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Abstract

The vast amounts of data to be processed by today’s applications demand higher com-
putational power. To meet application requirements and achieve reasonable application 
performance, it becomes increasingly profitable, or even necessary, to exploit any available 
hardware parallelism. For both new and legacy applications, successful parallelization is 
often subject to high cost and price. This chapter proposes a set of methods that employ an 
optimistic semi-automatic approach, which enables programmers to exploit parallelism on 
modern hardware architectures. It provides a set of methods, including an LLVM-based 
tool, to help programmers identify the most promising parallelization targets and under-
stand the key types of parallelism. The approach reduces the manual effort needed for 
parallelization. A contribution of this work is an efficient profiling method to determine 
the control and data dependences for performing parallelism discovery or other types of 
code analysis. Another contribution is a method for detecting code sections where parallel 
design patterns might be applicable and suggesting relevant code transformations. Our 
approach efficiently reports detailed runtime data dependences. It accurately identifies 
opportunities for parallelism and the appropriate type of parallelism to use as task-based 
or loop-based.

Keywords: parallelism, multicore/manycore systems, software engineering,  
code analysis, profiling

1. Introduction

Stagnating single core processor performance caused a new hardware trend in the past 
years that resulted in the replication of cores and the popularity and ubiquity of multi-
core and manycore architectures. Many applications and software systems that face grow-
ing demand for computational power can leverage this hardware trend for their needs and 
achieve reasonable performance via software parallelization. The only way for application 
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developers to speed up an individual application is to match the new hardware cores with 
thread-level parallelism in the form of task-based or loop-based parallelism. However, suc-
cessful parallelization is often error prone, difficult, and time-consuming, especially if it is 
done manually. Further, applying auto-parallelization is generally limited to loops with 
specific criteria, and it is based on the polyhedral model [1, 2] for compiler optimization. 
Additionally, auto-parallelization often fails to identify and exploit available parallelism 
for many applications, since it does not leverage runtime information such as pointers and 
array indices.

To keep application developers motivated and encourage them to achieve a performance 
improvement, automated tools and methods are necessary that support them during a semi-
automatic parallelization process to reduce the manual efforts and facilitate the paralleliza-
tion workflow. Hence, effective programming toolchain and methodologies for using an 
optimistic code-based approach to parallelize software with minimum programming effort 
and user intervention are in great demand.

There are three major problems in the software parallelization process that often cause the 
parallelization process to suffer from high complexity and low productivity. The first prob-
lem is gaining a thorough and complete understanding of the software code to identify 
detailed control and data dependences. In order to guarantee the program correctness, the 
parallelized program must have proper synchronization operations to preserve data depen-
dences and the right order of data accesses to produce the same results as the sequential 
code does.

The second problem is extracting coarse-grained parallelism. Because of the available hard-
ware parallelism in multicore/manycore processors, they are powerful in executing multiple 
code sections simultaneously. But the software programming toolchain is not mature to help 
programmers partition and map their code to the new available cores. Coarse-grained par-
allelism such as task-based parallelism is expected to be a promising solution for using the 
available hardware parallelism of the new cores and finding parallelism between arbitrary 
code sections.

The third problem is generating parallel code which can express this coarse-grained parallel-
ism effectively for a diverse number of target platforms. After generating the parallel code, 
validation and verification will be applied, and for further performance improvements on 
specific targets, optimization techniques and auto-tuning methods are necessary.

This work summarizes the results of methods and approaches, which set out to improve the 
abovementioned problems. The main goal of the work was to make semiautomatic paral-
lelization more feasible and attractive for a broader audience of application developers by 
providing tools and methods that use an optimistic code-based approach and support key 
activities of the manual parallelization process in a simpler, more effective and intuitive way 
than existing tools.

The remainder of the chapter is structured as follows: in the next section, we highlight 
the main contributions and the essential results of this work. In Section 3, we explain our 
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approach to dependence profiling and decomposition. In Section 4, we briefly present our 
methods for task extraction and parallel pattern identification. Sections 5 and 6 deal with code 
transformation and correctness analysis, respectively. In Sections 7 and 8, several applications 
of our framework and its limitations are discussed. Section 9 reviews related work. Section 10 
concludes the chapter and discusses possible extensions.

2. Contribution summary

The most important goal of this work is to provide a set of methods as an end-to-end 
solution to support programmers during the semiautomatic parallelization process, from 
the initial code analysis to code generation and optimization. The methods follow an opti-
mistic code-based approach to effectively analyze different code sections based on the 
actual runtime dependence analysis. In this way, parallelization opportunities of applica-
tions can be identified at an early stage of the code analysis, which maximizes flexibility 
and also facilitates the parallelization process. The approach is implemented as a tool 
called Discovery of Potential Parallelism (DiscoPoP) [3] and is based on the LLVM com-
piler infrastructure.

The main accomplishments, which are illustrated in Figure 1, can be summarized as follows:

•	 Dependence profiling. We instrument and execute the program to obtain its control and 
data dependences with practical overhead [4]. Our data-dependence profiler serves as 
foundation for different program analyses based on data dependences.

•	 Decomposition. The concept of computational units (CUs) is used to extract the basic 
blocks for building parallel programs [5]. A CU follows the read-compute-write pattern, 
which means that a program state is first read from memory, a new state is computed, and 
finally the new state is written back to memory. We generate the CU graph of a program 
based on its CUs and the dependences that exist among them.

•	 Task extraction and parallel pattern identification. We search for potential parallelism in 
the program by merging CUs/partitioning the CU graph [3]. The output is a prioritized list 
of parallelization opportunities [6]. In a next step, we identify suitable parallel design pat-
terns to support the parallel algorithm structure [7, 8].

•	 Code transformation. In simple cases, the program is automatically transformed into its 
parallel version based on available parallelism and the identified parallel design patterns 
[9]. In other cases, suggestions for parallelization are presented.

•	 Correctness analysis. Additionally, an automated method to generate unit tests targeting 
concurrency bugs such as data races has been developed to validate the resulting code 
[10, 11].

•	 Numerous applications and case studies, in which we confirm the functionality of our 
approach and show its capability as a parallelism discovery tool. In many cases, we can 

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

107



reproduce manual parallelization strategies. We further demonstrate how DiscoPoP can 
serve as a basis for different kinds of program analyses such as the exposure of communica-
tion patterns [12] or the optimization of transactional memory [13, 14].

In the remainder of the chapter, we describe the above contributions in more detail, followed 
by a quick look at ongoing developments and a review of related work.

Figure 1. Main elements of the DiscoPoP parallelization approach.
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3. Dependence profiling and decomposition

A key result of this work is a profiling method that reports data dependences of the executed 
program efficiently in terms of time and space. The reported data dependences are used to 
build the computational units that serve to analyze the program.

3.1. Dependence profiling

In order to parallelize the sequential code, we need to identify the control and data depen-
dences of the program. Data dependences can be obtained in two major ways: static and 
dynamic analyses. Static approaches determine data dependences at compile time without 
executing the program. However, many parallelization opportunities are ignored due to the 
lack of runtime information. In contrast, dynamic dependence profiling instruments the inter-
mediate or binary code and tracks dependences at runtime. It treats the execution of a user 
program as an instruction stream interrupted by previously inserted calls to instrumentation 
functions that help detect dependences. Since dynamic profiling tracks only the branches that 
are actually executed, it is inherently input sensitive, and it identifies control and data depen-
dences for the actual program execution. Despite this, the results are still useful, which is why 
such profiling forms the basis of many program analysis tools. Moreover, by changing inputs 
and computing the union of all collected dependences, the input sensitivity can be mitigated.

However, a limitation of data-dependence profiling is high runtime and memory overhead. 
The time overhead may significantly prolong the analysis, sometimes requiring an entire 
night [15]. The memory overhead may prevent the analysis completely [16]. This is because 
dependence profiling requires all memory accesses and locations to be instrumented and 
recorded. To lower the overhead, current profiling approaches limit their scope to the subset 
of the dependence information needed for the analysis they have been created for. In this way, 
they reduce the generality and reusability.

To provide a general foundation for different kinds of analyses, we present a generic data-
dependence profiler with practical overhead, capable of supporting a broad range of depen-
dence-based program analysis and optimization techniques for both sequential and parallel 
programs. The profiler is based on LLVM-IR, and it provides detailed information, including 
source-code location, variable name, and thread ID.

The proposed profiler is parallelized and utilizes a lock-free design [17] to achieve efficiency. 
It leverages signatures [18], a concept borrowed from transactional memory to reduce memory 
consumption. A signature is a data structure that encodes an approximate representation of an 
unbounded set of elements with a bounded amount of state. It is widely used in transactional 
memory systems to uncover conflicts [18]. A data dependence is similar to a conflict in transac-
tional memory because it exists only if two or more memory operations access the same memory 
location in some order. Therefore, a signature is also suitable for detecting data dependences.

We evaluated our approach using the NAS parallel benchmark suite (NAS) [19] and Starbench 
parallel benchmark suite (Starbench) [20]. The performance results are shown in Table 1. 
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While performing an exhaustive dependence search with 16 profiling threads, our lock-free 
parallel design limited the average slowdown to 78× and 93× for NAS and Starbench, respec-
tively. Using a signature with 108 slots, the memory consumption did not exceed 649  MB 
(NAS) and 1390 MB (Starbench).

3.2. Decomposition

The most difficult and challenging part in parallelizing sequential programs is to identify 
which code sections are able to run in parallel. While identifying such code sections, most of 
the current parallelism discovery techniques focus on specific language constructs. In con-
trast, we propose the concept of computational units (CUs) to concentrate on the computa-
tions performed by a program independently of any language constructs.

In our approach, a program is treated as a collection of computations communicating with 
one another using a number of variables. Each computation is represented as a computational 
unit (CU). A CU is a collection of instructions following the read-compute-write pattern: a set 
of variables is read and used to perform a computation, and then the result is written back to 
another set of variables. The two sets of variables are called read set and write set, respectively. 
These two sets do not necessarily have to be disjoint. Load instructions reading variables in 
the read set form the read phase of the CU, and store instructions writing variables in the write 
set form the write phase of the CU. A CU is defined by a read-compute-write pattern because, 
in practice, tasks communicate with one another by reading and writing variables that are 
global to them, while computations are performed locally.

We build a CU graph, in which vertices are statically generated CUs and edges are dynamic 
data dependences. Data dependences in a CU graph are always among instructions in read 
phases and write phases. Dependences that are local to a CU are hidden because they do 
not prevent parallelism among CUs. Our tool also generates the program execution tree 
(PET) of a program. This tree contains information about program control dependences and 
execution paths. Nodes of the tree are control regions of the program. We map the CU graph 
of a program onto its execution tree to determine CUs for every region. Figure 2 shows 
the CU graph of a program mapped onto its PET. PET and CU graphs serve for different 
kinds of code analyses as they contain the information such as CUs and their correspond-
ing instructions, data and control dependences, etc. In this work we mainly use them for 
parallelization.

Benchmark Average slowdown Average memory consumption (MB)

1T 8T 16T 8T 16T

NAS 190 97 78 473 649

Starbench 191 101 93 505 1390

Table 1. Performance results of profiler in DiscoPoP.
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4. Task extraction and parallel pattern identification

In the following section, we focus on using PET and CU graphs for parallelism discovery and 
supporting the parallelization process. Additionally, we describe how to use them to detect 
parallel design patterns in the given sequential code automatically.

4.1. Task extraction

DiscoPoP suggests parallelism among strongly connected components (SCCs) and chains in the 
CU graph of a program [21]. An SCC is a subgraph of the CU graph in which every CU is reach-
able from every other CU. It forms a complex knot of dependences that defy internal parallel-
ization. A chain is a group of CUs that are connected in a row without a branching or joining 
point in between. We merge chains because a CU contains only a few instructions and there is 
no benefit in considering each CU as a separate task. The CUs grouped as SCCs or chains could 
form separate tasks and be executed in parallel, if there are no dependences between them. 
Parallelism is also possible when dependences are weakly connected. DiscoPoP discovers these 
parallelization opportunities by calculating affinity between CUs and applying the minimum 
cut algorithm [22] to the CU graph. It calculates the affinity for every pair of CUs based on the 
number of dependences and shared instructions between them. DiscoPoP suggests to partition 
the CU graph with a minimum number of dependences and affected shared instructions.

Figure 2. CU graph mapped onto the program execution tree.

Advances in Engineering Software for Multicore Systems
http://dx.doi.org/10.5772/intechopen.72784

111



Finally DiscoPoP ranks parallelization opportunities to prioritize them based on three met-
rics [21]. The first is instruction coverage. It provides an estimate of how much time is spent 
in a code section. The second is speedup, which reflects potential speedup if the code sec-
tion is parallelized. The third is CU imbalance. It reflects when suggested parallelization may 
lead to a bottleneck. Our experiments with Barcelona OpenMP Tasks Suite (BOTS) [23], NAS, 
PARSEC benchmark suite (PARSEC) [24], and Starbench showed that all of the code sections 
identified as parallelizable by our approach are parallelized in the existing parallel versions 
of the benchmark programs [3, 21, 25, 26].

4.2. Parallel pattern identification

Parallel design patterns are reusable solutions for common problems that occur during the 
development of parallel programs. They have been developed to help programmers to design 
and implement parallel applications efficiently [27, 28]. However, identifying a suitable paral-
lel pattern for a specific code region in a sequential application is a difficult task. Also, trans-
forming the application according to structures supporting those parallel patterns is very 
challenging.

We propose an approach that automatically finds parallel patterns in the algorithm struc-
ture design space of sequential applications using template matching [7, 8]. The approach 
generates a pattern vector, which plays the role of the template to be matched to the pro-
gram. For each hotspot in the program, we create the pattern-specific graph vector accord-
ing to the dependences of the corresponding CU graph. The correlation coefficient of the 
pattern vector and the graph vector of the selected hotspot tells us whether the pattern exists 
in the selected section or not. So far, we support the detection of pipeline, do-all, task-level 
parallelism such as master/worker, geometric decomposition, and reduction patterns. Our 
tool not only indicates whether a parallel design pattern has been found in some section of 
the program but also shows how the code must be divided to fit the appropriate structure 
of the pattern.

We evaluated our approach with 17 sequential applications from four different benchmark suites, 
i.e., Starbench, BOTS, PARSEC, and PolyBench  [29]. We successfully detected pipeline, task par-
allelism, geometric decomposition, fusion, and reduction. We compared the detected patterns 
with the existing parallel versions of the benchmarks and confirmed our results [7, 8]. For those 
benchmarks for which the parallel version does not exist, we implemented the detected patterns. 
We achieved a speedup of 14× with 32 threads for the best case of our hand-implemented parallel 
version of the ludcmp application in PolyBench  [8].

5. Code transformation

After finding parallelization opportunities in the program, generating parallel code to run 
on the hardware is another main step of the parallelization process. The code transformation 
component [9] in DiscoPoP transforms sequential C/C++ code into parallel code, following 
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the detected parallel design pattern. Transformation is performed on the AST level using the 
Clang libraries [30]. The transformation module traverses the Clang AST of the source code 
to locate simple detected patterns such as do-all or task-level parallelism and the correspond-
ing code sections. Then a source-code rewriting module rewrites the targeted source-code 
strings in the Clang AST context using Intel TBB parallel constructs—the parallel_for and flow 
graph templates. The transformation process does not require users to annotate parallel code 
sections in advance. The parallel for-loop transformation is automatic, and the parallel-task 
transformation using the flow graph template requires user assistance. The user needs to 
specify the buffering policy in the synchronization join node of the flow graph.

We have evaluated applications from NAS, PARSEC, and Intel CnC samples. The obtained 
results confirm that our approach is able to achieve promising performance with minor user 
interference. The average speedups of loop parallelization and task parallelization are up to 
3.12× and 9.92×, respectively [9].

6. Correctness analysis

The parallelized code is expected to deliver the same output as its sequential counterpart. To 
assure the correctness, we use automated unit testing [10, 31, 32] and sophisticated race detec-
tion methods [11, 33]. For data races, our library-independent race detection approach [33] is 
applied to the generated parallel code for finding potential data races. Also, automated unit 
tests based on dynamic and static analyses are generated, which can be used during the paral-
lelization process for finding atomicity violations and verifying the parallel code.

A notorious class of concurrency bugs is race conditions related to nonatomic updates on 
correlated variables, potentially leading to broken invariants, which make up about 30% of 
all non-deadlock concurrency bugs. We propose to combine the benefits of automatic parallel 
unit test generation with the advantages of race detection. To achieve this, our framework 
uses the existing unit test generator AutoRT [34, 35] to identify possible correlation violations 
in function pairs accessing correlated variables. We automatically generated 81 parallel unit 
tests for correlated variables in eight different applications. After analyzing the unit tests, a 
race detector for correlated variables reported more than 85% of the race conditions violating 
variable correlations [36]. Furthermore, we were able to reduce the number of redundantly 
generated tests by up to 50%.

7. Further applications of the DiscoPoP framework

Considering the modern parallel programming models and hardware platforms, communi-
cation patterns play an important role for energy efficiency and performance of the gener-
ated parallel code. We investigated communication patterns in shared-memory applications, 
which are useful for applying optimizations and finding performance bottlenecks.
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7.1. Communication pattern detection for auto-tuning

Communication patterns extracted from parallel programs can provide a valuable source 
of information for auto-tuning and runtime workload scheduling on heterogeneous sys-
tems. Once identified, such patterns can help find the most promising optimizations. 
Communication patterns can be detected using different methods, including sandbox simula-
tion, memory profiling, and hardware counter analysis. However, these analyses usually suf-
fer from high runtime and memory overhead, necessitating a tradeoff between accuracy and 
resource consumption. More importantly, none of the existing methods exploit fine-grained 
communication patterns on the level of individual code regions.

We extended the DiscoPoP profiler by adding a communication pattern detection component 
and employed an asymmetric signature memory method to detect communication among 
threads [12]. Shared-memory systems have fundamental differences in comparison with 
distributed memory system. Shared-memory applications bring additional irregularity and 
complexity to data sharing, which imposes further difficulty on finding the communication 
pattern. Communications are implicit and automatically occur through memory accesses, 
when one thread writes a value and another one reads it. We experimentally validated our 
communication pattern detection approach with programs in the SPLASH [37] benchmark 
suite and successfully identified the typical communication patterns existing in parallel pro-
grams [12]. The runtime overhead of our extended profiler is around 225×, while the required 
amount of memory remains fixed.

7.2. Optimization techniques for transactional memory

Transactional memory (TM) is a promising paradigm that facilitates programming for 
shared-memory systems. We used DiscoPoP and reported optimization techniques in soft-
ware transactional memory (STM) [13]. We demonstrated that varying STM parameters such 
as the size of transaction, readset, and writeset significantly change the execution time of the 
STM programs. By applying machine learning and using DiscoPoP results, we optimized 
these parameters. The experimental results with NAS revealed that we are able to improve 
the performance of STM programs by up to 54.8%. In another work [14], we used DiscoPoP 
for restricted transactional memory (RTM) on Intel’s Haswell processor and showed that 
the performance of RTM varies across applications. While RTM enhances performance of 
some applications relative to software transactional memory (STM), it degrades performance 
in some others. Using DiscoPoP, we proposed an adaptive system that switches between 
HTM and STM in transaction granularity and predicts the optimal TM system for a given 
transaction.

8. Limitations

Methods to analyze programs are generally divided into two categories: static and dynamic 
methods. Static methods analyze source or intermediate code and are restricted to information 
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that can be obtained before running the program, i.e., at compile time. Static approaches are fast 
but also conservative because they have limited support for runtime information. In contrast, 
dynamic approaches identify dependences only if they exist at runtime. Although dynamic 
approaches relax the conservative assumptions made by static approaches on dynamic data, 
they are input sensitive, that is, their outcome may depend on the particular program execu-
tion. To mitigate this limitation, dynamic approaches generally execute the target program 
with a range of representative inputs, a practice we adopt as well when using our dynamic 
dependence profiler. Additionally, we plan to derive conditional correctness guarantees, tak-
ing the specific nature of the missing dependences into account. This would allow users to run 
the program in parallel if the missed dependences are irrelevant for a given input configuration.

Our parallelism detection approach is dependent on the profiler’s output. Due to the use 
of signature technology (as an approximation), the dependence profiler could have a very 
low rate of false positives and false negatives. If these appear in the profiler results, then our 
dependence analysis and accordingly the parallelism detection results could be affected.

The pattern detection approach is dependent on the coding style of a programmer. For exam-
ple in a Starbench program, we found a pipeline pattern because the programmer used point-
ers to access arrays and used the increment operator (++) on pointers. However, if a loop index 
variable (loop indexing) had been used in the sequential code, we would have detected a do-
all loop pattern based on our pattern detection algorithm (template matching).

MPMD-style task parallelism (Multiple Program Multiple Data) could be found in few evalu-
ated benchmarks, which lead to minor speedups. More intensive investigations are needed to 
apply such kind of parallelism to real-world applications.

Recently, we developed a prototypical visualization component to display the output of 
DiscoPoP. However, a more advanced and user-friendly graphical user interface to visually 
guide application developers in a stepwise manner when parallelizing a program would be 
desirable. This feature could create higher incentives for developers and make the paralleliza-
tion workflow easier, particularly for DiscoPoP’s code-based semiautomatic parallelization 
approach.

9. Related work

Profiling and parallelism discovery has always been a central topic in the field of parallel pro-
gramming. Early approaches mainly analyze source code statically and predict parallelism 
based on theoretical models [38, 39]. Bobbie [40] presented a method to partition a program for 
parallelization. The method adopts syntax-driven data-dependence analysis and detects paral-
lelism based on Bernstein’s conditions [41]. It uses bipartite graph matching to partition the code.

Compiler-based auto-parallelization based on the polyhedral model [1, 2, 42] is generally 
restricted to program loops with specific criteria (e.g., affine linear loop boundaries and array 
indices). A dynamically speculative extension of these criteria expands the applicability of this 
method to a certain extent [43]. Another work [28] that is not restricted to loops only identifies 
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parallel tasks in the static dependence graphs using integer linear programming. Generally, 
compiler-based auto-parallelization is often conservative and fails to identify available paral-
lelism for many applications, because runtime information such as the values of pointers and 
array indices are often not known at compile time. In practice, the parallelization of software 
usually happens manually, and often, it is more appropriate to follow the provided guide-
lines for parallel design patterns [44].

Without considering runtime behavior of the target program, some key parallelism usu-
ally could remain undetected in static approaches. To overcome this disadvantage, profiling 
techniques to gather runtime data emerged [45, 46]. Such methods are usually referred to as 
dynamic parallelism discovery approaches. Additionally, most of these approaches have a 
cost model to produce results. Kremlin [47] determines the length of the critical path in a given 
code region. Based on this knowledge, Kremlin calculates a metric called self-parallelism to 
quantify the parallelism of a code region. The tool reports self-parallelism for each region 
in a descending order. Alchemist [48] identifies predefined constructs that can be treated as 
candidates for asynchronous execution in sequential programs. It estimates the effectiveness 
of parallelizing a certain construct using Valgrind [49]. Kremlin and Alchemist mainly focus 
on loops, which are easier to profile and quantify.

At the same time, other dynamic parallelism discovery approaches deal with task parallel-
ism as tasking became popular and widely supported in almost all mainstream parallel pro-
gramming libraries and frameworks. Ketterlin et al. [50] profiles sequential programs and 
represents them using execution trees. It further attaches data dependences to the nodes of 
the execution tree and discovers task parallelism where two or more nodes are independent 
of one another. The SLX Tool Suite, formerly known as MAPS [51], concentrates on parallel-
ism discovery for applications on multiprocessor system on chip (MPSoC). It identifies code 
sections called coupled blocks. These code blocks are identified with constraints requiring that 
they should be schedulable and should be tightly coupled by data dependences. Each coupled 
block is considered as a task, and two tasks can run in parallel if there is no data dependence 
between them.

Tareador [52] provides a set of annotations for marking down tasks in the code. It takes a 
relatively brute-force approach by enumerating possible decompositions and does not take 
the control flow into account, which may lead to tasks that are not easy to implement. Intel 
Advisor XE [53] is a prototyping tool for different programming languages such as C, C++, C#, 
and Fortran. It also performs a correctness check, which is essentially a data-race detector and 
has a large time overhead. Also pattern detection and code transformation are not supported 
by Intel Advisor XE.

The approach presented by Tournavitis et al. [54] uses both static analysis and dynamic profil-
ing to detect potential parallelism. A machine learning-based prediction mechanism maps the 
parallelism onto different architectures. It generates parallel code using OpenMP annotations 
and targets loop-based parallelism. However, the code transformation is relatively simple. 
The tool does not perform high-level code restructuring that could exploit coarse-grained task 
parallelism. In recent work [55], the tool exploits pipeline parallelism.
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OpenRefactoryC [56] is a tool providing many refactoring methods for C programs, but it 
does not automatically transform sequential code to parallel code. The approach presented 
in [57] transforms serial C++ code to parallel code using OpenMP directives. However, it 
requires users to define the high-level abstractions in advance.

Similar to all the dynamic parallelism discovery approaches, the DiscoPoP approach adopts 
profiling techniques to gather runtime data. However, our method discovers parallelism 
based on computational units (CUs), which are derived statically, and parallel design pat-
terns. We identify CUs in sequential programs and build the CU graph as the representation 
of a program. Based on the CU graph, we can perform different analyses and detect parallel 
design patterns. A CU clearly distinguishes the inputs and outputs of a computation, allow-
ing a direct application of Bernstein’s conditions [41]. Bernstein’s conditions describe when 
two program segments are independent and can be executed in parallel. In addition, our 
method discovers both task-based and loop-based parallelisms using the same framework. A 
CU in our approach acts as a task, a stage in a pipeline, or an iteration of a loop or a subset of 
either of these based on the context, which distinguishes our work from related work.

10. Conclusion and outlook

In this chapter, we propose an optimistic code-based approach to assist semiautomatic paral-
lelization in multicore architectures, focusing on general-purpose applications. Our approach 
is implemented as an integrated tool based on LLVM. Program analysis and parallelism dis-
covery are performed at the LLVM-IR level and are not limited to any programming language 
or specific language constructs.

The proposed approach presents an alternative to conservative and usually loop-centric auto-
parallelization. Application developers can take advantage of our methods to identify and 
exploit parallelism that is not necessarily limited to loop parallelism for many applications. 
Our semiautomatic approach can reduce the high cost and price of the manual error-prone 
parallelization process. At the same time, many legacy applications can benefit from the avail-
able hardware parallelism using our approach.

There is no doubt that parallel programming is challenging and involves a steep learning 
curve. Developers must think about the application in new ways. It is possible to work 
months on parallelizing an application and end up with incorrect results, or the resulting 
parallel program runs slower than the sequential one. For this reason, the techniques and 
tools used for parallelism discovery, debugging, and tuning the performance during the par-
allelization process play a very significant role. Our approach supports application develop-
ers during this process. It encourages average programmers to use parallel programming 
by creating incentives and insight for developers and making the parallelization workflow 
easier.

Considering the hardware trend and future smart cyber-physical systems (smart factory 
4.0), energy-efficient programming is a key feature in improving productivity and efficiency. 
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Whether we develop an application for mobile devices or data centers, we want to reduce 
energy, e.g., to increase the battery life of a mobile device or lower the customer’s data center 
utility bill. Thus, the role of programmers to reduce the energy and develop power-efficient 
applications is very important. Our future work considers energy-efficient software devel-
opment during the parallelization process. Ongoing work focuses on developing an energy 
efficiency method to be integrated in our parallelization approach. Energy conservation with-
out performance degradation is challenging and has become an important trend. Our initial 
results suggest that we can propose energy-efficient task decomposition and programming 
constructs during the parallelization process. Our preliminary evaluation shows up to 21% 
improvements of energy consumption after applying our optimizations. Our overarching 
goal is to improve efficiency while maintaining productivity.
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