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Abstract—In this paper, we investigate two implementations of
the LLL lattice basis reduction algorithm in the popular NTL and
fplll libraries, which helps to assess the security of lattice-based
cryptographic schemes. The work has two main contributions:

First, we present a novel method to develop performance mod-
els and use the unpredictability of LLL’s behavior in dependence
of the structure of the input lattice as an illustrative example.
The model generation approach is based on profiled training
measurements of the code and the final runtime performance
models are constructed by an extended version of the open
source tool Extra-P by systematic consideration of a variety of
hypothesis functions via shared-memory parallelized simulated
annealing. We employ three kinds of lattice bases for our tests:
Random lattice bases of Goldstein-Mayer form with linear and
quadratic increase in the bit length of their entries and NTRU-
like matrices. The performance models derived show a very good
fit to the experimental data and a high variety in their range
of complexity which we compare to predictions by theoretical
upper bounds and previous average-case estimates. The modeling
principles demonstrated by the example of the use case LLL
are directly applicable to other algorithms in cryptography and
general serial and parallel algorithms.

Second, we also evaluate the common approach of estimating
the runtime on the basis of the number of floating point
operations or bit operations executed within an algorithm and
combining them with theoretical assumptions about the executing
processor (clock rate, operations per tick). Our experiments show
that this approach leads to unreliable estimates for the runtime.

Index Terms—performance models, model fitting, parallel
simulated annealing, OpenMP

I. INTRODUCTION

To assess the security of a cryptographic scheme which is

based on some computational problem one has to estimate the

hardness of the underlying problem. To that end, cryptanal-

ysists aim at estimating the complexity of known algorithms

or attacks to solve these problems. Since a real execution of

such algorithms on secure instances of cryptographic interest
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can not finish in acceptable time (otherwise the corresponding

cryptosystem could be broken), models for the runtime de-

pending on the inputs of these algorithms are required. These

models, called performance models in the following, can then

be used to choose cryptographic parameters providing a certain

security level. However, if the generated models overestimate

the runtime of an attack the resulting encryption may be

insecure. Underestimating the runtime of attacks may result

in selecting unnecessary large cryptographic parameters and

hence in an inefficient cryptosystem. In this paper, we present

a novel method to generate accurate performance models based

on real measurement data. As a use case we decided for the

LLL basis reduction algorithm [1], named after its inventors

Lenstra, Lenstra and Lovász. It is a common building block

in the emerging field of lattice-based cryptography and its

runtime depends on several factors like the actual variant of the

LLL procedure, the type of basis to reduce, the parametrization

of the algorithm or the precision of the floating point (FP)

variables employed. Stehlé [2], e.g., states that the practical

behavior of LLL is considered as mysterious, while Lin [3]

calls the variable complexity of LLL a drawback of the

algorithm. This unpredictability of the behavior of LLL makes

it a good candidate to highlight the advantages of our method.

In this work, we propose a new approach to model the com-

plexity of algorithms by the example of the LLL algorithm.

We extend the open source software Extra-P1 with a shared-

memory parallelized variant of the simulated annealing [4]

heuristic, thus exploring a wide range of fitting functions for

both runtime and floating point operations executed in parallel

requiring only little time. We develop performance models

for two LLL implementations from the NTL2 and the fplll3

libraries. Both are widely used in the cryptographic commu-

nity. With three different types of lattices, we demonstrate the

quality and accuracy of the runtime predictions resulting from

1http://www.scalasca.org/software/extra-p/download.html
2http://www.shoup.net/ntl/
3https://github.com/fplll/fplll
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our generated models.

II. PRELIMINARIES AND AN OVERVIEW OF LLL

A lattice is a discrete additive subgroup of Rn. In this case,

n is called the dimension of the lattice. For each n-dimensional

lattice Λ �= {0} there exist d ≤ n linearly independent vectors

B = {b1, . . . ,bd} such that Λ = Zb1 + . . . + Zbd. Such a

set of vectors is called a basis of Λ. The cardinality d of a

basis is uniquely determined by the lattice and called the rank

of the lattice. A full rank lattice is a lattice with n = d.

The LLL algorithm [5] is one of the most famous lattice

basis reduction algorithms. Basis reduction is the process of

improving the “quality” of a lattice basis and can be used

to find short vectors in lattices. At the time of its invention

LLL was the first polynomial-time basis reduction algorithm.

However, the short vectors found with LLL are typically

exponentially larger than the shortest non-zero vectors in the

lattice. LLL proved to be useful for a variety of applications

like factoring integers and polynomials, linear programming or

lattice-based cryptography. In particular, other basis reduction

algorithms such as BKZ [1] and its variants like BKZ 2.0

use LLL extensively. All competitive LLL libraries are based

on floating point arithmetic [2]. Theoretical upper bounds on

the runtime of floating point LLL are well-established but the

algorithm is known to behave much better in practice than

what can be deduced by these upper bounds [6], [7].

Algorithm 1 provides a high level pseudocode of the LLL

algorithm hiding the details of practical improvements like

proposed, e.g., in [1], [6]. For detailed pseudocode of several

FP implementations of LLL refer to [2]. δ determines the

quality of the returned basis. Smaller values improve the

quality but increase the runtime.

Algorithm 1 The LLL Algorithm

Input: A basis (b1, . . . ,bd) of a lattice Λ and δ ∈ [ 14 , 1]
Output: Basis (b1, . . . ,bd) is LLL-reduced with factor δ

1: Compute all the Gram-Schmidt coefficients μi,j and the

lengths ||b∗i ||
2: for i = 2 to d do
3: Size-reduction of basis vectors (b1, . . . ,bi−1) in re-

verse order

4: Update Gram-Schmidt values where required

5: end for
6: if Condition based on δ is not satisfied for some vectors

bj and bj+1 then
7: swap bj and bj+1, return to Line 1

8: end if

III. FLOATING POINT LLL AND PERFORMANCE MODELS

Several variants were proposed after Schnorr’s first

provable correct floating point algorithm in 1986

[8]. It is bound by O(d3n(d+ logB)2 logB) where

B = maxi{‖b1‖ , . . . ,‖bd‖} and thus log2 B is the bit

size of the input matrix entries. One variant was proposed

in 2009 by Nguyen and Stehlé [6] whose upper bound

is O(d4n log2 B(d + log2 B)) and hence only grows

quadratically in the bit size of the entries. This approach

was further optimized in 2011 by Novocin et al. [9]. They

presented a variant of LLL, called L̃1, whose runtime depends

only quasi-linear on log2 B and is still polynomial in d. This

variant is mainly relevant in the case of large log2 B values. Its

upper bound complexity is O(d5+ε logB + dω+1+ε log1+ε B)
where ω is a valid exponent for matrix multiplication and

ε > 0. Stehlé [2] states that for floating point LLL like

the provable algorithm of Schnorr [8] or L2 [6] we have a

complexity of total degree 7 but that the complexity bound

of L2 is always better than that of [8].

Nguyen et al. [7] employed the implementation in the

fplll library to investigate floating point LLL and determined

models for its average runtime. They employ two different

kinds of input bases, Ajtai-type random bases and Knapsack-

type bases, and report an average complexity of O(d4 log2 B)
hence, one degree lower than the theoretical bound.

Ling et al. [3] investigated the complexity of special variants

of LLL for problems arising in the field of communication

and signal processing. They demonstrate that the average

complexity that is expected is much lower than the worst-case

bounds. They consider the number of FLOPs for LLL and

derive an average complexity bound of O(n3 log n) for some

of their special problem instances and the resulting lattices.

They highlight that LLL’s complexity is highly dependent, i.e,.

the exponent of n changes, with the basis to be reduced.

Automatically generated empirical performance models

were used to identify scalability issues in HPC codes by

Calotoiu et al. [10]. This performance modeling approach was

successfully employed by Iwainsky et al. [11] to investigate the

scalability of various OpenMP implementations on different

architectures with a high number of SMP cores.

IV. MODELING APPROACH BASED ON EXTRA-P AND

PARALLEL SIMULATED ANNEALING

Extra-P [10] was originally created as a tool to assist in

identifying scalability bugs in parallel programs. To this end,

functions are generated from data describing the relation of

the runtime of different code regions with different variables

like the size of the input data. Calotoiu et al. [10] showed that

the runtime complexity of many code regions and algorithms

can be modeled by functions of the type

m∑
k=0

ck · xik · logjk2 (x) (1)

where x is the problem size for the experiments of this

paper. But it can also be the number of threads employed or

some target precision of the result. Functions of the shape of

Equation 1 are called to be in performance model normal form

(PMNF). Reisert et al. [12] showed that in most cases m = 1
is sufficient to achieve a good result and, in particular, that

those models are even the best ones.
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As it turns out, also in our application, always the model

with m = 1 results in the best prediction. Hence, all our

models have the shape c0 + c · xi · logj2(x).
To determine appropriate values of the parameters c0, c,

i and j, we extended Extra-P by a novel model generator

to systematically explore the space of all possible model

functions. First, so called training data is required, represented

by profiled runtime measurements with a varying parameter

(see also Section V-C). This parameter is, in our case, the rank

of the lattice d, which is equal to the dimension n. We also

generate a first model with Extra-P’s default model generator.

The training data and the initial model are the inputs

of our extension which employes the simulated annealing

heuristic [4] to further improve the model. The internal energy,

representing the quality of the model, is the Residual Sum of

Squares (RSS) which is defined as:

RSS =

n∑
i=0

(yi − f(xi))
2 (2)

There, i is the number of the measurement yi and f(xi)
is the evaluation of the model function corresponding to

the x value of the same measurement. If RSS = 0, then

yi = fi ∀i and all points of the training data lie directly on the

fitting curve, which is the ideal case. The simulated annealing

procedure is shared-memory parallelized with OpenMP. As

initialization, the starting point for each thread is randomly

set around the initial solution delivered by Extra-P, i.e., the

coefficients i and j are randomly modified by each thread.

Then, each thread performs its own search for the best solution

until the temperature cooled down to the target. We empirically

determined that Tnew = Told ∗ 0.999 is a good choice for the

cooling function and that T = 0.00001 is suitable stopping

criterion. Our software automatically generates a report file

in LATEX which allows to easily compare the solutions of

the different threads, their quality and the consistency of the

result. It visualizes the fitting of the training data and the

generated model as well as the prediction for higher values of

the rank d. In contrast to Extra-P this avoids runtime intensive

exhaustive model search or time-consuming manual trial-and-

error adaption of i and j to find the best model. The software

is available for download4.

Extra-P is not only capable of modeling the development of

the compute time, but it can also generate models for recorded

hardware performance counters, like the number of memory

accesses or the number of floating point operations (FLOPs)

executed depending on the size of the input parameter. This

enables us to also compare theoretical estimates on the number

of FLOPs in LLL with the actual number.

V. METHODOLOGY

In this section, we describe the LLL implementations used,

discuss how we created the required training data for our

models and the input bases for our tests.

4https://github.com/MiBu84/SMP-Simulated-Annealing

A. Employed LLL implementations and parameters
In the NTL library, we investigate the LLL RR routine,

which works with an arbitrary floating point precision data

type. The implementation is based on the description from

[13] that already includes improvements like incremental and

on-demand calculation of Gram-Schmidt coefficients. Further-

more, the NTL library adds several heuristics concerning the

acceptable precision loss and the number of type conversions.

Additionally, we considered the implementation of the L2

algorithm [14] in the fpLLL library.

The runtime of FP LLL implementations depends besides

the input basis and the chosen δ-value on the precision of

the employed floating-point type. Smaller dimensions can

theoretically be calculated with a lower precision. The required

precision for a dimension should be predicted in advance and

set to the smallest possible value. Nguyen et al. [7] state, e.g.,

that for their LLL implementation the FP precision can be

estimated by 0.18d+ o(d) in the average case. To simplify

our experiments, we set the FP precision to 150 bits since this

value is sufficient to run our highest tested dimensions. We

always set δ = 0.999.

B. Test systems
We employ two different systems for our tests, summarized

in Table I. All measurements are from single-thread runs. The

compute thread is bound to the second physical core and the

systems are used exclusively. We use NTL in version 10.0.5

and fplll in version 5.2.0.

Table I: Test systems with different Intel Xeon processors

Westmere Haswell
CPU 8*E7-8837 2*E5-2680 v3
Cores 8c@2.66 GHz 24c@2.50 GHz
RAM 1024 GB 64 GB
OS CentOS 7.3 CentOS 7.3

C. Generating training data
The LLL RR from NTL was uniformly called with

LLL RR(L,0.999,0,0,1), where the second parameter represents δ,

within a C++ driver application where L is the input lattice

read and stored as NTL mat ZZ. fplll was used as executable

and we set δ = 0.999 via command line argument.

To generate the models, we instrumented the LLL-functions

with Score-P [15] which is a measurement infrastructure

specifically targeted to parallelized codes but also suitable for

serial codes like our underlying LLL implementations. We

ensured by non-instrumented runs that the runtime of LLL

was not considerably influenced by the instrumentation. Three

runs for each rank d of the lattice were performed since the

runtimes are very stable for all d’s. The rank d was increased

in steps of five, while the type of input lattice determines the

largest rank tested. Each set of three runs with the same d
is called a measurement point in the following and the part

of all measurement points which is employed for the model

generation is our training data. Runs with higher rank than

the training data are employed to evaluate the quality of the

prediction resulting from the generated model.
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In addition to the runtime, we consider the number of

floating point operations that are executed in LLL RR. To this

end, we employed hardware performance counters through the

PAPI interface [16] and logged the value of the PAPI FP OPS

preset event. This provides an estimate of the total number

of operations during the execution of the instrumented code

region. We executed those tests on older Intel Westmere pro-

cessors since counting the floating point operations on Sandy

and Ivy Bridge processors may lead to unreliable results5.

D. Employed lattice types
We employ three types of full rank lattices for our exper-

iments. First, we use lattices resulting from the generator of

the Darmstadt SVP challenge6.

The bases generated are of Goldstein-Mayer form [17],

which is shown in Equation 3. The first highlighted column

consists of large integers fulfilling the prerequisites listed in

[17] and they have a length of 10d bits. The diagonal elements

are set to 1 while the rest contains zeros.

⎛
⎜⎜⎜⎜⎝

k1
k2 1
...

. . .

kd 1

⎞
⎟⎟⎟⎟⎠ (3)

One property of those bases is that logB = O(d), i.e., we

can neglect logB during our model generation, since there is a

correlation between logB and d. We empirically determined

that for our bases logB = α · d, α ∈ [9.986, 9.999]. Conse-

quently, modeling the runtime as a function of d is valid and

O(d4 log2 B) can be simplified to O(d4 · d2) = O(d6).
The second type of lattices are random lattices with a

bit length of d2 for the ki’s. We modified the code of the

Darmstadt SVP challenge generator to enable the creation

of such bases. Again, we verified the generated bases and

solved logB = dγ for γ that is always in [1.999, 2]. Thus,

O(d4 log2 B) is simplified to O(d4 · d22) = O(d8).
The third type are NTRU-like bases, generated by the

latticegen utility of fplll. The length of the first sampled integer

q is set to the fixed size of d2 bits. Equation 4 shows the

general shape of these matrices of rank d = 2N×2N . Details

can be found in the fplll documentation7.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 h0 h1 · · · hN−1

0 1 · · · 0 hN−1 h0 · · · hN−2

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 h1 h2 · · · h0

0 0 · · · 0 q 0 · · · 0
0 0 · · · 0 0 q · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)
We also ran some tests with knapsack-like matrices from the

fplll generator leading to equivalent model quality as for the

5http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops
6https://www.latticechallenge.org/svp-challenge/
7https://github.com/fplll/fplll/blob/master/README.md\#NS09

three types described above. We are confident that the matrix

types considered are representative for other types as well and

meaningful for our experiments.

VI. EVALUATION

First, we consider the models that allow to predict the

runtime of both LLL implementations depending on the type

of the input matrix. Then, we discuss the common approach to

predict the runtime of algorithms based on a model on FLOPs

or bit operations required during the execution.

A. Runtime prediction
We start with the two types of random lattices followed by

NTRU-like matrices.

1) Random lattices with bit length 10d

In Figure 1a, we show our training data (green diamonds),

the model generated by our extended Extra-P version (blue

line) and additional measurements for higher dimensions (red

circles) for the LLL RR routine of the NTL library. Further-

more, the brown curve shows the development of the average

model taken from [7]. For the brown curve, we adjusted

the coefficients to fit the training data best and adapted the

exponents, i.e. d6 and log0 d. Hence, this is a kind of best-

case scenario for the average model. A comparison of our

models and the average model from [7] on a logarithmic scale

is shown in Figure 5.

Figure 1a demonstrates that our modeling function fits the

set of training data very well. The zoom in the figure highlights

this fact since the centers of all green diamonds lie on the blue

graph. The model that relates the problem size d to the runtime

tLLL RR in seconds is

tLLL RR(d) = −0.05 + 8.31 · 10−8 · d3.05 · log3.492 (d) (5)

The interesting part is d3.05 · log3.492 (d), which grows much

slower than the upper bound of O(d5 · log2 B) [7] that can

be simplified to O(d7) for our bases. The small negative

coefficient results from the short runtimes for small values

of d. For example, d = 50 requires only slightly more than

one second resulting in small jitter in the model. For an ideal

model this coefficient would be positive.

The visual impression of the very good fit of the model to

the training data is underlined by the quality metrics. The RSS

is 1.95 while the highest occurring value in the training data

set is 63.

We also compare the predictions of the model to the real

runtimes for higher dimensions. We increase the size of the

lattice to d = 290, i.e., we increase the problem size by a

factor of three compared to the training data. The blue line is

a good prediction for the red measurement points. For ranks

d ∈ [100, 225], the measurements lie on the line or very near

to it, while for higher dimensions there is a small gap. For

the last point at d = 290, the relative difference between the

prediction (4125 seconds) and the actual measurement (3133

seconds) is 24%.
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Figure 1: Top diagrams: Extrapolation of runtime for linear growth in bit length. Bottom: Case of quadratic growth.

The same procedure was applied to the fplll library and

Figure 1b summarizes the results. The behavior is very similar

to the NTL library. Again, the model generated fits the training

data very well. The comparison of the RSS value 0.15 to

the highest value of 21.05 in the training data underlines this

visual impression.

The graph of the model is described by

tfplll(d) = −0.21 + 2.51 · 10−8 · d3.07 · log3.52 (d) (6)

So, the exponents are about the same as those of LLL RR (see

Equation 5) and are considerably smaller than the average-case

estimate O(d4 · log2 B) of Nguyen and Stehlé [7]. For higher

ranks, the prediction also overestimates the real values (about

17%), as shown on the right side of Figure 1b.

We notice that although we consider a modified floating

point LLL variant (L2 instead of L3) and a different library

(fplll instead of NTL), the generated model has the same shape

and a comparable accuracy as for the NTL implementation for

this type of input lattices. However, the fplll library finishes

in about a third of the time.

2) Random lattices with bit length d2

Here, we have a look at random lattices in which the bit

length of the entries grows quadratically in the rank d of the

lattice, hence log2 B = d2, resulting in an average complexity

of d8 (see Section V-D). Equation 7 shows the derived model

function for the NTL library.

tLLL RR(d) = 14.10 + 2.01 ∗ 10−8 · d4.38 · log2.502 (d) (7)

The complexity is significantly higher than for bit length

10d but still much lower than theoretical bounds. The cor-

responding model graph with training data and further data

points is visualized in Figure 1c. The fit of graph and training

data is good. RSS is 100 with 983 being the highest training

point. Measurements were performed up to d = 225. For

higher ranks, the lattice generator is too slow and cannot create

a random base for d = 230 in more than 50 hours. However, as
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far as we can create measurements, we see a strong agreement

of the predictions and the actual measurements. The actual

value at d = 215 is underestimated by only 9%.

Our model for fplll and random lattices with bit length d2

is described by Equation 8.

tfplll(d) = 0.13 + 9.72 · 10−10 · d4.75 · log2.492 (d) (8)

The fit of training data and model is nearly ideal since

RSS is only 2.75 and the relative difference at d = 225
between measurement and prediction is smaller than 4%. In

general, all measurements lie directly on the graph. Hence, our

modeling approach delivers very accurate models for this type

of lattices, while common estimates differ for several orders

of magnitude. Additionally, both libraries show a comparable

complexity although their underlying LLL variants differ.

3) NTRU-like lattices

Finally, we have a look at the behavior of the LLL imple-

mentations when applied to the NTRU-like matrices. Equation

9 gives the model function for the NTL library.

tLLL RR(d) = −0.90 + 9.20 · 10−8 · d4.40 · log2.52 (d) (9)

The exponents in Equation 9 are the same as in Equation

7 for random lattices but the coefficients differ, resulting in

a considerably higher runtime of a factor higher than 6 for

d = 135. This demonstrates that even an accurate knowledge

of the complexity class is not sufficient for runtime predictions

but that those predictions are possible within our approach.

Figure 2a shows that like in the other examples the model

fits the training data (RSS=19.00) very well. Because of

the high runtimes, the training data has been generated for

d ∈ [30, 70] and the highest measurement point is at d = 135.

There, the model underestimates the actual runtime by about

28% indicating that the behavior for small ranks seems to

slightly differ from those of higher ones.

Equation 10 shows the corresponding model for the fplll

library and the NTRU-like matrices. In that case, we see for the

first time a considerable difference in the exponents between

fplll and NTL.

tfplll(d) = −0.19 + 7.68 · 10−8 · d5.25 · log0.002 (d) (10)

As Figure 2b shows, the model nearly ideally fits the

training data. The prediction for the higher ranks is also very

good. At d = 160 the model underestimates the real value by

less than 9%, so we again have an accurate model.

B. Predictions based on FLOPs
Nguyen and Stehlé [7] also estimated the number of floating

point operations within LLL during their derivation of the

overall complexity. In general, it is common to determine the

complexity in terms of executed floating point or bit oper-

ations. They state that there are O(d2 · logB) swaps during

the LLL execution and each swap results in an iteration of a

loop that contains O(dn) arithmetic operations. Consequently,

for a full rank lattice, the number of FLOPs has an upper

bound of O(d4 · logB). Given the random lattices from the

Darmstadt SVP challenge lattice generator, the number of

FLOPs is then bounded by O(d5). In this section, we try to

find an appropriate model for the range of ranks d from 50
to 290. We conducted the analysis with LLL RR since [7] also

considers in principle L3 and not L2.

Figure 3 shows the model resulting from the training data

for d = 50 to d = 100 as well as additional measurements.

The function of the graph is:

fLLL−RR(d) = 1.21e6 + 1.0 · d2.55 · log3.482 (d). (11)

We see that Extra-P predicts a FLOPs increase of

O(d2.58 · log3.482 ) in contrast to the theoretical upper bound of

O(d5). Consequently, the expected average number of FLOPs

is much lower than the theoretical bound.

Now, we investigate the common assumption that the run-

time of a program can be predicted by modeling or calcu-

lating the required number of floating point operations and

combining these results with assumptions about the target

system. For the Intel processor employed, we can in general

assume one floating point operation per cycle [18]. However,

modern vector units like SSE4 in the case of Westmere and

AVX/AVX2 in more recent processor generations can increase

the throughput to up to 16 FLOPs per cycle when using fused

multipy-add-operations (FMA) for AVX2. In our case, the

vector units are not employed efficiently since the Westmere

and Haswell processors run equally fast and an investigation

of the assembly code underpins this impression. For an upper

bound on the runtime we assume that only one FP-operation

is performed at once. Hence, the relation of the number of

FLOPs f , the clock rate of the CPU CLK and the runtime t
can be considered as:

t =
f

CLK
(12)

Figure 4 shows the resulting runtime prediction compared

to the measured runtimes. The distance between both

curves considerably increases from small ranks to larger

ones and for d = 290 the red curve underestimates the

real values by a factor of more than 4.5. This difference

would further increase for higher ranks since the runtime

of the algorithm on the Westmere system is modeled by

tLLL RR(d) = −0.277 + 1.526 · 10−7 · d3.5 · log1.52 (d) and

hence increases faster than the actual number of FLOPs.

There are several factors that contribute to this divergence.

The actual performance of software on today’s sophisticated

computing platforms depends on more factors than FLOPs. For

example, memory accesses and their patterns, and resulting

cache misses or alignment issues have a significant influence

on the actual performance. In the underlying LLL application,

we have another important factor. We are not dealing with

standard single- and double-precision values, but NTL and

fplll work with arbitrary precision floating-point arithmetic.
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Figure 2: Extrapolation of runtime for NTRU-like matrices.
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Figure 3: Extrapolation of the # of FLOPs for LLL RR and the

measurements for higher ranks on the Westmere system.

The operations on the 150 bit types we used need to be

mapped to standard 32 and 64 bit operations for the CPU

floating point unit. Hence, the library which implements the

arbitrary precision type as well as the configuration, perfor-

mance and features of the compiler it is translated with also

play an important role for the overall performance of LLL.

The complexity models based on bit-operations suffer from a

comparable problem since it cannot be predicted how they will

be mapped to standard floating point operations and it is not

clear upfront how a real computer would process them. Lastly,

the clock rate, which is treated as a constant in the approach

of Equation 12, is not constant in modern CPUs. For example,

the Haswell E5-2698 employed varies its clock rate between

2.30 GHz and 3.6GHz depending on the thermal conditions.

We see that modeling the runtime via FLOPs is inherently

inaccurate for several reasons: First, the actual model that

predicts the number of FLOPs may be inaccurate, like the

50 100 150 200 250
0

2,000

4,000

rank of lattice d

ru
n
ti

m
e

in
s

LLL RR Runtime Prediction-Error

Our Model

Model from FLOPs

t of Measurements

Figure 4: The real runtime and the runtime prediction resulting

from the FLOPs.

model of [7] overestimates the actual number by a factor

higher than O(d2). Second, assuming a linear dependence

of the FLOPs and the runtime is misleading since various

factors influence the time required to execute a fixed number of

FP operations. This demonstrates that even a good prediction

of the FLOPs, like in our case based on measurements,

leads to unrealistic timing models. Furthermore, both types

of inaccuracies are compounded for runtime prediction.

To summarize this section, Figure 5 exemplarily compares

our model for the fplll library (same complexity class as

NTL) and the estimate from [7] for random lattices with bit

length d2. Additionally, we show the model generated when

all measurement points are used as training data. For the

extrapolation, the predicted runtime differs for three orders of

magnitude between the average model of [7] and our models

but that our models nearly coincide for higher values.

Table II summarizes the exponents for the different models
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Figure 5: Comparison of the predicted runtime of our models

for the fplll library and the average estimate from [7] on

logarithmic scale for random lattices with bit length d2.

of the form o+ c · di · logj d with the rank d as input param-

eter. The dominating part is the value of i.

Table II: Summary of the different performance models.

SVP 10d SVP d2 NTRU
i j i j i j

NTL 3.05 3.49 4.38 2.50 4.40 2.50
fplll 3.07 3.50 4.75 2.49 5.25 0

Average [7] 6 0 8 0 8 0

VII. SUMMARY AND OUTLOOK

We demonstrated a novel approach to generate performance

models of algorithms with an unpredictable behavior with the

use-case of the LLL algorithm. The quality of our models was

verified and the different behavior for both implementations

(NTL and fplll) resulting from the type of the input matrix

employed was demonstrated. The models can be generated

with low effort and in an automated fashion. Additionally,

we compared both implementations for the same input matrix

type and showed that for random lattices both libraries have

the same behavior considering accuracy of the model and the

derived complexity class while the absolute runtime differs

because of the coefficients in the model functions. The case

of NTRU-like matrices shows that for this type of matrices

both LLL implementations behave differently and are a very

good example that the knowledge of the complexity class is

not sufficient to predict the actual runtime. For all matrix

types, our models have a considerably lower complexity than

delivered by the established average case estimate [7]. This

means that problems may be solvable more than 1000 times

faster than the average case estimate predicts.

We modeled the number of FLOPs for FP LLL and found

that while we could predict FLOPs well with our model,

again showing a lower complexity than previous estimates, the

runtime could not be realistically predicted based on the clock

rate alone. We generally doubt that this route is promising

given the complexity of today’s high-performance systems.

In the future, we will integrate the precision of the floating

point data type as a second parameter to the performance

models. We plan to apply the methods presented to other

algorithms in the field of lattice-based cryptography (BKZ,

enumeration [1]), and other general parallel algorithms where

a prediction of the runtime is usefull, like resource allocation

on HPC systems for simulation algorithms.
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