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Abstract—Given the tremendous cost of an exascale system, its
architecture must match the requirements of the applications it is
supposed to run as precisely as possible. Conversely, applications
must be designed such that building an appropriate system
becomes feasible, motivating the idea of co-design. In this process,
a fundamental aspect of the application requirements are the
rates at which the demands for different resources grow as a
code is scaled to a larger machine. However, if the anticipated
scale exceeds the size of available platforms this demand can no
longer be measured. This is clearly the case when designing an
exascale system. Moreover, creating analytical models to predict
these requirements is often too laborious—especially when the
number and complexity of target applications is high. In this
paper, we show how automated performance modeling can be
used to quickly predict application requirements for varying
scales and problem sizes. Following this approach, we determine
the exascale requirements of five scientific codes and use them
to illustrate system design tradeoffs.

I. INTRODUCTION

Ever-growing computational demands from domains such as
climate science, theoretical physics, and neuroscience require
large-scale machines in the near future. Planning the design
and detailed configuration of such systems is a daunting task
since they are often major investments, up to half a billion
dollar over their lifetime. Thus, it is extremely important that
the machine efficiently supports the execution of all target
applications. Designing it is a multi-year planning effort while
it stays “top of the line” only for three to five years after
installation. Thus, while the machine must be tailored to its
workload, it must also be productive from day one on.

Co-designing applications and the system is a powerful
technique to ensure early and sustained productivity as well
as good system design. In their early phases, such co-designs
often rest on back-of-the-envelope (BOE) calculations. For
example, BOE calculations have been famously used to deter-
mine the well-known “bytes-to-flop ratio” for the network and
memory in early Cray machines. They continue to gain pop-
ularity with requirements-balance models such as the roofline
model [1]. In general, such calculations allow problems in
applications to be detected early on and their severity to be
determined years before the machine is installed or the first
prototype becomes available. This is increasingly important
since mitigating such problems can often take several person-
years. On the system side, BOE calculations allow designers to
adjust system parameters to target applications, for example,
they can be used to determine the required bytes-to-flop ratio

of memory, network, or even the file system. In addition, they
can be used to determine required memory sizes, usability of
accelerators and co-processors, and even the number of sockets
and size of shared-memory domains in the target system.

We automate these BOE calculations in a lightweight
requirements analysis for scalable parallel applications. We
introduce a minimal set of hardware-independent application-
centric requirements that cover the most significant aspects of
application behavior. Combining standard performance profil-
ing [2], [3] and stack-distance sampling [4] with a lightweight
automatic performance-modeling method [5], [6], we generate
empirical models of these requirements that allow projections
for different numbers of processes and problem sizes.

Once empirical models are established for an interesting
set of requirements, the designer can use them to “play” with
configurations such as (1) the amount of memory per node,
(2) the speed of memory per node, (3) the network injection
speed (how many adapters per node), or (4) the number of
cores per socket or node (e.g., many- vs. multicore) etc..
Given the degree of automation we provide, the number of
applications and system design choices to be included in the
co-design process can be much higher than in a manual study,
substantially expanding its breadth.

In this work, we demonstrate the power of our technique by
analyzing both large-scale scientific applications and exascale
proxy applications and the appropriateness of various system
designs. The major contributions of this paper are:

• The introduction of a set of application-centric require-
ments that cover performance critical application aspects
without considering hardware-specific behavior

• The integration and extension of existing performance
tools [2], [3], [4], [5], [6] that allows the requirements
of parallel applications to be modeled, including memory
consumption and access locality

• A technique for practical co-design that extrapolates
application requirements to an envisioned system and
points out possible bottlenecks on both sides

• A case study with five applications that shows how
they would respond to relative system upgrades and how
well they would match three different exascale candidate
systems



TABLE I: Requirement metrics.

Resource Metric
Memory footprint # Bytes used (resident memory size)
Computation # Floating-point operations (#FLOP)
Network communication # Bytes sent / received
Memory access # Loads / stores; stack distance

II. APPROACH

As the foundation of our approach, we define a very simple
notion of requirements that supports their quantification in
terms of the amount of data to be stored, processed, or
transferred by an application. Knowing these numbers alone
does not target a precise prediction of application runtime but
can serve as an indicator of the relative importance of certain
system resources and how this ratio changes as we scale a
program to a larger system, as the analysis in Section III
will show. Ultimately, our requirements are expressed in the
form of empirical models that allow projections for different
numbers of processes and problem sizes.

A. Application-centric requirements

We choose requirements to be purely application centric,
that is, we do not make any assumption about the hardware
other than the ability to run the code as is. Hence, all
our requirement metrics refer to data flow at the interface
between hard- and software – not between lower layers of
the hardware. While specific hardware features could improve
the rate at which the requirements are fulfilled, the classes
of behavior our requirement models capture will not change.
For example, even if revolutionary hardware features double
the speed at which floating-point computations are performed,
if the number of floating-point computations that need to be
performed grows quadratically with the number or processes,
while all other requirements remain constant, the floating-
point requirement will remain the bottleneck for that particular
application as it scales up.

Since it is currently the predominant programming model
and also expected to be highly influential in the future, we
stipulate that of each target application an MPI version exists.
Application requirements are then expressed as a set of func-
tions r(p, n) that predict the demand for resource r depending
on the number of processes p and the problem size per
process n. Because we regard thread-level concurrency merely
as a way to satisfy the requirements, we consider requirements
not below the granularity of processes, which may nevertheless
be multithreaded—either locally or by launching GPU kernels.

Currently, we consider the requirement metrics listed in
Table I, classified by the resource they refer to. I/O would be
handled analogously to the network communication require-
ment. None of our analyzed applications includes significant
I/O traffic, we therefore refrain from including I/O metrics
in this analysis. Our metrics characterize application require-
ments in terms of space (i.e., memory consumption) and “data
metabolism” (i.e., bytes processed in floating-point units or
exchanged via memory and network). Because the amount of

a b c b

RD = 1
SD = 1

a

RD = 3
SD = 2

Fig. 1: Example of reuse distances and stack distances. a,
b, c represent different memory locations. Accesses to these
locations happen in the order indicated by the arrows. Reuse
distances and stack distances are denoted by RD and SD
respectively.

data moved between processor and memory subsystem alone
is barely a reliable indicator of the pressure an application
exerts on the memory subsystem, we also consider memory
access locality. Specifically, we capture the stack distance [4]
of memory accesses, which is the number of accesses to
unique locations that occur between two accesses to the same
location. The stack distance is related to the more commonly
known reuse distance, a metric which counts the number of
accesses between two accesses to the same location without
trying to discern whether or not these accesses are unique.
Figure 1 provides a small example for the difference between
reuse distance and stack distance.

Thus, we define the requirements model of an application
as a set of functions ri(p, n) with each ri representing one
of the requirement metrics listed in Table I. We deliberately
refrain from modeling execution time and energy consumption
because we consider them as manifestation of requirement
fulfillment and not as their expression. This is an important dif-
ference to the classic approach of trying to create architecture-
specific performance models that can predict actual perfor-
mance (e.g., execution time) as a function of various hardware
parameters. Because hardware parameters, such as a process-
ing algorithm or network topology, may easily reach beyond
a simple scalar variable such as the number of processors,
architecture-specific models usually differ qualitatively across
architectures. Thus, the modeling effort grows with the product
of applications and architectures, as illustrated in Figure 2,
while a requirements model needs to be created only once
for each application. In addition, we provide a lightweight
automatic tool chain to produce them empirically, further
accelerating the analysis. By contrast, practically determining
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Fig. 2: Co-design with architecture-specific performance mod-
els (left) and purely application-centric requirements models
(right).



the actual execution time of an application on a hypothetical
system requires at least a simulator.

B. Data acquisition

The individual tools and methods used to gather data on
the chosen requirements are established in the performance
analysis community. To ensure our approach remains repro-
ducible and easy to follow, we detail both how we employ
each of the tools and how we generate our performance
measurements. What is needed is an MPI implementation of
the code, the profiling tools Score-P [2] and PAPI [3] to count
floating-point operations, MPI data transfers, and loads and
stores, Threadspotter [4] to measure memory locality, and the
performance-model generator Extra-P [5], [6] to finally turn
the collected requirement data into models. Threadspotter was
modified to extract the data it collects for post-processing.
Disregarding slight variations in the platform-dependent se-
mantics of certain hardware counters, the requirements of an
application can basically be obtained on any system. The
metrics we acquire can be narrowed down to—in most cases—
highly reproducible hardware and software counters such as
floating-point operations or bytes injected into the network. A
significant advantage of this approach is the simplicity and low
effort with which requirements models can be instantiated for
a given execution configuration. All metrics refer to a single
process, since the matching hardware resources such as CPUs,
memory, and network links grow roughly proportionally with
the the number of processes expected on a machine.

Memory footprint: We invoke getrusage() to determine
the resident memory occupied by each process across its entire
lifetime. The memory footprint is one of the—if not the most
important scalability inhibitor—simply because it can prevent
an application from running at all.

Computation and communication: We acquire the metrics
related to computation and communication using the Score-P
profiler, which captures them at the granularity of individual
function call paths. This allows bottlenecks to be precisely
attributed to individual program locations. Given that the num-
ber of floating-point operations required per process is roughly
independent of the number of threads used to compute them,
we profile the application single threaded, which simplifies our
workflow and makes it more robust.

Memory accesses and locality: The number of memory
accesses and their stack distance is measured using a combina-
tion of Threadspotter and PAPI. Originally designed as an in-
teractive locality optimizer for non-expert users, Threadspotter
collects memory access distances only internally to derive op-
timization suggestions. However, we have modified it such that
we can access these metrics directly. Threadspotter identifies
loops in an application and instruments groups of instructions
that access the same memory location within those loops.
Therefore instruction groups represent the granularity at which
distance metrics are provided. To keep the runtime dilation
within practical limits (roughly a factor of eight), Threadspot-
ter samples the execution in short bursts where all memory
accesses are documented, followed by periods during which

no measurements are gathered. Since Threadspotter does not
count memory accesses, we let PAPI measure the number
of load and store instructions for the entire program. Then,
we estimate the number of memory accesses per instruction
group based on the ratio of samples collected for different
instruction groups. We address the known inaccuracy and non-
determinism of load and store operations [7] by counting them
for the entire run instead of individual functions with all fine-
grained instrumentation removed.

To offset the non-determinism and possible variance of this
process, we propose the following methodology to analyze
memory locality: First, any instruction group with less than
100 samples gathered for each measurement configuration
is ignored, because the risk of outliers adversely affecting
the resulting model is too high. We have observed that both
the number and magnitude of outliers is much greater when
examining memory locality than it is for other metrics. This
becomes obvious when considering a loop which is executed
multiple times during the runtime of a program. In the loop
itself, stack distance is low if it shows good locality. How-
ever, many memory accesses can happen between different
executions of the loop, leading to higher stack distance when
returning to the loop later on. To capture the most common
behavior, namely the memory access pattern within loops, we
model the median over all gathered samples.

C. Model generation

Originally developed to uncover scalability bugs in applica-
tions with a large code base, the model generator Extra-P [5],
[6] uses empirical measurements to generate performance
models in an attempt to help developers better understand their
applications and determine performance bottlenecks of any
kind. The goal is to offer the type of insight analytical models
of codes bring developers without the significant manual
effort involved in obtaining these models. Extra-P requires a
set of performance measurements as input, representing runs
with different numbers of processes and problem sizes. The
input sources used in this study encompass performance data
obtained with PAPI, Score-P, and Threadspotter.

As a rule of thumb, we need to run measurements for
at least five different configurations of each parameter we
consider, requiring 25 measurements in the case of process
count and problem size variation. Because we rely on highly
reproducible hardware- and software counters, we need only
one run per configuration and measurement tool–unless they
can be applied simultaneously. The output of the generator is
a set of human-readable functions, one for each instrumented
program location and metric. Each function describes the
evolution of the metrics as the number of processes and the
problem size per process are changed.

Models are identified in an iterative process. For each
parameter, we instantiate a number of model hypotheses of a
certain size (up to a maximum number of terms n) according
to the performance model normal form given in Equation 1
and select the winner through cross-validation. We start with



just one term, and increase the size of the hypotheses until we
see no significant improvement in the quality of the result.

f(x) =

n∑
k=1

ck · xik · logjk2 (x) (1)

We continue the process using the models representing
individual parameters such as number of processes or problem
size, which we successively combine after each step into
a form corresponding to the expanded performance model
normal form, as seen in Equation 2, substituting xi for x.

f(x1, . . . , xm) =

n∑
k=1

ck ·
m∏
l=1

x
ikl

l · log
jkl
2 (xl) (2)

For example, the individual model of a function f for num-
ber of processes f(p) = log p and the one for problem size per
process for the same function f(n) = n2 could be combined
either as f(p, g) = log p · n2 or as f(p, g) = log p + n2.
The details of model generation including references to the
precise statistical methods can be found in [5], [6]. Different
from those studies, however, we refrain from modeling exe-
cution time because execution-time models cannot be derived
empirically for a platform that only exists as a design.

D. Locality modeling

To explain how requirements modeling can help understand
the scaling behavior of memory locality, we provide a small
example using the naı̈ve matrix-matrix multiplication shown
in Listing 1. For the sake of simplicity, we consider models
as a function of the matrix size n alone.

In this example, we have three instruction groups, A, B, and
C, representing the instructions that access the arrays with the
same names, respectively. Both the reuse and stack distance
of A is 2n, as every time we iterate over k again we reuse the
addresses of A. This means that there are only 2n accesses, n
to addresses in A and n to addresses in B, between consecutive
accesses to the same address in A. As each of these accesses
is to a different memory location, the reuse and stack distances
are identical. For C, neither stack nor reuse distance can be
computed, as the memory locations are never touched again
after their first access. For B, the reuse distance is 2n2+n−1,
while the stack distance is n2 +2n− 1. This difference stems
from whether only unique accesses to A are considered or not.

The conclusion is that, as the size of the matrix increases,
the reuse and stack distances of both A and B increase. This,
in turn, means that it becomes increasingly likely that any
given access will be to an address no longer residing in the
cache. As long as the problem size is small enough that all
matrices fit in the cache, performance will remain at a constant
high. As the problem size grows, eventually, the matrices will
no longer fit completely into the cache. As the stack distance
of B is much higher than that of A, accesses to B will be the
first to fail to find the data in the cache and the performance
will degrade. Eventually, all accesses to B will be cache
misses, and the performance will no longer degrade. Should
the problem size increase enough that even some accesses to

Listing 1: Naı̈ve matrix-matrix multiplication C = AB.
void mmm(float *A, float *B, float *C, int n){

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

float v = 0.0f;
for (int k = 0; k < n; k++)

v += A[i*n + k] * B[k*n + j];
C[i*n + j] = v;}}}

Listing 2: Blocked matrix-matrix multiplication C = AB.
Matrix C is expected to be initialized with 0.
void mmm2(float *A,float *B, float *C,

int n, int b){
for (int jj=0; jj< n; jj += b){
for (int kk=0; kk< n; kk += b){
for (int i=0; i< n; i++) {
for (int j=jj; j< min(jj+b, n); j++){
float v=0.0f;
for (int k=kk; k< min(kk+b, n); k++){

v+= A[i*n + k] * B[k*n + j];}
C[i*n + j]+=v;}}}}

A turn into cache misses, the performance will degrade again,
until virtually all memory accesses will be cache misses. The
exact matrix size when performance starts to degrade depends
on the size of the cache and the protocol used. However, the
models of the stack distance, which we capture to characterize
memory locality, on the one hand, combined with models of
the total number of memory accesses on the other, are capable
of discovering whether the pressure on the memory subsystem
will ultimately begin to increase or not without knowledge of
the hardware.

Now let us consider a blocked matrix-matrix multiplication,
as implemented in Listing 2. Unlike the naı̈ve implementation,
we improve locality by multiplying and adding blocks of size
b instead of individual matrix elements.

In this new example, we have the same three instruction
groups, A, B, and C. Using this algorithm, the behavior is
different depending on whether a new loop is starting or the
code is iterating within a loop. The common case for A should
be computing within the innermost loop if a sensible value for
b is chosen. In this case, the stack distance of A is 2b+1 and
the reuse distance of A is 3b. This means that there are only
3b accesses, b to each of the arrays A, B, and C, between
consecutive accesses to the same address in A. Each of these
accesses to A and B is to a different memory location, but all
accesses to C are to the same address, hence the difference
between stack and reuse distance. For B, we have no reuse
within an iteration of the j-loop but b addresses are reused
whenever we start such an iteration anew. Therefore, the reuse
distance is 3b2. The stack distance is only 2b2 + b due to the
reuse of addresses in C. For C, the most common stack and
reuse distance is 2, as the same address is reused in every
iteration of the innermost loop. This means that in the most
common case for each of the instruction groups, the new



algorithm ensures that the locality does not depend on the size
of the matrix. This will allow larger matrices to be computed
without placing higher demands on the memory subsystem.
As both implementations require the same number of floating-
point operations and the same number of memory accesses,
the blocked implementation is preferable.

As demonstrated using this simple example, our analy-
sis discovers whether a given implementation is locality-
preserving or not. If yes, we can assume that the number of
main memory accesses scales with the number of retired load
and store instructions, which we can easily measure. If not,
changing the underlying algorithm is the most sensible option.
To the best of our knowledge, this is the very first time an
automatic method to model the scalability of memory locality
has been proposed.

E. Co-design methodology

The key point of our method is to guide the programmer
to find application bottlenecks relative to an architecture as
well as to guide the architect to find system bottlenecks that a
given application would experience. Our requirements models
are functions of the number of MPI processes p and the input
problem size n. To compare the requirements of an application
on two different architectures, all we need to do is to calculate
the application requirements using the values for p and n the
application would use on these two systems. Below, we explain
how to obtain these values.

First, we choose an appropriate number of processes. Al-
though we concede that exceptions may exist, often encoun-
tered difficulties of exploiting more thread-level concurrency
than a single socket provides lead us to the following rule
of thumb: Each socket should run a separate and potentially
multithreaded MPI process. In this way, we can simply set
p to the number of available sockets. Nonetheless, deviating
from this rule is absolutely possible. For example, systems
with monolithic nodes like Blue Gene/Q can still be accurately
treated by adapting p to the most common usage scenario.

Since a bigger input problem usually yields better parallel
efficiency for a given number of processes, we strive to fully
exploit the main memory available to a process. This means,
after determining the number of processes p, we “inflate”
the input problem until it completely occupies the available
memory. Because memory is usually allocated per process,
we find it more natural to consider the process-local memory
for this purpose, also because process-local memory can be
readily translated into process-local problem size using our
process-local memory footprint model. We henceforth use the
letter n to always denote the process-local problem size.

Once we have calculated the requirements of our application
on two different systems A and B using the tuples (pA, nA)
and (pB , nB) that we determine as recommended above, we
can compare how the ratio of requirements changes as the ap-
plication is ported from one system to the other. For example,
let us assume the ratio between the number of floating-point
operations and the number of bytes sent across the network on
system A is r, while it is r/k on system B. This means that

communication requirements will grow by a factor of k as the
application is ported from A to B. This can be interpreted in
two different ways: Either the network on system B should
provide bandwidth that is a factor of k stronger relative to
its floating-point performance or the application should be
optimized to restore the original ratio on system B. A more
elaborate example is presented in Section III-A.

Essentially, our co-design approach characterizes a system
initially only in terms of the problem size and process count
it can accommodate. We call this a system skeleton. The
skeleton is then used to derive more specific requirements
an application would expose the system to. Based on these
requirements, the system designer can subsequently select
further system properties such as the processor, the number
of cores per processor, the integration of accelerators, the
network, and the memory hierarchy or ask the application
developer to optimize certain aspects of the application if
the requirements can not be reasonably satisfied within the
available technology or budget envelope.

In principle, our approach can map more than one applica-
tion on a given system simultaneously. For example, we could
assume that a system is shared between two applications in
space according to a certain ratio as long as we can derive
our model parameters p and n for each of them. However,
since sharing is ultimately a matter of scientific priority, whose
definition falls outside the scope of this paper, we narrow the
discussion to the scenario where one application is granted
exclusive access to the full machine to calculate the largest
possible input problem. This objective corresponds to the idea
of heroic runs [8].

III. CO-DESIGN STUDIES

We conducted two hypothetical co-design studies with
five real applications. The first study, which is presented
in Section III-A compares the benefits of three different
system upgrades, while the second, which is presented in
Section III-A, compares the advantages of three different
exascale candidate systems. Before we delve into the details of
these two studies, however, we first survey our test applications
and their requirements below.

We chose five applications to represent a spectrum of
different behaviors that are encountered on today’s supercom-
puters: Kripke [9] and LULESH [10], two proxy apps created
specifically towards exascale co-design, MILC [11], a QCD
code, Relearn [12], a brain simulation, and icoFoam, a CFD
solver from the widely used OpenFOAM package [13].

We gathered our measurements on two test systems: The
first one is JUQUEEN, an IBM BlueGene/Q system at Jülich
Supercomputing Centre with almost 500,000 cores. Each node
features one PowerPC A2 processor with 16 cores running at
1.6 GHz. The second one is Lichtenberg, a Linux cluster at
Technische Universität Darmstadt that consists of 706 nodes
with two 8-core Intel Xeon E5-2670 processors on each
node, running at 2.6 GHz. We obtained the measurements for
LULESH, MILC, and Relearn on JUQUEEN and those for
icoFOAM and Kripke on Lichtenberg. Because Threadspotter



TABLE II: Per-process requirements models. p denotes the number
of processes and n = N/p the problem size per process obtained by
dividing the overall problem size N by the number of processes p,
under the assumption that the overall problem size can be divided
equally among all processes. For each metric, we show the terms
with the largest impact on performance for both problem size per
process and number of processes. The coefficient is the sum across
the entire program, rounded to the nearest power of ten. We mark
potential performance bottlenecks with a warning sign.

Metric Model

K
ri

pk
e

#Bytes used 105 · n
#FLOP 107 · n
#Bytes sent & received 104 · n
#Loads & stores 108 · n+ 105 · n · p B

Stack distance Constant

L
U

L
E

SH

#Bytes used 105 · n logn
#FLOP 105 · n logn · p0.25 log p B

#Bytes sent & received 103 · n · p0.25 log p B

#Loads & stores 105 · n logn · log p
Stack distance Constant

M
IL

C

#Bytes used 106 · n
#FLOP 1010 · n+ 107 · n log p
#Bytes sent & received 104 ·Allreduce(p)

104 ·Bcast(p)
109 · n

#Loads & stores 1011+108 ·n logn+105 ·p1.5
Stack distance 105 · n

R
el

ea
rn

#Bytes used 106 · n0.5

#FLOP 103 · n logn · log p+ p
#Bytes sent & received 105 ·Allreduce(p)

10 ·Alltoall(p)
10 · n

#Loads & stores 106 · n logn+ 105 · p log p
Stack distance Constant

ic
oF

oa
m

#Bytes used 103 · n+ 102 · p log p B

#FLOP 108 · n1.5 · p0.5 B

#Bytes sent & received n0.5 ·Allreduce(p) B

p0.5 log p B

n · p0.375 B

#Loads & stores 108 · n logn · p0.5 log p B

Stack distance Constant

does not support the processor of JUQUEEN, we measured
stack distance for all applications on Lichtenberg. Already
this showcases one advantage of our approach. Because the
metrics we collect are architecture independent, we can easily
overcome the deficiencies of the measurement infrastructure
on one system by choosing another.

In our experiments, we varied the number of MPI processes
and the problem size per process. Some of the metrics we
analyze can be gathered at different levels of granularity. A
fine granularity is useful to pinpoint performance bottlenecks
in applications. For the current analysis however, we are
interested in the performance of the application as a whole
and we therefore wish to summarize the models obtained. The
memory footprint, the number of floating-point operations, and
the number of loads and stores are gathered by examining the
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Fig. 3: Measurements classified by percentile relative error
over all generated models.

entire application monolithically. Requirements for communi-
cation and memory locality are obtained at the granularity of
function calls and instruction groups, respectively. For each
application, we selected all models with the fastest growing
requirements for each of the two model parameters p and n,
added all coefficients for these models, and rounded them to
the nearest power of ten. We generated models considering
polynomial and logarithmic exponents. The polynomial expo-
nents take values between 0 and 3, including all fractions of
the types i

8 and i
3 . For logarithms, we used the exponents

{0; 0.5; 1; 1.5; 2}.
The resulting requirements models of our five applications

are presented in Table II. To assess the model quality, the
histogram shown in Figure 3 classifies each measurement that
was used to generate a model according to the relative error
of the generated model. The overwhelming majority (88%)
of measurements points are well explained by our models
and have relative errors smaller than 5%, and most of the
remaining ones (8%) still have relative errors smaller than
20%. We therefore claim that the models we generate are
overall adequate to serve as a basis for the co-design process.
Below, we briefly discuss the requirements of each application
individually.

Kripke is a 3D Sn particle transport code and implements an
asynchronous MPI-based parallel sweep algorithm. A major
goal of Kripke is the evaluation of programming models,
data layouts, and sweep algorithms in terms of their perfor-
mance impact. The problem size per process is defined as the
simulated volume per process. As expected from a exascale
proxy app, Kripke should scale reasonably well to any number
of processes and the problem size per process will remain
configurable without incurring significant performance losses.
Only the number of loads and stores shows a multiplicative
effect of problem size and process count and might lead to a
slowdown.

LULESH is also a a widely studied proxy application in
DOE co-design efforts for exascale which calculates simplified



3D Lagrangian hydrodynamics on an unstructured mesh. The
problem size per process is defined as the simulated volume
per process. The growth rates of all requirements with respect
to both problem size and process count are very close to
ideal. With the current implementation, the multiplicative
effect process count and problem size per process have on
computation and communication for LULESH is a small
obstacle in tailoring and scaling the application to run on
different systems. The growth rates are slow enough to limit
these issues at anything except the most extreme scales.

MILC – MIMD Lattice Computation – is a set of codes
for studying quantum chromodynamics (QCD) via parallel
simulations of the SU(3) lattice gauge theory on a four-
dimensional lattice. MILC is a highly scalable application,
which consumes a major fraction of the CPU cycles in US
DOE and NSF computing centers. We analyzed the applica-
tion MILC/su3 rmd. Its runtime was modeled in [11], [5].
However, no requirement models exist for MILC. For MILC,
the problem size per process is defined as the size of the
lattice. MILC should be able to fit most target systems without
significant performance loss. The only requirement than can
be optimized is memory access. If the memory locality was
improved, increasing the problem size per process would be
possible without losing performance.

Relearn simulates the dynamics of the connectome in the
brain, that is, how connections between individual neurons are
formed and deleted. This is also called structural plasticity.
The problem size parameter in our tests defines the number
of neurons per process to be simulated. According to our
empirical findings, memory consumption increases with the
square root of the problem size. The theoretical expectation
is a linear function of n plus a much weaker and possibly
negligible linear function of p, although it only reflects the
programmer’s view and does not necessarily capture imple-
mentation details at lower levels of the software stack. A linear
model was among the best model candidates, but the chosen
model fits the measured data slightly better. For reasons of
consistency with the chosen approach we will therefore use
the empirically determined model throughout this work. Either
way, Relearn has no serious issues in scaling to any number of
processes. It will be able to vary the domain size per process to
fit multiple target systems without significant performance loss
and can accommodate systems where memory consumption is
at a premium.

IcoFoam is a solver in the widely used open-source
computational-fluid-dynamics package OpenFOAM. Open-
FOAM, developed by ESI/OpenCFD, is a non-monolithic li-
brary encompassing over 80 flow solvers that supports numer-
ical simulations of a broad variety of continuum models. We
analyzed the unmodified icoFoam executable from the demon-
stration instance of OpenFOAM (development version from
April 2017 from openfoam.org). This flow solver implements
a method suitable for the incompressible flow of a Newtonian
fluid under isothermal conditions. We applied the solver to a
two-dimensional test case, namely the well-known lid-driven
cavity [14]. There, the problem size is defined as the number of

TABLE III: Process count and memory per process available to
applications for three different system upgrade scenarios.

System upgrade Process count Memory per process

A: Double the racks p′ = 2 · p m′ = m
B: Double the sockets p′ = 2 · p m′ = 0.5 ·m
C: Double the memory p′ = p m′ = 2 ·m

computational cells per process. Almost everything including
memory consumption and memory access, communication,
and computation limit the scalability of icoFoam. The severity
and multitude of performance issues suggest that a different
approach is required as a whole.

A. System upgrade

Now, we use the requirements models listed in Table II
to answer the first co-design question that we consider in this
study: ”Given a large system defined such that the application
equally exhausts all available resources, which of the possi-
ble upgrades would benefit the application most?” Possible
upgrades we consider are (A) doubling the entire system, (B)
doubling the number of processor sockets per node and leaving
everything else constant, and (C) doubling the memory and
leaving everything else constant. These upgrades and how the
resources that are available to the applications change on the
new systems are summarized in Table III. The combination
of possible upgrades can be expanded to encompass further
realistic scenarios that are considered by system architects.

Before we summarize our results for all applications, how-
ever, we illustrate our workflow, and in particular our co-
design methodology presented in Section II-E, step by step
using LULESH as a walk-through example. After that, we
summarize the results of this process for all applications and
discuss our findings. To exemplify the process of determining
how an application would respond to a system upgrade, we
choose system upgrade A, that is, doubling the racks of the
system. We enumerate and describe the different steps of our
scaling method in Table IV.

The requirements of LULESH are listed at the top of the
table as part of Step I. Following this process, we can now
draw conclusions regarding system utilization, requirements
balance, and usefulness of a particular upgrade. The ratios
between new and old problem sizes indicate how the largest
problem size that can be solved changes, both per process and
overall. The ratios between new and old requirements indicate
which system components will experience an increased load
relative to other components.

The requirements of LULESH can be expressed as the
product of single-parameter functions that either depend the
problem size per process or the number of processes. When
doubling the racks, only the value of p changes, and in this
particular case, all terms depending on n can be reduced
when determining the ratios of the changing requirements.
This means that the these ratios are valid regardless of the
problem size per process. This will not be generally true as it
depends on the specific relative upgrade. That the number of



processes affects computation and communication means that
these requirements increase slightly. Luckily, computation and
communication only increase by 20% and will therefore allow
LULESH to solve an overall problem twice as large with only
a small performance degradation.

Using the five applications above, we now apply the previ-
ously illustrated workflow to analyze the benefits and draw-
backs of different system upgrades. We use the requirement
models determined for each application individually, as well as
the upgrades listed in Table III to determine the new problem
sizes per process for each application, assuming that all pro-
cessors a system provides are used. We then determine the new
requirements for computation, communication, and memory
access. Our comparative analysis is numerically summarized
in Table V. We consider an optimistic linear relation between
problem size per process and requirements as a baseline for
scalability. For example, if we double the racks we wish that

TABLE IV: Workflow for determining the requirements of LULESH
after doubling the number of racks (upgrade A). The upgrade is
relative, therefore we can omit model coefficients.

I: Create requirement models for memory footprint,
communication, computation, and memory access.

Metric Process scaling and problem scaling

#FLOP n logn · p0.25 log p
#Bytes sent & recv. n · p0.25 log p
#Loads & stores n logn · log p
#Bytes used n logn

II: Determine the new maximum number of processes and new
memory available per process that the upgraded system supports.

Configuration parameter Old New

Processes count p p′ = 2p
Memory m m′ = m

III: Determine the new memory footprint requirement per process
if all processors are used.

Metric Old New

#Bytes used n logn n′ logn′

IV: Determine the new problem size per process such that the
memory footprint equals the memory available to each process
and compute the new overall problem size.

Metric Old New Ratio

Problem size per proc. n logn = n′ logn′ = m 1
Overall problem size p · n p′ · n′ 2

V: Determine the new requirements for computation,
communication, and memory access.

Metric Old New Ratio

#FLOP p0.25 log p (2p)0.25 log 2p ≈ 1.2
#Bytes sent & recv. p0.25 log p (2p)0.25 log 2p ≈ 1.2
#Loads & stores log p log 2p ≈ 1

TABLE V: System upgrade comparison. We show how problem
size and the corresponding requirements of an application change in
response to each upgrade. While the ability to solve large overall
problems is desirable, the per-process requirements for computation,
communication and memory access should be as low as possible.
The base-line expectation, which assumes a linear relation between
requirements and problem size per process, is provided in the
rightmost column for each metric.
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System upgrade A: Double the racks

Problem size per process 1 1 1 1 0.5 1
Overall problem size 2 2 2 2 1 2

Computation 1 1.2 1 1 0.5 1
Communication 1 1.2 1 1 0.7 1
Memory access 2 1.2 2.8 2 0.7 1

System upgrade B: Double the sockets

Problem size per process 0.5 0.5 0.5 0.3 0.3 0.5
Overall problem size 1 1 1 0.5 0.6 1

Computation 0.5 0.6 0.5 0.3 0.2 0.5
Communication 0.5 0.6 0.5 0.3 0.3 0.5
Memory access 0.5 1 1.4 1 0.5 0.5

System upgrade C: Double the memory

Problem size per process 2 1.4 2 4 1.4 2
Overall problem size 2 1.4 2 4 1.4 2

Computation 2 1.4 2 4 1.7 2
Communication 2 1.4 2 4 1.4 2
Memory access 2 1.4 2 4 1.4 2

the total problem size that can be solved should double, too,
but that the requirements per process remain the same. This
simplifying assumption will not be generally true, but provides
a notion of desirable behavior for our discussion. Apart from
MILC, no other application has shown any change in memory
locality with respect to process count and problem size per
process. We therefore focus on the total number of load and
store instructions as the primary memory-access metric in
these cases.

When analyzing Table V, it becomes obvious that the
most important parameter is the problem size per process,
as it determines all other requirements and how well the
stated goal of trying to perform heroic runs is met. When
considering the computation, communication, and memory-
access requirements per process, these should ideally follow
the same behavior as the problem size per process. None of
the analyzed applications reach this ideal, although Kripke
and MILC come close with only one and two deviations,
respectively, which one can see by tracing their columns in
Table V.

Finally, we summarize how the applications benefit from
the proposed upgrades: Kripke benefits equally from doubling
the memory or doubling the sockets, and slightly less from



doubling the racks. LULESH draws the biggest advantage
from doubling the racks and the least from doubling the
memory. MILC and Relearn profit most from doubling the
memory and least from doubling the sockets. The last appli-
cation studied, icoFoam, would benefit only from doubling the
memory. Consequently, there is no upgrade which is best for
all applications, but overall doubling the memory or the racks
would help most applications the most.

B. System design
The second question we address is: ”How would the perfor-

mance change when an application is ported between different
proposed exascale systems?” This question sheds light on how
differences in system design affect the studied applications by
looking at absolute numbers rather than relative differences.
For this, we investigate how the applications studied would
map to potential exascale straw-man systems. Rather than
using relative upgrades as in the previous section, where we
assumed that certain characteristics of an existing system are
doubled, we now focus on how our method works when
applied to absolute values for system characteristics such as
flop/s per processor. There are a number of hardware architec-
ture directions suggested to reach exascale. Major differences
between the approaches lie in their ratio of nodes to processors
to flop/s per processor, which combined are supposed to reach
1 exaflop/s. By processor, we define a computational unit
designed to run a process (potentially multi-threaded). Possible
design options for such systems are presented in Table VI and
summarized below:

• A massively parallel system that consists of nodes with
many but weak processors

• A vectorized system that consists of nodes with few but
very powerful processors

• A hybrid system with a large number of moderately
powerful processors per node

For this study, we assume a total memory per system of
10 PB, divided equally among all processors. This value is
consistent with the ratios of flop/s to memory of current
top supercomputing systems in the world. The total memory,
I/O, and network resources can also vary, but more likely
as a function of the available funds and not to satisfy a
certain ratio to other resources. A more detailed analysis where
more system characteristics would vary is certainly possible,
but would not be qualitatively different. We therefore focus
only on the computational requirement and memory footprint
relative to the problem size per process and the number
of processes are taken into consideration. We determine the
number of processes for each of the systems by multiplying
the node and processor counts, as we want to have access to the
full exaflop/s. For each application we can then determine the
problem size per process that would consume all the memory
available to a process. Knowing the problem size per process
and the number or processes, we determine the overall problem
size for each application. The results of this workflow, which
is similar to the one presented in Table IV, are presented in
Table VII.

TABLE VI: Characteristics of three exascale straw-man systems.

Metric Massively
parallel

Vector Hybrid

Nodes 2 · 104 5 · 104 104

Processors 2 · 109 5 · 107 108

Processors per node 105 103 104

Memory per processor 5 · 106 2 · 108 108

Flop/s per processor 5 · 108 2 · 1010 1010

TABLE VII: Maximum overall problem size for selected applica-
tions and time each application needs to solve the same benchmark
problem on different exascale straw-man systems described in Ta-
ble VI, assuming perfect parallelization. Following a workflow similar
to Table IV, we determine the values using the requirement models
from Table II.

Metric Massively
parallel

Vector Hybrid

K
ri

pk
e Maximum overall 1010 1010 1010

problem size
Minimum wall time for 0.1 0.1 0.1
benchmark problem [s]

L
U

L
E

SH
Maximum overall 3.9 · 1010 1.7·1010 1.9·1010
problem size
Minimum wall time for 40 21.5 33
benchmark problem [s]

M
IL

C

Maximum overall 1010 1010 1010

problem size
Minimum wall time for 102 102 102

benchmark problem [s]

R
el

ea
rn Maximum overall 5 · 1010 4 · 1012 1012

problem size
Minimum wall time for 4 0.02 0.2
benchmark problem [s]

icoFoam is notably absent in Table VII, as the number of
processes adversely affects the memory required per process.
This unfortunately means that the studied instance of the code
cannot fully utilize any of the three systems, as the memory
requirement regardless of problem size per process is larger
than what is available if all processors are used. While it would
be possible to run this code on a smaller subset of processors,
that is not the focus of our study.

We discover that for Kripke and MILC the different system
types do not affect the largest overall problem size that can be
solved. That is because any difference in the ratio between
process count and problem size per process can be offset
by configuring the application appropriately. The situation is
different for the other applications, as the ratio p/n between
process count and problem size per process is more relevant
to the required memory. Relearn can solve much larger overall
problems on a system with fewer but stronger processors,
while LULESH can solve the largest problem on the massively
parallel system.

We further analyze on which system a given problem can
be solved faster, by taking the biggest overall problem size



of each application that can be solved on all systems, and
change the problem size per process such that each system
solves the same problem. We still use all available processors
to have access to all computational resources each system
provides. We then use the problem size per process and the
number of processes to determine the number of floating-
point operations required per process. After dividing this
requirement by the floating-point rate offered by the processor,
we can estimate a lower bound of the runtime this computation
takes. The lower bound is based on the simplifying assumption
that parallelization is perfect and no communication overhead
exists. This lower bound can be useful in comparing how
the architectures will affect application performance as the
difference of multiple orders of magnitude for some applica-
tions is unlikely to be offset by the communication overhead.
Kripke and MILC take the same time to solve the problem
on each system. However, both Relearn and LULESH benefit
more from a high ratio and would perform better on the
vectorized system. To shift the lower bound closer to more
realistic runtimes, we need to take other requirements such as
communication into account, which is feasible as long as the
system designer can specify the rates at which the hardware
can satisfy them.

A possible optimization for LULESH could be changing the
algorithms such that the effects of problem size per process
and process count are additive rather than multiplicative with
respect to the different requirements: #FLOP = 105 · n ·
log n + p0.25 · log p. In the example from Table VII, this
would improve the overall time to solution by approximately
three orders of magnitude on each system, to less than 0.1
compared to between 20 and 40 seconds. It would also change
how LULESH performs on the different systems, obtaining the
best results on the massively parallel system as opposed to the
currently favored vectorized system.

The recommended course of action beyond improving the
applications is to experiment with a small number of proto-
type nodes of the kind to be employed in the system, and
determine the actual rates at which the requirements can
be satisfied. Requirements other than computation such as
memory access and network communication must be con-
sidered. For example, similarly to our analysis of potential
exascale system candidates with different nodes to processors
to flop/s ratios, an analysis of the network requirements taking
network bandwidth, latency, and topology into account can
be performed. However, when considering a small number of
nodes as opposed to an entire rack or multiple racks, network
communication may differ qualitatively.

Nevertheless, already before any hardware prototype be-
comes available, will our co-design methodology provide hints
as to which basic system design will be most or least profitable
for a given workload. In our study, the vectorized system
provides the best performance potential for the benchmark
problem across all applications. On the other hand, when
looking at the possible maximum problem size, LULESH
would favor the massively parallel system, while Relearn
would prefer the vectorized system, although a problem size of

4·1012 is already more than needed. After all, the human brain
has only about 1011 neurons. The decision which alternative
to choose, that is which application(s) to prioritize, however,
is beyond the scope of this paper.

IV. RELATED WORK

Performance models have already been used to predict
code performance on different architectures, leveraging tool
chains with varying degrees of automation [15], [16], [17]. In
contrast, our work focuses on the extrapolation of requirements
rather than exact performance to guide higher-level decisions
in exascale application and system design. Carrington et al.
project node-level requirements using simple linear, logarith-
mic, exponential, or constant regression [18]. Our method
goes beyond that by combining more complex functions to
characterize system-wide requirements. In the widest sense,
the roofline model [1], [19] can also be considered as an
interpretable requirements model. It is, however, mostly de-
signed as an application optimization tool and thus not easily
applicable to co-design.

Gahvari and Gropp [20] as well as Bhatele et al. [21] studied
the theoretical feasibility of several computational algorithms
on hypothetical exascale machines introduced in a previous
study [22]. They show bounds on network requirements in
terms of latency and bandwidth that would have to be satisfied
in order to solve these problems. While extremely valuable,
their studies are purely theoretical and not based on real
applications. With our method, we enable similar studies for
actual code bases.

Many co-design approaches rely on application and ar-
chitecture simulation. Such simulations exist at numerous
granularities, ranging from cycle-accurate [23], [24] to coarse
and model-driven [25]. Direct execution approaches often
show severe memory limitations [26], especially in the ex-
ascale range. The main drawback of such simulations are
the enormous resources required to run them. Furthermore,
without additional human interpretation simulation results on
their own provide little insight into application scaling. Our
requirements models need no resources beyond the small scale
measurements required to produce them, enabling extreme-
scale predictions at very low cost. Moreover, they are intuitive
in that they allow direct statements such as “the required
network bandwidth grows logarithmically with the system
size”.

V. CONCLUSION

In this work, we introduce a quick and simple automatic
back-of-the-envelope technique to generate application-centric
requirements models for parallel applications. The workflow
we propose leverages these models to enable system designers
and application developers to ponder various upgrade and de-
sign options. We characterize performance in terms of relative
requirement changes - from one system or one application
to another. This pattern indeed matches the common case,
where an initial version of an application running on an initial
system already exists. And even if no such system exists, our



approach can successfully help compare design options. The
main advantage of our approach in relation to architecture-
specific performance models, which are traditionally hard and
laborious to produce with high accuracy, however, is the small
effort on the one hand and the low complexity of the models
on the other, facilitating quick insights at low cost—easily at
the scale of an entire compute-center workload.
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