLUTO, our code was 2.9 times faster on average.

NPB. Figure 6 compares our approach with autoPar and manual
parallelization of NPB programs. Our approach came close to the
performance of manual parallelization for most of the programs.We
realized that the improvements in LU, BT, and SP can be attributed
to our variable classification.

Figure 6: Parallelization of NBP using our approach vs.
autoPar vs. parallel versions shipped with NBP with 48
threads.

autoPar missed one reduction in EP and two in IS because it tried
to identify them statically. The developers of NPB restructured IS to
exploit the available parallelism and thus, it executed faster than our
parallelized version. In CG, the DOALL loops had reduction loops
nested inside. Although it was sufficient to parallelize only the outer
DOALL loops, autoPar chose to parallelize these inner reduction
loops as well, causing significant runtime overhead. Moreover, our
approach outperformed autoPar with MG. This was because we par-
allelized a pipeline in addition to reduction and DOALL loops. Using
an extra array, the NPB developers parallelized the pipeline using
the worksharing-loop construct. Compared with their version, our
approach did not produce an improvement for small inputs. For
large inputs (≥ 106), however, their version of MG aborted with
a segmentation fault because the memory allocation for the extra
array exceeded the available memory. Our version did not need
the extra array to run in parallel and therefore finished without
segmentation fault also with large inputs. FT behaved like MG ex-
cept that autoPar failed to parallelize it. We recommended dynamic
scheduling only for two loops in CG and static scheduling for the
remaining loops and all other benchmarks in the suite, whereas
autoPar relied on the default scheduling strategy.

BOTS. Figure 7 compares our approach with the classifier of
Mercurium and the manually parallelized version of BOTS. The re-
sults for Mercurium were created by taking a manually parallelized
version, stripping off all data-sharing attribute clauses, and reclas-
sifying the variables using Mercurium. Essentially, this amounts to
manual OpenMP parallelization, followed by an automatic classifi-
cation of variables. Because the parallelism available in BOTS was
less than in the other benchmark suites, we used 24 instead of 48
threads in these experiments.
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Our approach identified the task parallelism pattern in all bench-
marks except sparselu. It came close to or exceeded the performance
of all other parallel versions. sort, sparselu, and floorplan owed their
improvements to our variable classification algorithm, results we
elaborate in Section 5.2. The performance of alignment was better
because we parallelized a reduction loop that was not parallelized
elsewhere.

1 for (i = 0; i < n; i++) {

2 a[j] = (char) i;

3 if (ok(j + 1, a)) {

4 nqueens(n, j + 1, a,&res);

5 *solutions += res;}

6 }

Listing 2: Hotspot loop in nqueens from BOTS.

Listing 2 shows the hotspot loop in nqueens. Task parallelismwas
identified in this loop; each call to function nqueens was marked
as a worker task and the statement in line 5 as the barrier for the
workers. Our approach suggested inserting a task directive before
the call to function nqueens and a taskwait directive before the
statement in line 5. In the OpenMP version of nqueens from BOTS,
the task construct was inserted before the if, creating many empty
tasks due to a false condition and thus causing significant runtime
overhead. Compared with the manual parallelization, our approach
achieved a speedup of 10.0.

Table 3 summarizes the number and type of the OpenMP con-
structs selected by each parallelization approach. In general, the
DiscoPoP-based tool chain seems to choose more freely among
worksharing-loop and task constructs, whereas the other ap-
proaches appear to favor either one or the other. Overall, the code
we produced is on average 1.8 times faster than that of PLUTO,
2.7 times faster than that of autoPar, 1.8 times faster than that of
Mercurium, and on average very close to the hand-crafted version
(i.e., a speedup of 1.3), but with a substantial degree of automation.

5.2 Variable Classification
We compared our variable classification approach with the classifi-
cation approach of the tools and expert programmers who paral-
lelized the benchmarks. We considered two scenarios. In the first
scenario, we executed each benchmark as it was parallelized by the
three tools or created by a programmer. In the second, we changed

Figure 7: Parallelization of BOTS using our approach vs.
Mercurium vs. parallel versions shipped with BOTS with 24
threads.

the data-sharing clause of the variables in the parallelized bench-
mark according to our suggestions. We validated the correctness of
our classifications following the same method as in Section 5.1.1
and could not find any error. Figure 8 shows how much our classi-
fier improved the performance beyond the classification selected by
either the tool we chose for a benchmark or manual parallelization.

The Mercurium classifier failed to classify global variables in
most of the benchmarks in BOTS. The benchmarks either contained
a call to a function that was not defined in the same file where the
call occurred or Mercurium failed to identify the synchronization
point preceding the creation of tasks in the benchmarks. Our mea-
surement results for the classifier are consistent with the results of
Royuela et al. [22], who developed the Mercurium classifier. Our
classifier, in contrast, was able to determine the data-sharing se-
mantics of all variables. Compared with the tools and preexisting
OpenMP versions of the benchmarks, our classifier improved the
performance of benchmarks under three conditions, which we ex-
plain below.

Depend clause vs. taskwait, atomic, and critical. Manually paral-
lelized versions of BOTS benchmarks did not use the depend clause.
Instead, they used taskwait directive, atomic, and critical constructs.
One possible reason could be that the benchmarks were parallelized
before the introduction of the depend clause in OpenMP. In general,
our approach can be used to re-classify variables in legacy programs,
potentially increasing their performance. For example, compared
with the preexisting OpenMP version, we improved the execution
time of sparselu and floorplan by 17% and 25%, respectively.

Private vs. threadprivate. Martorell et al. [17] showed that thread-
private directives can slow down execution. We observed that the
slowdown was negligible if the number of accesses to threadprivate
variables was less than a million for the given input and architec-
ture. In LU, however, our classifier suggested using a private clause
instead of the threadprivate directive and achieved a performance
improvement of 29% in comparison to the preexisting OpenMP ver-
sion. It made the same recommendation for the variables declared
as threadprivate in BT and SP.

Firstprivate vs. shared. PLUTO could not identify firstprivate
variables because it identified dependences only within loops. It
used shared instead of firstprivate clauses for all variables that
could be declared either way without compromising correctness.
Similar to PLUTO, Grauer-Gray et al. had classified all such vari-
ables as shared in their OpenMP version of Polybench, probably
because analyzing dependences at program scope is too laborious.
Classifying read-only local variables as firstprivate in Polybench,
our classifier improved the execution time of the benchmarks in
comparison to PLUTO and manual parallelization by up to 25%.
Read-only variables in NPB and BOTS were global. Our classifier
suggested shared semantics for them like the three tools and the
programmers.

6 CONCLUSION
Our approach strikes a viable compromise between conservative
but limited auto-parallelization on the one hand and unguided man-
ual parallelization on the other. Compared with state-of-the-art
parallelizing tools, our method is more likely to produce efficient
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Figure 8: Execution time improvements after applying our classifier to the code produced by either PLUTO, autoPar, and
Mercurium on the one hand (Tools) and manual classification on the other. “Not parallelized” indicates that the benchmarks
were not parallelized manually. “Failed” indicates that the tool failed to classify variables in the benchmarks or parallelize
them.

parallel programs. In addition, it parallelized a broader range of
programs from different benchmark suites. Also, we presented an
approach for classifying variables in OpenMP worksharing-loop
and task constructs. Our approach classified all types of variables
in both the loop and task constructs according to different types
of data-sharing semantics. We also showed that our approach in-
creases the performance of programs which are already parallelized
by reclassifying their variables. In the future, we plan to evaluate
our method with more complex programs. Moreover, we aim to
include further OpenMP constructs such as taskloop, and support
additional parallel patterns, including geometric decomposition.
Also, we seek to define a metric that helps prioritize the patterns
before they are implemented. Finally, we intend to exploit more
parallelism by providing guidance for code refactoring beyond the
insertion of pragmas.
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