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Summary

When trying to parallelize a sequential program, programmers routinely struggle during the first

step: finding out which code sections can be made to run in parallel. While identifying such code

sections, most of the current parallelism discovery techniques focus on specific language con-

structs. In contrast, we propose to concentrate on the computations performed by a program.

In our approach, a program is treated as a collection of computations communicating with one

another using a number of variables. Each computation is represented as a computational unit

(CU). A CU contains the inputs and outputs of a computation, and the three phases of a computa-

tion are read, compute, and write. Based on the notion of CU, which ensures that the read phase

executes before the write phase, we present a unified framework to identify both loop parallelism

and task parallelism in sequential programs. We conducted a range of experiments on 23 applica-

tions from four different benchmark suites. Our approach accurately identified the parallelization

opportunities in benchmark applications based on comparison with their parallel versions. We

have also parallelized the opportunities identified by our approach that were not implemented in

the parallel versions of the benchmarks and reported the speedup.
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1 INTRODUCTION

Millions of legacy programs are awaiting their parallelization. The difficulties in parallelizing sequential programs exist in nearly every step of the

parallelization process. So far, numerous parallel programming models1,2 and frameworks have been proposed to ease the development of parallel

code. But “which code sections to run in parallel?” is still one of the most difficult questions that developers are required to answer. Answering this

question requires a deep understanding of the source code, and it can be extremely difficult when the source code has been written by someone

else. Unfortunately, it is a common occurrence in large organizations. Thus, many efforts have been made to automate the parallelism discovery

methods and provide tool for parallelization.

Existing parallelism discovery approaches have been built on top of data-dependence analysis, either statically3,4 or dynamically.5,6 The idea of

using data dependences to discover parallelism is based on Bernstein's conditions.7 Let Pi and Pj be two program sections. Ii and Oi are the sets of

input and output variables of Pi. Similarly, Ij and Oj are the sets of input and output variables of Pj. Pi and Pj can be executed in parallel if

Ij ∩ Oi = ∅,

Ii ∩ Oj = ∅,

Oi ∩ Oj = ∅.

Suppose Pi is executed before Pj in sequential order. Violating the first condition introduces a read-after-write (RAW) dependence, meaning

Pi produces a result used by Pj. Similarly, the second condition represents a write-after-read (WAR) dependence. The last condition represents a

write-after-write (WAW) dependence: Pi and Pj write to the same location, the final result comes from the logically executed last code section.

Existing methods check these three kinds of dependences to identify parallelism. However, they do not strictly follow Bernstein's conditions since

not all the dependences correspond to the input and output variables. These methods do not necessarily distinguish between input and output
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variables of a code section. As a result, they apply data-dependence analysis on all of the variables. It not only makes parallelism discovery

unnecessarily complex but also leads to both false positives and false negatives in identified parallelism of a sequential program.

In this paper, we present an approach to identify both loop parallelism and task parallelism in sequential programs following Bernstein's con-

ditions. Our method treats a program as a set of computations with communications among them. Data dependences among computations are

obtained using dynamic dependence profiling. Our approach targets both loop parallelism and task parallelism. A loop is easily parallelizable if there

is no inter-iteration dependence in the loop. Such loops are called DOALL loops.8 Loops that contain inter-iteration dependences and can still be

parallelized are called DOACROSS8 loops. In case of task parallelism, there are two kinds of tasks: tasks that are instances of the same code section

but process different data (SPMD)9 and tasks that execute completely different code sections performing different computations (MPMD).10 Our

approach helps us identify all the aforementioned kinds of parallelism following Bernstein's conditions (BC) and produces parallelization opportuni-

ties in sequential programs. Computations identified by our approach provide us with the versatility to create a framework where they can be used

as a task, an iteration of a loop, a stage in a pipeline, or other parallel constructs.

We compared the parallelization opportunities found by our approach with the existing parallel versions. In addition, we also parallelized the

opportunities identified as parallelizable but not parallelized in the parallel version of the benchmark applications. Our experiments on Barcelona

OpenMP Tasks Suite (BOTS),11 NAS parallel benchmarks,12 PARSEC13 benchmark suite, and Starbench parallel benchmark suite14 showed that all

of the code sections identified as parallelizable by our approach are parallelized in existing parallel versions.

The main contribution of this work provides a technique to identify loop and task parallelism in sequential programs. This is accomplished by

1. defining and identifying CUs that perform a unit of work in program;

2. expressing the sequential program as a graph of CUs using the dependences and the call graph;

3. analyzing the CU graph to identify the loops and the tasks that can be parallelized;

4. evaluating the tasks and the loops identified as parallelizable.

In our previous works,15-17 we also discussed the concept of CU, but these works focus on the dynamic analysis and discussed our profiler specifi-

cally in greater detail. In our previous work,16 an overview of our toolset DiscoPoP is provided, which includes the evaluation of the dynamic profiler

with respect to its performance and memory consumption. In addition, our previous work15 also discusses the use of CUs to identify parallel pat-

terns in existing sequential code that is discussed in greater detail in our other works.18,19 In our previous works,20,21 we focus on task parallelism

within larger computations and functions, and identification of CUs using a different method with Use-Definition Chain (UD Chain).

However, the contribution of this paper focuses on demonstrating further improvements made to the CU, the process of CU identification stati-

cally, and its applications in various parallelization scenarios. It does not discuss the profiler but explains how the dynamic information generated by

the profiler is used with statically identified CUs to discover parallelism in a hybrid approach. Our approach for identification and use of CUs to dis-

cover specific parallelization scenarios with respect to loops and tasks is discussed in details in this paper. This work demonstrates how an improved

CU clearly distinguishes the inputs and outputs of a computation using sets of variables, allowing a direct application of Bernstein's conditions. In

addition, our method presented in this paper discovers both task parallelism and loop parallelism using the same framework. A CU in our current

approach now acts as a task, a stage in a pipeline, or an iteration of a loop or a subset of either these based on the given context.

The rest of this paper is organized as follows. Before introducing our approach, we summarize the current state of the art and the related works in

Section 2. Then, we describe our approach in Section 3, including the algorithms for building computations and discovering parallelism. Experiments,

analysis, and evaluation results are presented in Section 4. Finally, Section 5 concludes this paper and discusses potential future work.

2 RELATED WORK

Parallelism discovery has always been an interesting topic in the field of parallel programming. Early approaches analyze source code statically and

predict parallelism based on theoretical models.3,4 Bobbie22 presented a method to partition a program for parallelization. The method adopts

syntax-driven data-dependence analysis and detects parallelism based on Bernstein's conditions.7 It uses bipartite graph matching to partition

the code.

Without taking care of the runtime behavior of the target program, key parallelism usually remains undetected in static approaches. To over-

come the disadvantage, methods adopting profiling techniques to gather runtime data have emerged.5,6 Such methods are usually referred to as

dynamic parallelism discovery approaches. Additionally, most of these approaches have a cost model or ranking system to produce accurate results.

Kremlin23 calculates the length of critical path in a given code region. It calculates a metric called self-parallelism using this knowledge to quan-

tify and express the parallelism of a code section. Alchemist24 identifies predefined code constructs that can serve as potential candidates for

asynchronous execution in sequential programs. It estimates the effectiveness of parallelizing a certain construct by profiling the dependence dis-

tance using Valgrind.25 Kremlin and Alchemist mainly focus on loops, which are easier to profile and quantify. At the same time, other dynamic

parallelism discovery approaches deal with task parallelism. Parwiz26 profiles sequential programs and represents them using execution trees. It

further attaches data dependences to the nodes of the execution tree and discovers task parallelism where two or more nodes are independent

of one another. MAPS27 concentrates on parallelism discovery for applications on multiprocessor System-on-Chip (MPSoC) systems. It identifies

code sections called coupled blocks. Each coupled block is considered as a task, and two tasks can run in parallel if there is no data dependence
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between them. Ottoni et al28 propose a Decoupled Software Pipelining. They analyze the dependence graph and merge the strongly connected com-

ponents to generate a directed acyclic graph (DAG) out of a loop. Raman et al propose a technique called parallel stage decoupled software pipelining,29

which converts programs with pointer-based loops into pipelines. These two approaches specifically target loops and exploit pipeline parallelism in

sequential applications. Implicitly parallel languages such as Swift/T30 also focus on generating and executing data-driven tasks but they propose a

programming model of their own.

The main issue with the aforementioned approaches is that they treat every variable and every data dependence as equally important in paral-

lelism discovery, although it is not the case. They neglect the key information provided by Bernstein's conditions: only the dependences on input and

output variables prevent parallelism. Considering all of the variables and dependences in programs makes these approaches unnecessarily complex

and produces numerous false positives and false negatives. Like all the dynamic parallelism discovery approaches, our method adopts profiling tech-

niques to gather runtime data. Unlike those approaches, our method discovers parallelism based on computational units (CUs). We identify CUs in

sequential programs and build a CU graph as the representation of a program.

3 APPROACH

We firstly introduce computational unit, which is the most important concept in our method. Then, CU graph, ie, the graph we use to represent a

sequential program, is introduced. In the end, we show the algorithms for discovering task parallelism and loop parallelism.

3.1 Computational unit

A computational unit is a collection of instructions that follow the read-compute-write pattern: firstly, a collection of instructions read a set of variables,

this set is used to perform a computation, and then the result is written back to another set of variables. These two sets of variables are called read

set and write set, respectively. These two sets do not necessarily have to be disjoint. The read phase of the CU contains load instructions reading the

variables in the read set, and the write phase of the CU contains store instructions writing variables in the write set.

Tasks communicate with one another by reading and writing variables that are global to them and perform the computations necessary for this

communication locally. Hence, a CU is defined by read-compute-write pattern where the variables in a CU's read set and the write set are required

to be global to the CU. The variables local to the CU will not be used to communicate with other tasks and do not affect parallelization. Hence, they

are part of the compute phase of the CU. Variable scope analysis is used to distinguish variables that are global to a code section. It is to be noted

that the variables considered global in the read set and the write set do not have to be global in scope to the entire program. These variables can be

local to the code section encapsulating the target code but global in scope to the target code section.

CUs are built using static analysis for every region. A region is a single entry, single exit code block. It is a connected subgraph of a control flow

graph that has exactly two connections to the remaining graph. A region could be a group of basic blocks with branches inside or it can be a function,

a loop, an if-else structure, or a basic block. In practice, a basic block rarely contains noteworthy parallelism because it usually contains a small num-

ber of instructions. Codes in different branches of an if-else structure are semantically exclusive, thus rarely run in parallel. Hence, in our approach,

we mainly focus on regions like functions and loops, which contain important computations that can potentially run in parallel.

As mentioned earlier, our earlier implementations of CU focused on computations identified through def-use chains for task parallelism20

within functions and larger computations. CUs produced by such method were non-contiguous lines of code. It was also observed that such par-

allelism would require code modification and transformation, and it would not be easily scalable or load balanced. In contrast, this work focuses

on identifying and improving CUs as contiguous code units that can serve as building blocks for different kinds of parallelism within a common

framework.

3.1.1 Cautious property

A code section is only considered to be a CU if it is cautious. Cautious property31 was previously defined for operators in unordered algorithms:

an operator is said to be cautious if it reads all the elements of its neighborhood before it modifies any of them. By adapting the cautious property

to the CUs, we consider a code section to be cautious if each variable in its read set is read before that variable is written in the write phase of

the CU. Cautious property provides a clear way of separating the read phase and the write phase. Hence, read-compute-write pattern of the CU is

guaranteed by the cautious property. After parallelism discovery, it also allows multiple CUs to be run speculatively without buffering updates or

making backup copies of modified data, since all conflicts are detected during the read phase and before the write phase. It also means that the tasks

extracted based on CUs do not need to have any special requirement on runtime frameworks.

Algorithm 1 shows the algorithm of constructing CUs statically. For each region, all the variables global to that region are identified. These vari-

ables are classified into read set (inputs) and the write set (outputs) of the CU. The read set and the write set are used to build the read phase

and the write phase. Then, we check if the cautious property is satisfied by read phase and write phase. If so, the target region is recognized as a

computational unit.
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A variable can sometimes be written and never read. Such a case does not violate the cautious property of the CU. Cautious property is violated

only when a global variable is firstly written and then read. The first read instruction that happens after a write in that case is called a cautiousness

violating point. A region can be not cautious. It means that it can contain more than one computational unit. When a region is not cautious, we find

the cautiousness violating points in the region by identifying the first read after a write and then break the region into multiple code sections based

on the cautiousness violating points. We then construct CU for each of these code sections within the region. The end result is such that the region

that is not cautious contains multiple CUs. This process is shown in the last else branch in Algorithm 1.

Figure 1 shows an example of building CU for a loop. This example also demonstrates that our improvements on CU also keep its definition con-

sistent with our previous work. In this example, readSet and writeSet both contain the variable {x}. Each loop iteration firstly reads the old value of x,

then computes a new value via local variables a and b, and then calculates a new value of x. Finally, the new value is written back to x. This follows

the read-compute-write pattern. For a single iteration of the loop, the loop region is cautious. All the reads of variablexhappen before the write tox.

Lines 3-5 follow the read-compute-write pattern and hence are in one CU. At source-line level, the compute phase of the CU is in lines 3-5. This over-

laps with its read phase that is in lines 3-4 and the write phase that is on line 5. At instruction level, the three phases are obviously separate from one

another. If variables a and bwere declared outside the loop, then they would be considered global to the loop as well, according to the definition of

CU. This would also mean that the loop would have cautiousness violating point and it would be made up of two CUs with lines 3-4 being one CU

and the line 5 being the second CU.

Note that CUs never cross region boundaries. This is necessary; otherwise, a CU could grow too large. Such a CU could possibly swallow iterations

of a loop and other code sections and hide important parallelism that we actually want to discover. Fine-grained CUs, however, can be grouped

together to form coarse tasks if necessary, which we discuss in our previous work.20

3.2 CU graph

A computation may depend on data produced from other computations. To represent such dependences, we use a dynamic dependence profiler

DiscoPoP.15 DiscoPoP profiles detailed data dependences, gathers control-flow information, and identifies hotspots across the target program.

To overcome the input sensitivity of the dynamic dependence analysis, we run the profiler multiple times using representative inputs and merge

the dependence results obtained. Then, we build a CU graph, in which vertices are statically generated CUs and edges are dynamic data depen-

dences. Hence, the CU graph combines static and dynamic information to help us discover parallelism. Data dependences in a CU graph are always

among instructions in read phases and write phases of the CUs. Dependences that are local to a CU (within a CU) are hidden in the CU graph

because they do not prevent parallelism among CUs, according to Bernstein's conditions. Moreover, since the number of global variables to a

code section is usually far less than the number of local variables, a CU graph is much simpler than the traditional instruction-based dependence

graph. This simplified the parallelism discovery process. The CU graph is then expanded using runtime information to represent instances of tasks

or loops.
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FIGURE 1 Building a CU

3.3 Parallelism discovery

There are two kinds of parallelism that we can identify: parallelism among different computations and parallelism among different instances of the

same computation. Parallelism among different computations can be easily identified using CU graphs without instantiating these computations.

On the other hand, identifying parallelism among different instances of the same computation requires some additional effort. To discover such

parallelism, a CU must be instantiated using real inputs passed into the computation and real outputs it produces. We call a CU graph with its nodes

instantiated as an expanded CU graph.

For example, consider the following function:

int foo(int x, const Widget &w).

When building a CU for foo, read set contains x and w and write set contains the virtual return variable ret. Given the following calls to foo:

a = foo(width1, window1);

b = foo(width2, window2).

The CU of foo is instantiated into two instances: the first instance with inputs width1, window1, and output a, and the second instance with

inputs width2, window2, and output b. They replace the formal parametersx, w, and the virtual return value ret, respectively. We call a CU graph

with its nodes instantiated as an expanded CU graph. In the end, data dependences must be checked among instances of a CU based on the expanded

CU graph in order to detect parallelism among instances. In case of functions, multiple function calls of the same function are instantiated with inputs

instead of formal parameters. In case of loops, every iteration implicitly instantiates the CUs that belong to the loop and the separate instances of

CUs can be represented in the expanded CU graph.

3.3.1 Task parallelism

Figure 2 shows the flowchart of our task parallelism discovery process. The algorithm only considers CUs that are hotspots in terms of execution

time and discovers task parallelism based on the following rules.

1. A CU is instantiated into different instances using their real inputs and outputs with respect to the control flow. Two instances of the same

computation can run in parallel if they are independent in the expanded CU graph (SPMD task parallelism).

2. Two different computations can run in parallel if their corresponding CUs are independent in the CU graph (MPMD task parallelism).

SPMD task parallelism: To better illustrate the second rule, we show a parallelization opportunity found in fib, an application from Barcelona

OpenMP Task Suite, which produces the nth number in the Fibonacci series. Figure 3 shows the CU graph of fib. CUs 67-1 and 67-2 belong to the

function fib0(), which is not cautious in itself and hence is divided in two CUs and connected by a RAW dependence. CU 67-0 represents the

function fib() and is data dependent on CU 67-2 and itself. As the CU graph alone does not reveal any parallelism here, we produce the expanded

CU graph (shown in Figure 4). In Figure 4, the CU of functionfib() is instantiated into multiple instances. The self-dependence of CU 67-0 in the CU

graph is due to the dependence between currentfib() call and its subsequent recursive calls, as shown in the expanded CU graph. The instances of

fib() that are on the same recursion level satisfy Bernstein's conditions. These calls are identified to take up approximately 100% of the execution

time. This makes fib() a definite candidate for task parallelism.
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FIGURE 2 Flowchart Showing the Criteria for a Finding Task Parallelism Candidates

67-1

67-2

67-0

fib0()

fib()

RAW Dependence

FIGURE 3 CU Graph of fib Benchmark From BOTS for Task Parallelism

MPMD task parallelism: In Fluidanimate application of PARSEC, we found an opportunity for MPMD task parallelism in the function

RebuildGrid, which has two different computations identified as two independent CUs. The Courant-Friedrichs-Lewy (CFL) condition check is

performed by one of the CUs and the other CU represents the rest of the function. These two CUs can run in parallel as they do not have any depen-

dences between them and they satisfy Bernstein's conditions. This type of parallelization can be easily implemented using constructs like OpenMP

sections.1 Parallelism within a computation is not covered in this paper. However, such parallelism can be detected by applying techniques that tracks

def-use chains20 on compute phases of CUs.

3.3.2 Loop parallelism

For loop parallelism discovery, every iteration of the loop instantiates every CU within the loop. The expanded CU graph is used to check if the

iterations of a loop are independent or if the loop has inter-iteration dependences. An inter-iteration dependence is either a dependence between
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FIGURE 4 Expanded CU Graph of fib

FIGURE 5 Flowchart Showing the Criteria for Finding Loop Parallelism Candidates

two separate instances of CUs or a self-dependence on a CU. Figure 5 shows the flowchart of our loop parallelism discovery process. Similar to task

parallelism discovery, we only consider loops that are hotspots in terms of execution time and discover loop parallelism based on the following rules.

• Iterations of a loop can run in parallel if for all CUs built for the loop, there are no inter-iteration RAW dependences among the CUs or on a single

CU (DOALL parallelism).

• If there are inter-iteration dependences in the loop, the loop may still be analyzed to check if it can be parallelized by using techniques, eg,

reduction, privatization, and pipeline (DOACROSS parallelism).

DOALL parallelism: In the case of DOALL loops, the iterations of loop are independent of each other. This means that the instances of CUs are

also independent and as a result they satisfy Bernstein's conditions. However, it is not necessary to analyze all the instances of the CUs of a loop

because loops have no parameters to be replaced. To better illustrate the rule for discovering DOALL parallelism, we consider a loop identified as

parallelizable in IS from NPB. Figure 6 shows the CU graph of this loop. Loop iteration variables are considered local unless they are modified in the
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Control Flow
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FIGURE 6 CU Graph of IS From NPB (DOALL)

FIGURE 7 CU Graph of Function processImage() of rgbyuv from Starbench Showing a Pipeline (DOACROSS)

loop body. Multiple CUs are identified inside the loop body. The graph shows that there are three RAW dependences between the remaining CUs

but none of them are inter-iteration dependences. As a result, the iterations of the loop can run in parallel.

DOACROSS parallelism: Dependence distances of the inter-iteration RAW dependences can be further analyzed to discover DOACROSS8 loops.

A DOACROSS loop has inter-iteration dependences, but the dependence distance should not be as large as the distance between the first line of an

iteration and the last line of the previous iteration. In other words, the first CU of the loop should not depend on the last CU of the loop. That means

iterations of a DOACROSS loop can overlap, thus containing parallelism. Based on our CU graph, if the length of the longest dependence is smaller

than the distance from the last CU to the first CU, we could classify such loops as candidates for DOACROSS parallelism. As there are inter-iteration

dependences in DOACROSS loops, all the instances of CUs are not independent of each other like in DOALL. But a subset of CUs in an iteration

is independent of another subset of CUs in the next iteration, and hence, they satisfy Bernstein's conditions and can be run in parallel. Utilizing

such parallelism is usually achieved by applying the pipeline pattern. For example, consider the function processImage() in rgbyuv application of

STARBENCH benchmark suite. Figure 7 shows the simplified CU graph generated for the inner loop in the function processImage(). The CUs

1-12 and 1-14 have self-dependences indicating that there are inter-iteration dependences in the loop. As a result, this loop cannot be parallelized

using DOALL parallelism directly, and as the first CU in the loop with respect to sequential execution order is not dependent on the last CU, this

loop can be considered a valid candidate for DOACROSS parallelism. The three CUs in Figure 7 represent the three stages of a pipeline: input stage;

computation of Y, U, V using R, G, B; and the output stage. This example demonstrates that a CU can also act as a stage in a pipeline.

4 EVALUATION

We conducted a range of experiments to evaluate the effectiveness of our approach. We applied our method on benchmarks in Barcelona OpenMP

Task Suite (BOTS),11 PARSEC benchmark,13 NAS Parallel Benchmarks (NPB),12 and Starbench benchmark14 to evaluate our task and loop parallelism

discovery. All four benchmarks contain sequential benchmark applications and their equivalent parallel versions. After applying our method on the

sequential benchmark applications, we compare the identified parallelization opportunities to the existing parallel versions in order to evaluate our

approach. For the opportunities that do not have corresponding parallel version, we implemented our own parallel version for these applications.

Benchmarks evaluated belong to various domains and confirm that our approach can identify parallelism in different applications. The evaluated

benchmarks include small and middle-sized applications. The generated CU graphs for the hotspots are in a reasonable size to be analyzed and traced

by the developers. Obviously our approach needs further improvements when dealing with larger applications. A direction of our future works will

be focused on the scalability of our approach concerning parallelism targeting larger applications on larger size machines.

Currently, we focused on major parallelism exploitation opportunities (hotspots) by defining a threshold for identifying hotspots based on exe-

cution time. The user could also analyzes cases for minor (non-hotspot) parallelism exploitation opportunities by lowering the preset threshold

values.

Our approach is implemented in LLVM 3.6.1,32 and all benchmarks are compiled using Clang 3.6.1.33 Experiments were run on a server with

2×8-core Intel Xeon E5-2650, 2-GHz processors with 32-GB memory, running Ubuntu (64-bit server edition). The performance results reported

are an average five independent executions.

4.1 Task parallelism

SPMD: Table 1 shows the results of discovering task parallelism on benchmarks of BOTS. Twenty hotspots were analyzed in all benchmarks of BOTS,

and 12 of them contain SPMD parallelism as shown in Table 1. Comparing the hotspots that are identified as parallelizable (shown in column Paral-

lelizable) with their parallel versions (in column Implemented), it was observed that all of them are parallelized using master-worker (MW) pattern.
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TABLE 1 SPMD task parallelism in BOTS

App. Function Parallelizable Implemented Exec. Time (%) # Tasks # Dep.

sort cilkmerge ✓ MW 34.4 1 47

cilksort ✓ MW 74.8 2 56

seqquick ✗ ✗ 22.6 - -

seqmerge ✗ ✗ 52.0 - -

sort ✗ ✗ 74.9 - -

fib fib ✓ MW ∼100 1 0

fft fft ✗ ✗ ∼100 - -

fft_aux ✓ MW 97.2 1 0

fft_twiddle_16 ✓ MW 83.0 1 0

fft_unshuffle_16 ✓ MW 12.7 1 0

floorplan add_cell ✓ MW ∼100 1 0

health sim_village ✓ MW ∼100 1 0

sparselu sparselu ✓ MW 34.4 1 8

bmod ✗ ✗ 89.6 - -

strassen strassen_main ✗ ✗ 95.2 - -

OptimizedStrassenMultiply ✓ MW 95.2 1 105

MultiplyByDivideAndConquer ✓ MW 82.0 1 0

FastNaiveMatrixMultiply ✗ ✗ 21.4 - -

FastAdditiveNaiveMatrixMultiply ✗ ✗ 61.9 - -

uts serTreeSearch ✓ MW 99.6 1 0

TABLE 2 MPMD task parallelism in PARSEC

App. Function CR # CUs LS # Dep. # Dep. Resolved

Fluidanimate RebuildGrid Yes 2 1.60 300 16

Fluidanimate ProcessCollisions No 6 1.81 121 0

Canneal routing_cost_given_loc Yes 2 1.32 19 2

Blackscholes CNDF No 2 0.98 38 0

Fluidanimate ComputeForces Yes 3 1.52 32 6

It can also be observed that eight hotspots were not identified as parallelizable in the benchmark suite. The CUs for these functions do not ful-

fill Bernstein's conditions in either CU graphs or expanded CU graphs. We verified our results by observing the parallel versions of the respective

benchmarks. The last column in Table 1 lists percentage of the execution time, number of tasks identified, and number of dependencies for each

hotspot.

MPMD: MPMD opportunities in PARSEC were similar to RebuildGrid, which was discussed in Section 3.3.1. All the cases were parallelized

manually by us with fork-join model using OpenMP section or task directives. Speedups reported in Table 2 refer to the ratio of execution time of

the tasks run in parallel to the execution time of the sequential version of the same code region (function). As a result, it is called local speedup (LS in

Table 2). Refactoring the code mainly involved privatization of variables (eg, adding OpenMP private clauses), adding necessary synchronization

(eg, using critical sections in OpenMP), or replicating some part of the code across multiple threads (eg, copying the same data between

threads/sections or having shared data with synchronization operations between threads).

Table 2 also provides characteristics obtained from the CU graphs of sequential versions. We also report the number of dependences resolved to

parallelize the identified opportunity. These dependences were resolved by refactoring the code (CR for Code Refactoring in Table 2), privatizing or

sharing the variables, etc to expose more parallelism. It can be seen that the number of resolved dependences is very small compared to the total

number of dependences. This clearly shows that the number of dependences does not represent the difficulty encountered during parallelization.

4.2 Loop parallelism

DOALL: Applying loop parallelism discovery algorithm to the applications of NPB revealed the information in Table 3. It contains a list of applications

and the loops that were analyzed for finding parallelism. A total of 25 hotspot loops were analyzed in all the benchmarks of NPB and are identified as

parallelizable (shown in column Parallelizable)using DOALL. All of these identified loops are already parallelized in their respective parallel versions

using DOALL (shown in column Parallelized).
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TABLE 3 DOALL parallelism in NPB

App. Loop (File-Line) Parallelizable Parallelized Exec. Time (%) # Dep.

IS is.c-372 ✓ DOALL 61.1 4

EP ep.c-167 ✓ DOALL ∼100 7

BT x_solve.c-70 ✓ DOALL 29.9 0

y_solve.c-69 ✓ DOALL 30 0

z_solve.c-69 ✓ DOALL 30 0

SP x_solve.c-48 ✓ DOALL 29.9 0

y_solve.c-48 ✓ DOALL 30 0

z_solve.c-48 ✓ DOALL 30 0

FT auxfnct.c-163 ✓ DOALL 27.2 2

fft3d.c-81 ✓ DOALL 25.7 23

fft3d.c-114 ✓ DOALL 99.1 9

fft3d.c-156 ✓ DOALL 23.2 9

fft3d.c-181 ✓ DOALL 19.6 9

fft3d.c-196 ✓ DOALL 21.8 9

CG cg.c-296 ✓ DOALL 98.3 9

cg.c-458 ✓ DOALL 98.2 4

MG mg.c-550 ✓ DOALL 40.6 1

mg.c-951 ✓ DOALL 23 3

mg.c-488 ✓ DOALL 14.6

mg.c-695 ✓ DOALL 6.6 23

LU ssor.c-115 ✓ DOALL 56.2 0

setiv.c-53 ✓ DOALL 43.5 5

buts.c-75 ✓ DOALL 11.6 3

blts.c-80 ✓ DOALL 10.6 3

jacu.c-54 ✓ DOALL 8.7 2

TABLE 4 Loops with inter-iteration dependences

App. Exec. Time (%) DOACROSS Implemented # CUs

rgbyuv 99.9 ✓ Pipeline 3

tinyjpeg 99.9 ✓ Pipeline 2

kmeans 99.5 ✓ Pipeline 4

nqueens ∼100 ✓ Reduction 1

CG 96.9 ✓ Reduction 4

BT 99.1 ✗ - -

SP 99.1 ✗ - -

FT 49.3 ✗ - -

CG 98.4 ✗ - -

MG 49.8 ✗ - -

DOACROSS: Table 4 shows the loops with inter-iteration dependences. If a loop's first CU with respect to serial execution order is dependent

on its last CU, then the loop requires a sequential execution and cannot be parallelized. Such results were found in NPB in applications CG (one of

the opportunities), BT, SP, FT, and MG. We identified DOACROSS parallelism in three cases, rgbyuv, tinyjpeg, and kmeans from Starbench. These were

parallelized using a pipeline where each CU is considered a stage in the pipeline. Our parallel implementation for rgbyuv led to a maximum speedup of

2.29 with four threads. We verified that the DOACROSS parallelism identified in tinyjpeg and kmeans is already implemented using pipelines in their

parallel versions. We also found two DOACROSS parallelism cases in nqueens of BOTS and CG of NPB. These were implemented using reduction in

the parallel versions of their respective benchmarks.

5 CONCLUSION

This paper discusses an approach to identify code sections called computational units (CU) in sequential programs. A CU follows a

read-compute-write pattern. We use cautious property to detect CUs statically from the source code. A CU graph consisting of CUs and depen-

dences between them is used as basis for parallelism detection. We use Bernstein condition's to identify the tasks that can run in parallel to each

other from a CU graph or an expanded CU graph. For loop parallelism, CUs are used to focus on identifying DOALL and DOACROSS loops by analyzing
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the inter-iteration dependences that may prevent parallelization of the loop. We evaluated our approach by analyzing applications from BOTS, NPB,

PARSEC, and Starbench benchmark suites. We identified 12 task parallelization opportunities in BOTS for SPMD task parallelism and all 12 oppor-

tunities have been implemented in parallel version. We identified 25 DOALL loops that are hotspots in NPB and all the loops have been parallelized.

For MPMD task parallelism, we implemented the opportunities identified and reported the speedup. We also analyzed loops with inter-iteration

dependences to discover DOACROSS loops and implemented their parallel version wherever necessary. We show that the count of dependences

and parallel tasks in a CU graph do not necessarily make the parallelization process more difficult. In the future, we would like to quantify the effort

required to parallelize the opportunities discovered by our approach using some metrics. Additionally, CU graph can be made more versatile by

mapping it onto parallel constructs like TBB2 Flow Graph to automatically generate parallel code.
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