
Efficient Job Scheduling for Clusters
with Shared Tiered Storage
Leah E. Lackner, Hamid Mohammadi Fard, and Felix Wolf

Technische Universität Darmstadt, Germany
{lackner, fard, wolf}@cs.tu-darmstadt.de

Abstract—New fast storage technologies such as non-volatile
memory are becoming ubiquitous in HPC systems with one or two
orders of magnitude higher I/O bandwidth than traditional back-
end storage systems. They can be used to heavily speed-up I/O
operations, an essential prerequisite for data-intensive exascale
computing capabilities. However, since the overall capacity of the
fast storage available in a system is limited, an individual job may
not always benefit if access to fast storage implies longer waiting
time in the queue. This is obvious if fast storage is shared across
the system. We therefore argue that the decision of whether or not
to use fast storage should be supported by the batch scheduler,
which can estimate when the amount of fast storage a job desires
will become available. We present a scheduling algorithm with
this functionality and show in simulations significantly reduced
makespan and turnaround times in comparison to always using
fast storage, always using slow back-end storage, and random
storage assignment.

Index Terms—scheduling, I/O, resource management, tiered
storage, non-volatile memory, data-intensive applications

I. INTRODUCTION

Novel storage technologies pave the way to data-intensive
exascale computing. In the past, usually a parallel file system
(PFS)—possibly backed up by a tape archive—was the only
available permanent storage. With the emergence of compact
and energy-efficient solid-state drives (SSDs), it became viable
to attach hard drives to nodes, serving as burst buffers [2] that
cache data on their way to the PFS, significantly mitigating the
file-system bottleneck. Burst buffers can be installed locally
on each compute node or be provided in a remote shared
configuration. Today, non-volatile memory express (NVMe)
devices with their superior performance mark a further step
towards fast I/O. As a generalization of the burst-buffer concept,
such devices can be used to store a variety of intermediate data,
including check points, without necessarily always propagating
the data further down the storage hierarchy. Since such fast
storage hardware will soon by available in many machines, it is
important to study its impact on system and job performance.

On an abstract level, new fast storage technologies can be
interpreted as a kind of accelerator for data-intensive software,
playing the same role for I/O that GPUs play for computation.
They can speed up a certain part of program execution, but are
not necessarily mandatory to complete it. Just like a program
can be written in such a way that it runs on regular processors
if no GPU is available, an application could as well resort to
the back-end PFS if there is no fast storage in place.

Because the fast storage available in a system is limited
by capacity, the most resource-efficient way to balance the

requirements of a diverse workload across the entire system
is to make it globally accessible from all compute nodes,
for example, implemented as an interconnected distributed file
system, such as HDFS [17] or BeeGFS [8]. This is the scenario
we focus on in this paper. In addition to allocating compute
nodes, jobs can now also request a share of the available fast
storage, another resource that must now become subject to
scheduling.

Since users of an HPC system often care most about the
turnaround time of their jobs, which also covers the waiting
time in the queue, and not so much about the pure execution
time on the system, the option to use fast storage confronts
them with a choice if fast storage is not immediately available:
better waiting for it and risking longer residency in the queue
or going ahead without it? Because a user usually lacks the
knowledge to draw a quantitative comparison, this decision
should rather be delegated to the scheduler. Of course, such a
strategy must be supported by accounting incentives. However,
we argue that if accepting a longer execution time in exchange
for shorter turnaround also helps to increase system utilization,
the provider has an incentive not to penalize users for the slow
storage overhead they will suffer. To tackle the problems of
scheduling globally accessible fast storage alongside compute
nodes, this paper makes the following two contributions:

1) Based on backfilling, we propose a novel storage-aware
scheduling algorithm that efficiently schedules compute
nodes together with capacity-bound storage resources.

2) We evaluate the algorithm in simulations, which demon-
strate significantly improved turnaround times and
workload makespan in comparison to always using fast
storage, always using slow back-end storage, and random
storage assignment.

The remainder of this article is organized as follows: First,
we discuss related work in Section II. Then, we outline the
storage-aware scheduling algorithm in Section III, after which
we present our simulator setup in Section IV, followed by our
evaluation in Section V. Finally, we draw a conclusion and
discuss future directions in Section VI.

II. RELATED WORK

In our review of related approaches in the field, we focus
mostly on the scheduling of data-intensive jobs, considering
both flat (traditional) storage and multi-tier storage architectures.
Assuming shared storage distributed across a grid, Kosar and
Balman [13] proposed a data-aware scheduler that ensures

efficient data placement by ordering data transfer requests using
techniques such as first fit, best fit, largest fit, and smallest fit.
Our work, in contrast, balances the tradeoff between the desire
to access fast storage and its limited capacity.

Wan et al. [21] considered a hybrid storage configuration,
including SSD and HDD storage, similar to the one we target
here, and proposed automatic object placement techniques,
moving objects between different tiers according to their
popularity. While they only strive to minimize data transfer
times, our approach aims to reduce the turnaround times of jobs
via co-allocation of compute and limited fast storage resources.

Herbein et al. [9] proposed I/O-aware versions of two batch-
job-scheduling techniques, namely, first-come, first-served
(FCFS) and EASY backfilling. They assume burst buffers
physically close to compute nodes, whereas our work supports
a shared two-tier storage architecture.

The framework introduced by Isaila et al. [10] coordinates
data-staging on HPC platforms. While they achieve genericity
by fully decoupling control from data planes, they do not
consider the increased scheduling complexity caused by storage
with limited capacity and miss optimization opportunities
arising from this complexity.

Zhang et al. [24] studied the challenges of migrating
frequently accessed data in a multi-tier storage environment.
They presented an adaptive deadline-aware lookahead data-
migration scheme for clouds. Their work aims to improve
resource utilization by efficiently using the power of fast SSDs
with limited capacity.

Ramakrishnan et al. [15] presented a scheduling approach
for data-intensive large-scale scientific workflows on distributed
storage, including disks with limited capacity. Different from
their work, our scheduler reserves storage in advance, a
technique that has been shown to improve resource utilization
in several studies [6, 19, 23].

Overall, the most distinctive feature of our work in compar-
ison to the state of the art is the improvement of turnaround
times via storage-aware scheduling, hiding the underlying multi-
tiered storage configuration from users. In some way, our
approach is similar in spirit to backfilling [14, 20], as we
strive to run jobs earlier than what would be their start time
under normal conditions (i.e., when the requested fast storage
become available) if this improves system utilization. Finally,
co-allocation of compute and storage resources can also be
seen as a variant of scheduling for heterogeneous clusters [1,
18], as requirements for different types of resources must be
properly balanced.

III. STORAGE-AWARE SCHEDULER

In this section, we describe our storage-aware scheduler.
Before delving into the details of the scheduling algorithm,
however, we first introduce the underlying platform and job
model.

A. Platform model

We model the platform as a cluster consisting of a set of
homogeneous compute nodes which have access to a shared

HPS LPS
Rstage

Compute
Nodes

RlpsRhps

Figure 1. Two-tier storage architecture with slow but unlimited low-
performance storage (LPS) and fast but limited high-performance storage
(HPS).

tiered storage system. For the sake of simplicity, we define two
storage tiers, a configuration that, however, is easily extendable
to a multi-tier storage architecture. Our model comprises low-
performance storage (LPS) with practically unlimited capacity
and high-performance storage (HPS) with limited capacity. We
imagine LPS to be implemented as a backend parallel file
system and HPS to reside on separate I/O nodes equipped with
SSDs or NVMe SSDs, although this separation is no mandatory
property of our model as long as the HPS storage is globally
accessible, for example, through a distributed file system. As
shown in Figure 1, LPS and HPS provide different data transfer
rates Rlps and Rhps to and from compute nodes, respectively.
The data-transfer rate between the two storage tiers is denoted
by Rstage. Each of the three links between compute cluster
(i.e., compute nodes), LPS, and HPS is shared. This means the
available bandwidth is split across all data streams between
any two of the three layers, which can, of course, give rise to
congestion.

B. Job model
We consider a set J of n jobs J = { j1, . . . , jn} with different

arrival times. For each job ji, we assume that the user has
accurate knowledge of the following job attributes:
• Required number of compute nodes: nodesi
• Desired amount of fast storage: storagei
• Input file size: inputi
• Output file size: outputi
• Walltime: walltimei
• Amount of intermediate data read and written to files:

datai

Asking the user to provide such detailed information may
seem unreasonable at the first glance, but we argue that
sufficiently precise estimates of these numbers can be easily
obtained with standard profiling tools such as Score-P [12],
LWM2 [16], or with storage estimators such as those as
proposed by Hazekamp et al. [7]. Note that even if the desired
amount of HPS storage is granted, the user can still use LPS
for other tasks—in addition to the desired use of HPS. In
this case, the time needed to access LPS is factored into the
walltime and treated like in a traditional scheduler.

C. Scheduling algorithm
To efficiently schedule compute nodes and fast storage

capacity in combination, we introduce a storage-aware sched-
uler (SAS) that evaluates the benefit of using fast storage and

Users

UQ

Scheduler

Resource
Manager

RQ

Reservation
& Execution

Jobs

Figure 2. Flow of jobs inside the scheduler from the arrival point to the
allocation of resources and the start of execution.

compares it with the overhead of using it. Our scheduler is a
dynamic non-preemptive scheduler because the jobs enter the
system dynamically and once a job has been started, we are
not allowed to stop and resume it afterwards.

As shown in Figure 2, our scheduler uses two queues. The
first queue, which is called UQ, contains the unscheduled jobs
as they are submitted by users. After making the schedule
decision for a job ji, the scheduler dequeues this job from
UQ and adds it to RQ, the queue of running jobs. After a job
terminates, the resource manager removes the corresponding
entry from RQ.

An entry for job ji in the running-jobs queue RQ is a
tuple schedulei = (ji,starti,endi,nodesi,storagei), where start i
and endi denote the start and end time of the reservation,
respectively, nodesi the set of nodes that have been reserved,
and storagei the amount of fast storage to be allocated. Note
that slow storage, which offers unlimited capacity, does not
require prior allocation.

For an unscheduled job ji ∈UQ, which is selected following
a shortest-job-first backfilling approach [20], our scheduler
needs to decide which storage tier, HPS or LPS, the job is
supposed to use. For this purpose, our scheduler calculates
two possible turnaround times T lps

i and T hps
i according to

Equations 1 and 2.

T lps
i = waiting-timel ps

i +walltimei (1)

T hps
i = waiting-timehps

i +walltimei

− datai

Rlps
+

datai

Rhps
+

inputi+outputi

Rstage

(2)

Whichever is shorter determines the storage tier assigned
to the job. Equation 1 calculates the turnaround time for job
ji in its schedule under the assumption it would use LPS. To
calculate the turnaround time when using HPS instead, the
scheduler needs to take both the overhead and gain of using
HPS into account. Since the capacity of the HPS tier is limited,
choosing it may lead to longer waiting times. For the sake of
simplicity, the current version of the algorithm does not try
to estimate link congestion but rather assumes that each data
stream can utilize the entire available bandwidth, a condition
which may not always be satisfied in practice.

Of course, accounting must be adjusted not to penalize a user
for the longer execution time that an assignment of slow storage
may imply. Since the flexibility our scheduler introduces also
helps improve system utilization, as we will show in Section V,
we believe that system providers can easily create economic
incentives for users to accept the scheduler decision that would
also serve the providers’ interests. Although the details of
such an accounting scheme are beyond the scope of this paper,
one can imagine charging on the basis of the (hypothetical)
execution time with LPS. As an almost equivalent alternative,
one could impose a surcharge on the usage of expensive fast
storage.

The scheduler computes the queue waiting times that
appear in the two equations, namely waiting-timel ps

i and
waiting-timehps

i , based on the system state, which includes
the schedules in RQ and the reservation plan of resources, and
the job requirements, such as the desired amount of fast storage
storagei, the requested walltime walltimei and the requested
number of compute nodes nodesi.

Algorithm 1 represents the core of the scheduler, which is
invoked whenever the state of a job or a resource changes. The
first loop (lines 1–5) finds jobs with high priority, while the
second loop (lines 6–8) backfills jobs with low priority. The
loop to schedule high-priority jobs exits when it finds the first
job that has not been scheduled. This triggers the backfilling
part of the algorithm. Backfilling low-priority jobs in shortest-
job-first fashion, choosing the one with the lowest storage
requirements if there is a tie, ensures that jobs with higher
requirements do not block resources and prevents jobs from
starvation. However, high-priority jobs are still selected based
on their position in queue UQ. To keep track of the priority
jobs in the algorithm, we need a temporary set of priority jobs
called P, which is used by function try-start-storage-aware(),
invoked in lines 2 and 7, to backfill jobs.

Algorithm 1 Storage-aware scheduler (SAS)
1: for ji ∈ UQ do
2: if ¬ try-start-storage-aware(ji,{}) then
3: break
4: end if
5: end for
6: for ji ∈ UQ\{ j1} do
7: try-start-storage-aware(ji,{ j1})
8: end for

Function try-start-storage-aware() determines the best pos-
sible schedule for job ji, as shown in Algorithm 2. The two

functions find-lps-schedule() and find-hps-schedule() in lines 1
and 2 return possible candidate schedules for job ji under
the assumption of using either LPS or HPS, respectively. The
functions consider the job requirements of ji to propose possible
schedules. Moreover, because HPS has limited capacity, the
function find-hps-schedule() has to find a time slot with
sufficient storage capacity available for the duration of the
job’s walltime. In lines 3–7, we choose the schedule candidate
with the shorter turnaround time, calculated using Equations 1
and 2. If the proposed schedule is executable just right now
and it does not delay any job in the set of priority jobs P (lines
8–15), the scheduler inserts the schedule entry to the queue of
running jobs RQ. In lines 13 and 16, the function returns true
if the job was scheduled and false otherwise. Afterwards, the
resource manager starts the execution of job ji.

Algorithm 2 try-start-storage-aware(ji,P)

1: schedulelps
i ← find-lps-schedule(ji)

2: schedulehps
i ← find-hps-schedule(ji)

3: if T hps
i < T l ps

i then
4: schedulei← schedulehps

i
5: else
6: schedulei← schedulelps

i
7: end if
8: if schedulei can start immediately then
9: if schedulei does not delay jk ∈ P then

10: enqueue(schedulei, RQ)
11: dequeue(ji, UQ)
12: start(ji)
13: return true
14: end if
15: end if
16: return false

The proposed algorithm can be easily extended to a multi-tier
storage architecture with more than two tiers. The existence
of the different tiers would be covered by rewriting the main
decision-making part of Algorithm 2 in lines 3–7.

IV. SIMULATION SETUP

For our evaluation, we designed a simulation environment
based on the simulator framework Batsim [4]. Furthermore, we
designed a workload model featuring both computational and
I/O requirements, derived from an established workload model.
The experiments and their results are described in Section V.

A. Simulation environment

Compared to other simulators, such as Gridsim [3] or
Alea2 [11], Batsim is more versatile because the scheduler
is separated from the resource management logic. Following
this separation, we implemented our simulation and scheduling
logic in Python using PyBatsim. The storage is managed in
the scheduler, whereas the actual I/O activities are simulated
as part of the resource manager.

Our simulated platform comprises 128 compute nodes, with
each node offering 16 GB RAM of main memory, which
defines the checkpointing requirements per node. To specify
the data transfer rates, we assume that the LPS tier uses some

kind of back-end PFS technology, such as Lustre or GPFS.
Transfer rates of traditional burst-buffer technologies exceed
the performance of classical parallel file systems by up to a
factor of three (cf. Shaheen in the IO-500 list1). Based on
comparisons of recent but classic SSDs with new NVMe-based
SSDs, the latter of which we chose for our study, we multiply
this ratio by a factor of five, resulting in a total throughput ratio
of 15 between Rhps and Rlps. Taking into account that staging
involves largely sequential data, which is not necessarily the
case for data access at job runtime, we define the transfer rate
Rstage available to staging traffic between the HPS and the
LPS tier to be five times larger than the regular LPS transfer
rate Rlps. Undoubtedly, actual system performance depends
on how the tiers are precisely interconnected. As a constraint
imposed by our simulator, the three links between LPS, HPS,
and compute nodes appear physically separated, which means
there is no interference whatsoever between any of the two
links in our simulation. This condition could be violated in
a real system, where, for example, staging traffic and regular
I/O to the backend file system may compete for bandwidth.
Nevertheless, individual links are shared, as described in our
platform model in Section III-A.

In our experiments, we consider two fast-storage capacities:
(a) 2048 GB, which is sufficient such that a job using 128
nodes can still do checkpointing while utilizing all compute
nodes of the cluster, and (b) 4096 GB, which adds additional
capacity to be used for I/O beyond checkpointing. In the second
scenario, more jobs using the faster storage can be scheduled
simultaneously.

B. I/O workload model

Based on the Feitelson 1996 Model [5], we designed an
algorithm to generate the job specifications, including arrival
time, walltime, the amount of input and output data, the amount
of intermediate data written to and read from files at runtime,
and the amount of requested HPS storage capacity.

We define the overall data volume subject to I/O by filling a
certain fraction of a job’s runtime with reading and writing file
data, based on a fixed LPS data transfer rate Rlps. This means
the key simulation variables are the fraction of time a job spends
performing I/O and the ratios among the three bandwidth values
Rlps, Rstage, and Rhps mentioned in Section IV-A. Everything
else is scaled proportionally. The precise fractions spent reading
input and writing output are randomly selected based on a
normal distribution, taking up to 10% of the runtime on average
for both together. Imagining checkpointing as a common use
case, the amount of intermediate I/O datai is derived from the
amount of main memory available per node with the frequency
again adjusted to match a certain fraction of the overall runtime.
There is no checkpointing for short jobs. The requested amount
of the storage is the sum of the maximum staging space required
at any time on the HPS, that is, max(inputi,outputi) and the
size of a checkpoint. Table I shows the parameters of the
Feitelson 1996 Model used in our jobs simulation.

1http://www.io500.org

http://www.io500.org

Table I. Parameters used for the instantiation of the Feitelson 1996 Model to
create the workloads.

Parameter Value

Fe
ite

ls
on

19
96

M
od

el

Number of jobs 500
Max. repetitions 2
Arrival factor 500
Shortest job time [s] 1800
Longest job time [s] 86400

Each job can request fast HPS, but the final decision is
made by the scheduler. We simulate each job as a sequence of
steps, where the exact composition of this sequence depends
on the storage type that is actually used (e.g., if the job is
assigned to HPS, additional staging of input and output might
be required): (1) If the job uses HPS the input is staged in
from LPS to HPS before starting the job. (2) Although, in
practice, reading of input data may occur anytime during the
lifetime of the job—also because it may not fit into main
memory—we simulate it immediately at the begin of a job’s
execution, a simplification with neutral effect on the overall
runtime. (3) Subsequently, the job operates on the data, which
involves computation as well as communication with other
nodes belonging to the job’s allocation. While the job is running,
additional disk I/O can occur, for example, to write checkpoints
down to either LPS or HPS. (4) Even though, the writing of
results back to LPS or HPS may also happen anytime during
the lifetime of the job, we simulate it right at the end of a
job’s execution, similar to the reading of input data in step (2),
again a simplification with neutral effect on the overall runtime.
(5) If HPS was used, the job needs to stage the results out to
LPS to store them permanently.

V. EVALUATION

To evaluate the performance of SAS, our storage-aware
scheduler, we conducted several simulation experiments, di-
vided into two parts. First we compare SAS with random
storage assignment under the assumption that the user estimates
the job requirements accurately. In a next step, we show how
well SAS resists inaccurate I/O requirement specifications.
Applying the workload model from Section IV-B and using the
same set of parameters, we generated ten different workloads
using distinct random seeds. The workloads share key prop-
erties, in particular, they have the same number of jobs and
similar job distributions and I/O requirements for individual
jobs. As a consequence, their makespans have the same order
of magnitude. We aggregated our results for makespan and
turnaround time by computing the arithmetic mean across all
workloads.

A. SAS vs. random storage assignment

In Figure 3, we show how SAS improves makespan,
turnaround time, and resource utilization in comparison to
random storage assignment. As explained in Section IV, we
consider two different storage capacities for HPS, namely
2048 GB and 4096 GB. The random storage assignment for

each job follows a Bernoulli distribution, such that p denotes the
probability to choose the fast HPS tier and 1− p represents the
probability to choose the slower LPS tier. We ran experiments
with different probabilities p, ranging from 0 to 1 in steps of
0.05. The extreme probabilities of 0 on the one hand and 1
on the other represent two baselines. 0 corresponds to always
using slow storage and 1 to always using fast storage. To
increase statistical significance, we repeated the experiments
ten times for each probability value p and took the average.

According to Figure 3a, SAS shows remarkably better
makespan than random storage assignment. As we increase
the probability of using HPS, the makespan of random storage
assignment reaches a local minimum around the probability of
60–80%, after which it increases again. This behavior can be
explained with longer waiting times, caused by a significant
portion of the jobs insisting on using the HPS tier. Obviously,
random storage assignment fails to fully exploit the potential
of tiered storage, a gap that SAS closes much better. Note that
the makespan for a HPS capacity of 4096 GB is shorter than
for 2048 GB. This suggests to scale up the HPS capacity as
far as possible. However, the higher cost of fast storage may
impose an economic limit here.

Figure 3b shows the arithmetic mean of the turnaround times
for all jobs of the ten workloads. Similar to the makespan
results, the mean turnaround time under random storage
assignment improves as the probability of HPS usage increases
towards p= 0.4, after which the trend is reversed. This behavior
again reflects the growing time jobs wait for HPS.

Compute-node and HPS-storage utilization are visible in
Figures 3c and 3d, respectively. We calculate the total node
utilization U across all n experiments, involving our ten
workloads, using the formula below:

U =
∑

n
i=1 ui

∑
n
i=1 ai

(3)

ui denotes the used node hours and ai the available node
hours in the i-th experiment. The former is the sum of the
product of job runtime and node allocation across all jobs in a
workload. The latter is the product of workload makespan and
the nodes available in the cluster. We determine the storage
utilization analogously, just substituting storage space for
nodes. As expected under random storage assignment, because
increasing p raises the number of jobs using HPS, the HPS
utilization grows steadily. At the same time, the node utilization
experiences a dramatic slump, while an increasing number of
jobs are idling in the queue, waiting for the limited amount
of HPS storage to become available. On the other hand, SAS
achieves remarkably high resource utilization: around 80% for
compute nodes and around 70% for HPS storage.

As discussed in Section IV-A, we assume Rstage to be five
times bigger than Rlps because of the fast sequential data
transfer rate between LPS and HPS. Figure 4 shows the impact
of the staging bandwidth in relation to Rlps on makespan and
turnaround time. Specifically, we consider Rstage = k ·Rlps with
k ∈ {1,2,10}. We saw already in Figures 3a and 3b the results
for k = 5, the ratio we deem most realistic. With Rstage being

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

150

175

200

225

250

275

300
M

ea
n

m
ak

es
pa

n
[h

]
Makespan (random) 2048 GB
Makespan (random) 4096 GB
Makespan (SAS) 2048 GB
Makespan (SAS) 4096 GB

(a) Mean makespan

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

15

20

25

30

35

40

45

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
[h

]

Turnaround time (random) 2048 GB
Turnaround time (random) 4096 GB
Turnaround time (SAS) 2048 GB
Turnaround time (SAS) 4096 GB

(b) Mean turnaround time

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

0.4

0.5

0.6

0.7

0.8

0.9

To
ta

l n
od

e
ut

iliz
at

io
n

(p
er

ce
nt

ag
e)

Node utilization (random) 2048 GB
Node utilization (random) 4096 GB
Node utilization (SAS) 2048 GB
Node utilization (SAS) 4096 GB

(c) Total compute-node utilization

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

0.0

0.2

0.4

0.6

0.8

To
ta

l H
PS

 u
til

iza
tio

n
(p

er
ce

nt
ag

e)

HPS utilization (random) 2048 GB
HPS utilization (random) 4096 GB
HPS utilization (SAS) 2048 GB
HPS utilization (SAS) 4096 GB

(d) Total HPS utilization

Figure 3. Comparison between our storage-aware scheduler (SAS) and random storage assignment, assuming two different storage capacities for HPS (2048 GB
and 4096 GB). We show results for random storage assignment with probabilities p between 0 and 1 in steps of 0.05. The parameter p specifies the portion of
jobs to be scheduled on HPS, with the precise selection of these jobs being randomized. p = 0 corresponds to always using slow storage and p = 1 to always
using fast storage. To highlight the general trend, we fit the results measured for random storage assignment with a polynomial curve of second degree. The
error bars depict the standard deviation of all results that we gathered while repeating our experiments for a single value of p. The makespan and turnaround
times represent the arithmetic mean across ten workloads and ten repetitions for each value of p.

closer to Rlps, SAS still mostly outperforms random storage
assignment although makespan and turnaround time tend to be
higher than in a scenario where Rstage� Rlps. Remarkably, if
the staging bandwidth is low then increasing the capacity of
high-performance storage prolongs makespan and turnaround
time unexpectedly. This is because the staging bandwidth is
shared among all jobs attempting to stage their data, which
makes it a bottleneck if many jobs stage simultaneously. The
more fast storage is available the more jobs need staging.
Consequently, properly balancing the amount of fast storage
and the staging bandwidth is essential to the efficiency of
our two-tier-storage scheduler. Determining the optimal staging
bandwidth for a given amount of fast storage will be the subject
of future studies.

B. Impact of inaccurate I/O requirements

Up to now, we have always assumed that users provide
accurate estimates of their job’s I/O requirements. Now, we
analyze how well SAS can tolerate inaccurate I/O requirement
specifications. For this purpose, we ran a new set of experiments
where the user input for each job follows a normal distribution
N(µ,σ2) around the correct value.

We evaluate the inaccuracy of user input based on the
factor θ , where µ = datai and σ = datai ·θ . The factor θ

indicates how much the values in the normal distribution differ
from the correct value. In other words, θ reflects the relative
standard deviation of user input from the correct value. A
similar distribution is considered for inputi and outputi. The
deviation from the perfect estimate is shown through scaling
θ from 0 to 1.0 in steps of 0.025, with θ = 0 representing
accurate estimation. Like in our comparison with random-

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

200

300

400

500

600

M
ea

n
m

ak
es

pa
n

[h
]

Makespan (random) 2048 GB
Makespan (random) 4096 GB
Makespan (SAS) 2048 GB
Makespan (SAS) 4096 GB

(a) Mean makespan for k = 1

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

20

40

60

80

100

120

140

160

180

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
[h

]

Turnaround time (random) 2048 GB
Turnaround time (random) 4096 GB
Turnaround time (SAS) 2048 GB
Turnaround time (SAS) 4096 GB

(b) Mean turnaround time for k = 1

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

175

200

225

250

275

300

325

350

375

M
ea

n
m

ak
es

pa
n

[h
]

Makespan (random) 2048 GB
Makespan (random) 4096 GB
Makespan (SAS) 2048 GB
Makespan (SAS) 4096 GB

(c) Mean makespan for k = 2

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

20

40

60

80

100

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
[h

]

Turnaround time (random) 2048 GB
Turnaround time (random) 4096 GB
Turnaround time (SAS) 2048 GB
Turnaround time (SAS) 4096 GB

(d) Mean turnaround time for k = 2

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

100

125

150

175

200

225

250

275

300

M
ea

n
m

ak
es

pa
n

[h
]

Makespan (random) 2048 GB
Makespan (random) 4096 GB
Makespan (SAS) 2048 GB
Makespan (SAS) 4096 GB

(e) Mean makespan for k = 10

0.0 0.2 0.4 0.6 0.8 1.0
Probability p of jobs using HPS

10

15

20

25

30

35

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
[h

]

Turnaround time (random) 2048 GB
Turnaround time (random) 4096 GB
Turnaround time (SAS) 2048 GB
Turnaround time (SAS) 4096 GB

(f) Mean turnaround time for k = 10

Figure 4. Impact of the staging bandwidth in relation to the LPS bandwidth. We compare our storage-aware scheduler (SAS) with random storage assignment,
assuming Rstage = k ·Rlps with k ∈ {1,2,10}. To highlight the general trend, we fit the values measured for random storage assignment with a polynomial curve
of second degree. The error bars depict the standard deviation of all results that we gathered while repeating our experiments for a single value of p. The
figures represent the arithmetic mean across ten workloads and ten repetitions for each value of p.

0.0 0.2 0.4 0.6 0.8 1.0
Relative standard deviation of user input []

120

140

160

180

200

220

240

260

280
M

ea
n

m
ak

es
pa

n
[h

]
Makespan (SAS, > 0)
Makespan (SAS, = 0)
Makespan (random)

(a) Mean makespan

0.0 0.2 0.4 0.6 0.8 1.0
Relative standard deviation of user input []

180

200

220

240

260

280

300

320

M
ea

n
nu

m
be

r o
f j

ob
s

HPS jobs (SAS, > 0)
LPS jobs (SAS, > 0)
HPS jobs (SAS, = 0)
LPS jobs (SAS, = 0)

(b) Mean number of jobs assigned to each storage tier

0.0 0.2 0.4 0.6 0.8 1.0
Relative standard deviation of user input []

0.50

0.55

0.60

0.65

0.70

0.75

0.80

To
ta

l u
til

iza
tio

n
(p

er
ce

nt
ag

e)

Node utilization (SAS, > 0)
HPS utilization (SAS, > 0)
Node utilization (SAS, = 0)
HPS utilization (SAS, = 0)

(c) Total node and storage utilization

0.0 0.2 0.4 0.6 0.8 1.0
Relative standard deviation of user input []

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
[h

]

Turnaround time (SAS, > 0)
Turnaround time (SAS, = 0)
Turnaround time (random)

(d) Mean turnaround time

Figure 5. Effects of inaccurate user input shown for an HPS storage capacity of 4096 GB. The green (shaded) areas in Figures 5a and 5d cover the entire
probability range of random storage assignments. User inputs are drawn randomly based on a normal distribution N(µ,σ2) around the correct value, with
µ = bytes and σ = bytes ·θ . The factor θ , shown from 0 to 1.0 in steps of 0.025 on the x-axis, steadily increases the deviation from the correct user input. To
highlight the general trend, we fit the values measured for various values of θ with polynomial curves of first and second degree, respectively. The error bars
depict the standard deviation of all results we gathered while repeating our experiments for a single value of θ . With the exception of utilization, these figures
represent the arithmetic mean across ten workloads and ten repetitions for each value of θ . The total utilization is the accumulated resource usage divided by
the total amount of available resources across all experiments.

storage-assignment, we strove to increase statistical significance
by repeating each simulation ten times for each factor θ and
taking the average.

Figure 5a compares the makespans resulting from perfect
user estimation (θ = 0) with those resulting from inaccurate
estimation (θ 6= 0). The simulations were carried out for an
HPS storage capacity of 4096 GB. The ratio between Rstage
and Rlps is again five. The green (i.e., shaded) area in this
figure covers random storage assignment with the full range of
probabilities (0−1) for comparison. As can be observed, even
in the view of inaccurate user input in the range specified by
the normal distribution, SAS still outperforms random storage
assignments.

Figures 5b and 5c illustrate the impact of inaccurate user
requirements on resource utilization. Figure 5b shows that

the number of jobs scheduled on each storage tier is directly
affected by changing accuracy of the user input. As the accuracy
decreases, the number of jobs that use HPS is being reduced
while the number of jobs that use LPS is being increased.
This behavior leaves the HPS tier underutilized, as shown
in Figure 5c. On the other hand, the influence on utilization
of compute nodes is low, which is to be expected because
low HPS utilization means less waiting time for limited HPS
storage.

Figure 5d compares the mean turnaround times of SAS with
those of random storage assignment when varying θ . With
small deviations of the user input, the scheduler behaves partly
unstable and we can observe a short interval in which the
results of SAS become slightly worse than the best random
storage assignments. But compared to the wide dispersion

of the random storage assignment results spread across the
green (dark) area, the results of SAS are consistently positioned
at the lower end.

Since users might simply omit the specification of storage
requirements, we finally need to discuss the behavior of SAS
in the absence of user inputs. Having the value of 0 for all user
inputs leads to T lps

i = T hps
i , and in such a case Algorithm 2

(try-start-storage-aware()) only chooses the LPS tier. In other
words, by providing no input, the scheduler skips the HPS
tier altogether to avoid waiting for limited HPS storage. This
is a fair scheduler decision because although SAS adds no
improvement, at least it does not show worse performance than
having no HPS in the model.

One way of discouraging users from manipulating scheduler
decisions with deliberately wrong I/O requirement specifi-
cations would be to monitor I/O and storage usage and
penalize inaccurate requirement statements. However, a detailed
treatment of such policies is outside the scope of this article.

VI. CONCLUSION

The emergence of new storage technologies such as NVMe
can pave the way to overcoming the challenges of running I/O-
bound applications on HPC systems. Although the idea of tiered
storage is not new, the upcoming high-performance storage will
have revolutionary impact on the runtimes of large-scale data-
intensive applications, as we have already seen with burst-buffer
technologies. In this work, we introduced a novel scheduling
algorithm that considers a high-performance storage tier with
limited capacity alongside traditional HDD back-end storage
within the same cluster infrastructure. We showed in simulations
how delegating the decision as to which storage type a job
should use to the scheduler improves makespan and turnaround
times. However, we also learned that increasing the amount of
available fast storage beyond a certain level does not necessarily
lead to faster turnaround times unless it is backed by higher
staging bandwidth. Moreover, we found that our scheduling
algorithm is to some degree even tolerant of inaccurate user
estimates of I/O requirements. An extension of the scheduler
to cover more than two storage tiers is straightforward.

Inspired by the encouraging outcome of this study, we have
started to implement our two-tier storage scheduler inside the
resource manager Slurm [22]. Another logical next step is the
refinement of current accounting schemes to properly reflect
the performance of the storage system the scheduler ultimately
assigns.

ACKNOWLEDGMENT

This research has received funding from the European
Union’s Horizon 2020 Framework Programme for Research and
Innovation under Grant Agreement No. 720270 (Human Brain
Project SGA1) and Grant Agreement No. 785907 (Human Brain
Project SGA2). The underlying simulations were carried out
on Lichtenberg, the high-performance computer of Technische
Universität Darmstadt. Finally, we would like to express our
gratitude to the Batsim developers at INRIA for their support.

In particular, we thank Pierre-François Dutot, Michael Mercier,
Millian Poquet, and Olivier Richard.

REFERENCES

[1] Jorge Manuel Gomes Barbosa and Belmiro Daniel
Rodrigues Moreira. “Dynamic Job Scheduling on Het-
erogeneous Clusters”. In: Proc. of the 8th International
Symposium on Parallel and Distributed Computing
(ISPDC’09). IEEE, 2009, pp. 3–10.

[2] Wahid Bhimji, Debbie Bard, Melissa Romanus et al.
“Accelerating Science with the NERSC Burst Buffer
Early User Program”. In: Proc. of the Cray User Group
(CUG2016). 2016.

[3] Rajkumar Buyya and Manzur Murshed. “Gridsim: A
Toolkit for the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid Com-
puting”. In: Concurrency and Computation: Practice
and Experience. 14.13-15 (2002), pp. 1175–1220.

[4] Pierre-François Dutot, Michael Mercier, Millian Poquet
and Olivier Richard. “Batsim: a Realistic Language-
Independent Resources and Jobs Management Systems
Simulator”. In: Proc. of the 20th Workshop on Job
Scheduling Strategies for Parallel Processing. Springer,
2016, pp. 178–197.

[5] Dror G. Feitelson. “Packing Schemes for Gang Schedul-
ing”. In: Proc. of the 2nd Workshop on Job Schedul-
ing Strategies for Parallel Processing. Springer, 1996,
pp. 89–110.

[6] Ian Foster, Carl Kesselman, Craig Lee et al. “A Distrib-
uted Resource Management Architecture that Supports
Advance Reservations and Co-Allocation”. In: Proc. of
the 7th International Workshop on Quality of Service
(IWQoS’99). IEEE, 1999, pp. 27–36.

[7] Nicholas Hazekamp, Nathaniel Kremer-Herman, Ben-
jamin Tovar et al. “Combining Static and Dynamic
Storage Management for Data Intensive Scientific Work-
flows”. In: IEEE Transactions on Parallel and Distrib-
uted Systems 29.2 (2018), pp. 338–350.

[8] Jan Heichler. An Introduction to BeeGFS v2.0. White-
paper. ThinkParQ, 2018. URL: http : / / www. beegfs .
com/docs/whitepapers/Introduction_to_BeeGFS_by_
ThinkParQ.pdf (visited on 19th Mar. 2019).

[9] Stephen Herbein, Dong H. Ahn, Don Lipari et al.
“Scalable I/O-Aware Job Scheduling for Burst Buffer
Enabled HPC Clusters”. In: Proc. of the 25th ACM
International Symposium on High-Performance Parallel
and Distributed Computing. ACM, 2016, pp. 69–80.

[10] Florin Isaila, Jesus Carretero and Rob Ross. “Clarisse: A
Middleware for Data-Staging Coordination and Control
on Large-Scale HPC Platforms”. In: Proc. of the 16th
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). IEEE, 2016, pp. 346–355.

[11] Dalibor Klusáček and Hana Rudová. “Alea 2: Job
Scheduling Simulator”. In: Proc. of the 3rd International
Conference on Simulation Tools and Techniques. ICST,
2010, p. 61.

http://www.beegfs.com/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://www.beegfs.com/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://www.beegfs.com/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf

[12] Andreas Knüpfer, Christian Rössel, Dieter an Mey et al.
“Score-P: A Joint Performance Measurement Run-Time
Infrastructure for Periscope, Scalasca, TAU, and Vampir”.
In: Proc. of the 5th International Workshop on Parallel
Tools for High Performance Computing. Springer, 2012,
pp. 79–91.

[13] Tevfik Kosar and Mehmet Balman. “A New Paradigm:
Data-Aware Scheduling in Grid Computing”. In: Future
Generation Computer Systems. 25.4 (2009), pp. 406–
413.

[14] David A. Lifka. “The ANL/IBM SP Scheduling Sys-
tem”. In: Proc. of the 1st Workshop on Job Schedul-
ing Strategies for Parallel Processing. Springer, 1995,
pp. 295–303.

[15] Arun Ramakrishnan, Gurmeet Singh, Henan Zhao et
al. “Scheduling Data-Intensive Workflows onto Storage-
Constrained Distributed Resources”. In: Proc. of the 7th
International Symposium on Cluster Computing and the
Grid (CCGrid). IEEE, 2007, pp. 401–409.

[16] Aamer Shah, Felix Wolf, Sergey Zhumatiy and Vladimir
Voevodin. “Capturing Inter-Application Interference on
Clusters”. In: Proc. of International Conference on
Cluster Computing (CLUSTER). IEEE, 2013, pp. 1–5.

[17] Konstantin Shvachko, Hairong Kuang, Sanjay Radia
and Robert Chansler. “The Hadoop Distributed File
System”. In: Proc. of the 26th Symposium on Mass
Storage Systems and Technologies (MSST). IEEE, 2010,
pp. 1–10.

[18] Tim Süß, Nils Döring, Ramy Gad et al. “Impact of
the Scheduling Strategy in Heterogeneous Systems that
Provide Co-Scheduling”. In: Proc. of the 1st COSH
Workshop on Co-Scheduling of HPC Applications. IOS
Press, 2016, p. 37.

[19] Atsuko Takefusa, Hidemoto Nakada, Tomohiro Kudoh
and Yoshio Tanaka. “An Advance Reservation-Based
Co-Allocation Algorithm for Distributed Computers and
Network Bandwidth on QoS-Guaranteed Grids”. In:
Proc. of the 15th Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2010, pp. 16–34.

[20] Dan Tsafrir, Yoav Etsion and Dror G. Feitelson. “Back-
filling Using System-Generated Predictions Rather than
User Runtime Estimates”. In: IEEE Transactions on
Parallel and Distributed Systems. 18.6 (2007), pp. 789–
803.

[21] Lipeng Wan, Zheng Lu, Qing Cao et al. “SSD-Optimized
Workload Placement with Adaptive Learning and Clas-
sification in HPC Environments”. In: Proc. of the 30th
Symposium on Mass Storage Systems and Technologies
(MSST). IEEE, 2014, pp. 1–6.

[22] Andy B. Yoo, Morris A. Jette and Mark Grondona.
“Slurm: Simple linux utility for resource management”.
In: Proc. of the 9th Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, 2003,
pp. 44–60.

[23] Kenneth Yoshimoto, Patricia Kovatch and Phil Andrews.
“Co-Scheduling with User-Settable Reservations”. In:
Proc. of the 11th Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2005, pp. 146–156.

[24] Gong Zhang, Lawrence Chiu and Ling Liu. “Adaptive
Data Migration in Multi-Tiered Storage Based Cloud
Environment”. In: Proc. of the 3rd International Con-
ference on Cloud Computing (CLOUD). IEEE, 2010,
pp. 148–155.

	Abstract
	Introduction
	Related Work
	Storage-Aware Scheduler
	Platform model
	Job model
	Scheduling algorithm

	Simulation Setup
	Simulation environment
	I/O workload model

	Evaluation
	SAS vs. random storage assignment
	Impact of inaccurate I/O requirements

	Conclusion
	Acknowledgment
	References

