
Unveiling Thread Communication Bottlenecks Using
Hardware-Independent Metrics

Arya Mazaheri
Technische Universität Darmstadt

Darmstadt, Germany
mazaheri@cs.tu-darmstadt.de

Felix Wolf
Technische Universität Darmstadt

Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Ali Jannesari
Iowa State University

Ames, IA, USA
jannesari@iastate.edu

ABSTRACT
A critical factor for developing robust shared-memory applications
is the efficient use of the cache and the communication between
threads. Inappropriate data structures, algorithm design, and in-
efficient thread affinity may result in superfluous communication
between threads/cores and severe performance problems. For this
reason, state-of-the-art profiling tools focus on thread communica-
tion and behavior to present different metrics that enable program-
mers to write cache-friendly programs. The data shared between a
pair of threads should be reused with a reasonable distance to pre-
serve data locality. However, existing tools do not take into account
the locality of communication events andmainly focus on analyzing
the amount of communication instead. In this paper, we introduce
a new method to analyze performance and communication bottle-
necks that arise from data-access patterns and thread interactions
of each code region. We propose new hardware-independent met-
rics to characterize thread communication and provide suggestions
for applying appropriate optimizations on a specific code region.
We evaluated our approach on the SPLASH and Rodinia benchmark
suites. Experimental results validate the effectiveness of our ap-
proach by finding communication locality issues due to inefficient
data structures and/or poor algorithm implementations. By apply-
ing the suggested optimizations, we improved the performance in
Rodinia benchmarks by up to 56%. Furthermore, by varying the
input size we demonstrated the ability of our method to assess the
cache usage and scalability of a given application in terms of its
inherent communication.

KEYWORDS
Shared memory, multi-threading, data locality, profiling, communi-
cation.

ACM Reference Format:
Arya Mazaheri, Felix Wolf, and Ali Jannesari. 2018. Unveiling Thread Com-
munication Bottlenecks Using Hardware-Independent Metrics. In ICPP
2018: 47th International Conference on Parallel Processing, August 13–16,
2018, Eugene, OR, USA. ACM, New York, NY, USA, Article 4, 10 pages.
https://doi.org/10.1145/3225058.3225142

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6510-9/18/08.
https://doi.org/10.1145/3225058.3225142

1 INTRODUCTION
The prevalence of multi-core processors has made parallel program-
ming and therefore performance analysis of parallel applications
significant for exploiting utmost efficiency. Despite the emergence
of various parallel programming models to make software paral-
lelization easier, programmers yet do not have detailed insights into
performance bottlenecks [26]. Thread communication plays an im-
portant role in parallel applications, which is often not thoroughly
investigated during performance-bottleneck diagnosis. Because
memory is much slower than processors, the full characterization
of the memory access patterns of important code regions is critical
for precise performance diagnosis. This turns out to be more vital
in multi-core systems, where data sharing among cores is often
performed in last-level caches [27]. Currently, the programmers’
approach to performance tuning is manual code restructuring and
applying compiler optimizations for each target platform. In general,
however, performance optimization needs to improve data-cache
locality and reduce communication bottlenecks [19].

Communication between threads is considered a key factor in
multi-core performance optimization. Often performance depends
on the size and sharing configuration of the underlying cache. Var-
ious studies have investigated the sharing behavior in parallel ap-
plications, but primarily only for a single cache size [5]. Therefore,
they cannot tell how changes in cache size, configuration, or even
thread allocation policies might affect performance. Multi-core
reuse-distance analysis [29, 33] is a promising approach to assess-
ing the locality of parallel applications and their cache effectiveness,
yet it fails to provide a detailed overview of communication among
threads. Furthermore, it suffers from high complexity and error-
prone results due to thread interleaving. The locality results are
also often reported for the whole program. Therefore, the program-
mer cannot focus on optimizing data sharing patterns and thread
communication.

An effective analysis considers communication events, sharing
patterns, the number of concurrent communication events, the
amount of communication through memory locations in different
time spans, and the extent to which communication correlates with
particular regions of the source code. We follow this strategy, which
yields an architecture-independent perspective on how source code
and resource utilization should be optimized, since such analysis
would focus on inter-thread communications rather than a specific
set of performance results for a given platform.

One way to characterize parallel applications is to identify their
inherent communication patterns. Each pattern has a unique com-
munication topology among processors/threads [18], which helps
us to discern them quickly and apply relevant optimizations. Al-
though variousmethods already exist for extracting communication

https://doi.org/10.1145/3225058.3225142
https://doi.org/10.1145/3225058.3225142

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Arya Mazaheri, Felix Wolf, and Ali Jannesari

patterns, they are either only directed toward distributed memory
applications [25, 30, 31] or they are not comprehensive enough to
be used for memory performance characterization [9, 19]. They
mainly produce a single communication pattern for the whole pro-
gram execution and neglect the dynamic behavior of a parallel
application. Additionally, they generate a simple communication
topology, failing to provide further insights how to improve data
locality.

In this paper, we introduce two new metrics called communica-
tion reuse distance (CRD) and communication reuse ratio (CRR). We
argue that these metrics together can provide a better understand-
ing and analysis of locality and scalability limitations related to
data sharing in multi-threaded applications without being tied to a
specific architecture. We created an inter-thread data dependence
profiler to extract communication events and their re-occurrences
during program execution for each code region, which yields com-
munication reuse patterns and distance profiles. The outputs are
then used for communication characterization and providing opti-
mization suggestions.

This paper makes the following major contributions:
• A memory-efficient dynamic inter-thread dependence pro-
filer capable of extracting communication events and distin-
guishing the first from further re-occurrences
• A new concept called communication reuse distance for
measuring the locality of data sharing in each parallel region
• Holistic platform-independent metrics for communication
characterization, optimization, and scalability analysis
• Suggestions of relevant performance optimizations. For ex-
ample, based on such suggestions we were able to improve
the performance of an application in the Rodinia benchmark
suite by 56%

In the remainder of the paper, we first explain the concept be-
hind communication in shared-memory systems and traditional
reuse distance analysis. Then, in Section 3 the main approach will
be discussed, followed by evaluation results in Section 4. A con-
cise review of related works is presented in Section 5. Finally, we
conclude the paper and discuss possible extensions in Section 6.

2 BACKGROUND
Communication in parallel programming models is either explicit
or implicit, depending on the way data is shared among threads.
Distributed-memory programming models like MPI follow ex-
plicit communication through send() and receive() API calls.
In shared-memory applications, exchanging data is implicit and it
is mostly accomplished through memory accesses to shared vari-
ables [9]. This implies different communication patterns [1] com-
pared with distributed-memory applications, which then bring
additional irregularity and complexity to data sharing.

2.1 Communication in shared memory systems
We define the concept of communication event as two memory ac-
cesses from different threads to the same memory address with a
specific pattern. Four different combinations of memory accesses
(RaR, RaW, WaR, and WaW) can take place, depending on whether
the data is read or written by each thread. However, only the RaW
pattern implicates true communication. In the other cases, no thread

Time

T1

T2

T3

W R W R R R R

R R R R R RW W W R

R W R R R

Figure 1: Communicatingmemory accesses to a singlemem-
ory location. Red box: true communication. Blue circle: com-
munication reuse.

can be declared as sender/receiver due to performing the same oper-
ation. In this case, one thread writes data (sender) which is then read
by another thread (receiver). To avoid redundant communication,
we only consider the first read after a write as a communication.
Other read accesses to the same location will be considered as reuse.
Figure 1 illustrates an example of distinguishing between true com-
munication and its reuse for a single memory being accessed by
three threads.

Identified communication events can be represented by a di-
rected acyclic graph (DAG), where each node represents a thread
and edges denote the number of communication events between
each pair of threads. Such a graph is often visualized as an adjacency
matrix, which is called communication matrix or communication
pattern [9, 22]. Each cell of the matrix contains the number of com-
munication events for a given pair of threads. The diagonal of the
matrix is always zero, as memory accesses by the same thread do
not imply any communication. Figure 3 shows a sample visualiza-
tion of a communication pattern, where darker cells indicate more
communication.

2.2 Reuse distance analysis
Reuse distance has long been a hardware-independent metric for
evaluating the data reuse in programs [12]. The reuse distance of a
given reference to element x is the number of distinct data elements
accessed between two consecutive uses of x . Data granularity could
be anything from pages, cache lines, memory words, or instructions.
Reuse distance is typically used for predicting the cache hit ratio of a
fully associative LRU cache with N one-word blocks, in which data
accesses with reuse distance of N or less would hit. The distribution
of reuse distance which is normally represented as a histogram is
called the locality signature and shows the overall program data
locality (Figure 5). A single run of such an analysis is able to model
data locality for all cache sizes and can later be used as a reference
for performance optimizations [2, 3, 12].

In multi-threaded applications, such analysis is not hardware-
independent anymore because threads interact with each other
and memory accesses might interleave [33]. Various researchers
proposed an alternative method for computing concurrent reuse
distance and private reuse distance for shared and private caches,
respectively [17, 29, 34]. Such methods are based on statistical
modeling methods and consider specific parallel regions, like loops,
due to the high code divergence of task parallelism. Furthermore,
these methods consider all memory accesses and do not provide
specific insights into communication events and synchronization.
In this paper, we address these issues and propose a locality-analysis
method to study communication in shared-memory applications.

Unveiling Thread Communication Bottlenecks Using Hardware-Independent Metrics ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Output Application
Instrumentation

Compile time Run time

So
ur

ce
 C

od
e

Static Analysis
(Region Annotation)

Thread
Pool

Communication Analysis

RaW, RaR
Pattern

Detection

Asym. Signature Memory

Read Signature

Write Signature

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

77

0

78

 264

890 89

65 0

521 34

015 53

8

0

64

 42

180 72

5 0

362 16

010 12
True Communication

Matrices
Communication Reuse

Matrices

Offline Analysis

CR
D

An
al

ys
is

CR
R

An
al

ys
is

Figure 2: The workflow of the proposed thread communication analysis.

3 APPROACH
Our proposed method for thread communication analysis consists
of three different phases: (1) compile-time, (2) runtime, and (3) off-
line post-analysis. Figure 2 depicts a high-level overview along
with the execution flow. In the following, we will explain the main
components.

3.1 Instrumentation and profiling
To obtain the required data for extracting communication pat-
terns and communication reuse distance, we extended the Dis-
coPoP dependence profiler [21]. DiscoPoP detects data dependences
among program instructions using LLVM code instrumentation.
We tweaked the instrumentation module in DiscoPoP to support
pthread and OpenMP parallelization models and instrumented each
memory access with its access type, memory address, executing
thread ID, region information, and variable size. We also annotated
each code region so that later on we could obtain fine-grained infor-
mation related to each region. The granularity of profiling is loop
and function regions in pthread applications and OpenMP regions
in OpenMP applications.

The main drawback of software profiling which prevents it from
being widely used is runtime and memory overhead. Furthermore,
pairwise dependence analysis takes a lot of time and resources to
detect inter-thread dependences. DiscoPoP has succeeded to over-
come this challenge by utilizing software signatures for recording
memory accesses history [22]. Signature memories are used for
determining conflicts between two sets: the set of read accesses
and the set of write accesses. In addition to being memory efficient,
these memories use hash functions with O (1) access time. This
enables our profiler to consume a low amount of memory with a
reasonable slowdown for a full program analysis. The overhead
could be further reduced by sampling the memory accesses. But
then, we might lose track of communication events. Therefore, we
opted for the full program analysis.

3.2 Communication pattern detection
We are interested in detecting both true communication events
(RaW) and their reuse (RaR). By true communication we denote the
first read by a thread of a value that has been written by another
thread. On the other hand, communication reuse relates to those
re-reads after the RaW event. We distinguish these two events from
each other because of the different effect that they have on cache
usage and memory performance. One critical assumption is that
the target application is data race free and synchronization points

(a) (b)

Figure 3: Comparison of (a) true communication and
(b) communication reuse of function INTERF() in wa-
ter_nsquared.

Algorithm 1 Communication extraction using asymmetric signa-
ture memory.

for all memory access a in the program do
if Type (a) is read access then

if a in write signature then
if a not in read signature & lastWrite .tid , a.tid then
add RAW dependence to comm. matrix;

else if lastWrite .tid , a.tid then
add RaR dependence to reuse matrix;

end if
else {a not in write signature}

insert a to read signature;
end if

else {a is write access}
clear out correspondent entry in read signature;
insert a to write signature;

end if
end for

are used correctly. Otherwise, the gathered information would be
misleading.

The pseudocode for detecting dependences between threads
with signature memories is shown in Algorithm 1. This algorithm
processes memory accesses in logical order to detect thread depen-
dences and it should be performed by different threads concurrently
in order to enable the parallel analysis. The dependences are identi-
fied during program execution using lock-free primitives without
spawning any new thread.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Arya Mazaheri, Felix Wolf, and Ali Jannesari

3D Communication Matrix

a a b c a +a +a b +a +b +b +a

T3

T2

T1

T0

T0 T1 T2 T3

c x

C
RD

 =
 0

C
RD

 =
 0

C
RD

 =
 1

CRD=1 CRD=0

C
RD

 =
 1

a

x a b 0

f a 0

a 0 g c

0 c b c

CRDT2,T3 = {0,0,1,1,1,0}
Memory

addresses

{
Consumer threads

Pr
od

uc
er

 th
re

ad
s

Figure 4: Computing CRD for a sample 3D communication
matrix. Dark cells denote reused communication.

In contrast to previous work on communication matrix detection,
our profiler generates three-dimensional communication matrices.
One for true communication and one for communication reuse.
The third dimension contains a sequence of memory addresses
shared between corresponding threads, which can later be used
for computing communication distances. Obviously, generating
two-dimensional communication matrices for the purpose of visu-
alization is also possible. Figure 3 shows the true communication
and communication reuse matrices extracted from a function in
the application water_nsquared side by side for comparison. The
discrepancy between communication reuse and true communica-
tion matrices is easily observable. In this specific case, we can spot
the threads which are reusing communication more than others.
Such observation could be the main source of information for data-
locality optimizations like thread/data mapping.

3.3 CRD: Communication reuse distance
Data locality analysis is an established method for evaluating the
efficiency of memory accesses within an application. The tradi-
tional reuse distance inspired us to propose communication reuse
distance (CRD) to analyze thread communication. CRD is a measure
of data locality for communication events between each pair of
threads, with shorter distances having a higher chance to represent
cache hits, and longer distances less so.

We created a tool to measure the CRD for each code region
(loops and functions in pthread and parallel regions in OpenMP).
The input consists of three-dimensional communication matrices,
including the sequence of true communication along with their
reuse. Communication reuse events are previously annotated with
a plus sign to distinguish them from true communication. Given
a communication trace for a pair of threads, we define the logical
access time of a communication as its index position in the trace,
counted from the first communication event. Thus, CRDi, j is the
number of distinct data elements accessed between two consecutive
usages of the same element among threads i and j.

Figure 4 shows an example of CRD analysis for a pair of threads.
In this example, we have two memory locations a and b shared
between threads T2 and T3. Computing the distance between the
reused communication on each memory location forms the CRD
values. Concatenating all CRDi, j together produces the final CRD.
Listing 2 shows our algorithm for measuring the CRD.

To provide further insights into the CRD and potential cache
misses related to communication events, we use a histogram. Ad-
ditionally, we propose two cutoff distances: (1) maximum cutoff
and (2) minimum cutoff. The maximum cutoff distance is defined

Algorithm 2 Computing communication reuse distance
CRD = [];
for all threadPair in commMatrix do

uniqueEvents = unique(threadPair);
for all element x in uniqueEvents do

indices = find occurrence indices of x and +x in threadPair;
distances = compute pairwise distance of indices
append distances to CRD

end for
end for

M
in

 C
ut

of
f

M
ax

 C
ut

of
f

Figure 5: A sample CRD histogram. Max andmin cutoffs are
shown depending on the cache size.

as the total size of cache available in the target system, whereas
the minimum cutoff distance is defined as the cache size minus the
total size of non-sharing variables in the application. Depending
on the value of CRD, the following conditions explain the behavior
of the cache:
• CRD[x > Max Cutoff] =⇒ Definite capacity miss
• CRD[Min Cutoff < x < Max Cutoff] =⇒ Probable capacity
miss
• CRD[x < Min Cutoff] =⇒ No capacity miss

Figure 5 shows a sample histogram, where most of the commu-
nication reuse distances are below the minimum cutoff. Thus, they
would not suffer from cache capacity misses. A fraction of reuse
events fall between the minimum and maximum cutoffs and there-
fore the chance of data locality issue exists. Based on this diagram,
one can easily evaluate the efficiency of communication reuse and
apply further optimizations and data structure modifications to
prepare the application for the target platform.

3.4 CRR: Communication reuse ratio matrix
We introduce the concept of communication reuse ratio (CRR) as
a matrix similar to a normal communication matrix, where each
cell contains the ratio of reuse to true communication instead. To
obtain such a matrix, we first extract both true communication and
reuse matrices and then we use element-wise division to generate
the CRR matrix. The CRR matrix of a program region provides a
good overall understanding of the amount of reuse compared to
total communication. Hence, those threads which are not reusing
communication or are not mainly involved in repeated communi-
cation events could be easily identified. Our empirical experiments
showed that optimized applications have more homogeneous and
balanced CRR matrices.

Unveiling Thread Communication Bottlenecks Using Hardware-Independent Metrics ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Code opt. Run-time opt.

Data-affinity opt.
Array blocking, Loop reordering,
Loop fusion

Data affinity scheduling

Thread-affinity opt. - Thread mapping (various policies)

Table 1: The list of optimization types along with some ex-
amples categorized into coding and runtime optimizations.

Inspired by Diener et al. [8], we propose two quantitative met-
rics called homogeneity and balance to characterize and compare
CRR matrices. Such comparison guides a programmer to reach an
optimal implementation.

3.4.1 Homogeneity. Accessing the outcome of a communication
event multiple times is more desired than a long sequence of true
communication. Thus, we would like to see homogeneous commu-
nication reuse over all threads rather than some threads having
no communication reuse at all. We define communication reuse ho-
mogeneity as in Equation (1), where T denotes the total number
of threads and var denotes the variance function. For each row of
the CRR matrix, we compute the variance and finally compute the
average of variances over all threads. A lower value yields more
homogeneous communication reuse.

Homoдeneity =

∑T
i=1var (CRR[i])

T
(1)

3.4.2 Balance. It is important to determine whether some
threads have more communication reuse ratio than others. Such
information can be used for a more optimized thread placement.
To evaluate this property, we introduce a metric called communica-
tion reuse balance. We first calculate the total reuse ratio for each
row in the CRR matrix (CommReuseRow), where each element i
of CommReuseRow contains the sum of all communication reuse
ratios for thread i . Similar to computing load balance, we compute
the communication reuse balance as in Equation (2). We seek to
have a lower value to have a more balanced CRR matrix.

Balance = (
max (CommReuseRow[1...T])∑T

i=1
CommReuseRow[i]

T

− 1) × 100% (2)

3.5 Communication bottleneck analysis
Both communication pattern and CRD analysis are useful meth-
ods for identifying bottlenecks and optimizing programs. However,
they aim at different aspects of communication issues. CRD analysis
informs a programmer as to which region’s communication is likely
to trigger cache misses, while communication and CRR matrices
report which threads are likely to cause communication and reuse.
The combination of CRD and CRR analyses along with homogene-
ity and balance metrics can provide an architecture-independent
instrument suitable for a targeted optimization. For instance, if CRR
identifies several threads as communicating or reusing the commu-
nication among each other, the CRD analysis can detect whether
this communication would be problematic or not. Furthermore,
when CRD is high, data structure and data access optimizations
are commonly suggested and if CRR metrics are high, it is recom-
mended to apply thread-affinity optimizations. Table 1 contains
the optimization categories which our method is able to suggest.
For each category, a list of potential optimization methods is also
provided.

4 EXPERIMENTAL RESULTS
We conducted a range of experiments to measure the effectiveness
of the proposed method. The testbed is a server with two 8-core
Intel Xeon E5-2650 processors at 2 GHz and 32 GB memory, run-
ning Ubuntu 16.04. We tested the benchmarks with 16 threads and
various input sizes, with an average of five independent executions
to ensure the correctness of the results.

Previous approaches [1, 23, 30, 31] often rely on program simu-
lation and sandboxing to extract the communication patterns. This
is very time consuming and potentially takes a lot of space to store
intermediate data such as memory traces. However, our profiler is
able to detect communication patterns during execution with an
average slowdown of 110×while occupying less than 1 GB memory
for allocating software signatures. The overhead largely depends
on the inherent communication behavior of the application. The
more communication and memory access it performs, the more
slowdown will be caused. However, we believe that the level of
detail it provides justifies the overhead.

4.1 Communication analysis validation
To demonstrate the validity of the proposed metrics, we looked for
multi-threaded applications which have two implementations with
different levels of optimization. We found lu, ocean, and water from
the SPLASH benchmark suite having this property. We analyzed
these three applications (in total six programs) using our method to
show the effect of communication locality issues and code optimiza-
tions on communication reuse metrics. For each application, we
present the results in a tabular format (Figures 6-8), which includes
relevant diagrams for the most communication-intensive functions.
Each row relates to a function and contains a CRD histogram and
two CRR matrices, where the first matrix is for the non-optimized
version and the second for the optimized version. Each CRR dia-
gram is annotated with two numbers at the top which represent
homogeneity and balance.

4.1.1 lu. lu_ncb and lu_cb are two different versions, one with
a non-contiguous and one with a contiguous block implementation,
respectively. lu_ncb uses a one-dimensional array in which the
matrix to be factored is stored. On the other hand, lu_cb uses a
two-dimensional array in which all data points in a block (touched
by the same processor) are allocated contiguously and locally.

Figure 6 reports the analysis results for communication-intensive
functions. The CRD histogram for function bmod shows that the
contiguous version has a lower distance, which can lead to less
cache capacity misses. For validation, we analyzed the cache miss
rate using Cachegrind. Detailed cache miss ratios reported for each
function in Figure 6 show that the CRD histograms comply with
the miss rates. Balance and homogeneity metrics shown on top
of the CRR matrices denote higher communication imbalance in
the non-contiguous version. However, the optimization increased
the heterogeneity. We believe that the balance of communication
compensated the heterogeneity. In function daxpy, the number
of reuse in the contiguous version is much higher than the non-
contiguous version. However, the distance of communication is
similar. A noticeable change is the homogeneity of communication
which improved in the contiguous version. In the last function, we
do not see any big improvement, as the CRD histogram and CRR

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Arya Mazaheri, Felix Wolf, and Ali Jannesari

CRD CRR (lu_ncb) CRR (lu_cb) LL Cache Miss
Ratio

bmod()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K

700K

800K

900K
N

u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu-ncb
lu-cb

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 110 CRB: 304

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 696 CRB: 19

ncb: 0.65%
cb: 0.38%

daxpy()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu-ncb
lu-cb

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 318 CRB: 74

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 133 CRB: 90

ncb: 0.09%
cb: 0.12%

lu()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

200

400

600

800

1K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu-ncb
lu-cb

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14
P
ro

d
u
ce

r
T
h
re

a
d

CRH: 271 CRB: 149

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 238 CRB: 35

ncb: 0.01%
cb: 0.007%

Figure 6: Communication analysis results for lu_ncb and lu_cb.

matrices follow the same pattern. Overall, our fine-grained analysis
was able to report slightly better results for the optimized version.
Such observation was not made by Biena et al. [4], who reported
that the cache behavior of both versions is similar.

4.1.2 ocean. The two versions of this benchmark solve the same
problem but use a different memory layout. The non-contiguous im-
plementation uses two-dimensional arrays, which avoids allocating
contiguous partitions. The contiguous version is implemented with
three-dimensional arrays. The first dimension specifies the proces-
sor which owns the partition so that partitions can be allocated
contiguously [4].

Figure 7 shows the most communication-intensive functions of
both ocean_ncp and ocean_cp. The CRD histograms of functions
laplacalc and copy_red clearly show much higher communi-
cation distance for the contiguous implementation, which is in
line with the reported cache misses. The CRR matrices of both
versions of function laplacalc show a similar pattern, while the
non-contiguous version seems to be more homogeneous. In this
case, the CRD profile is more helpful in finding the source of the
locality issue. Some functions, like jacobcalc, do not seem to be
affected a lot by the optimization, despite having a high cache miss
rate and communication insensitivity. We conclude that just by
focusing on the hotspot regions, we cannot effectively apply opti-
mizations. We investigated the reason for high CRD distance and
poor CRR metrics for the contiguous version and we found out that
it can be attributed to the lower number of shared writes at the cost
of a much higher miss rate on multi-core devices [4]. Our analysis
successfully identified the region where the optimization failed to
perform better than the straightforward implementation.

4.1.3 water. water_nsquared and water_spatial are a non-
optimized and an optimized implementation, respectively. In wa-
ter_nsquared, the forces and potentials are computed using an
O (n2) algorithm [32]. water_spatial uses a more efficient algorithm
with a computational complexity of O (n). It imposes a uniform
three-dimensional grid of cells on the problem domain. Therefore,
processors which own a cell will only access neighboring cells.

Figure 8 clearly shows the superiority of the spatial version over
non-spatial implementation. All CRD histograms for the represen-
tative functions show lower communication reuse distance for the
spatial version. Our cache analysis results also show that the cache
miss ratio in the spatial version is much lower than in the nsquared
alternative. The CRR matrices for the spatial implementation are
also more regular and homogeneous. The CRR matrices of function
PREDIC are a good example for demonstrating that relying solely
on CRR is not enough for analyzing the communication behavior.
There is not much difference between these two CRRs. However,
the CRD diagram shows a shorter distance for the spatial version.

4.2 Communication scalability analysis
Although the proposed metrics are hardware agnostic and do not
change on different systems, the input size affects the metrics. We
observed that the amount of change, either the amount of reuse
or distance values, can be used for analyzing the scalability of a
given application with larger input sizes. This is not only helpful
for understanding the requirements of the application but it can
also be used for selecting the region which suffers from increased
communication overhead.

Unveiling Thread Communication Bottlenecks Using Hardware-Independent Metrics ICPP 2018, August 13–16, 2018, Eugene, OR, USA

CRD CRR (ocean_ncp) CRR (ocean_cp) LL Cache Miss
Ratio

laplacalc()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s
ocean-ncp
ocean-cp

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 58 CRB: 63

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 1084 CRB: 8

ncp: 3.70%
cp: 6.25%

jacobcalc()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

500K

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

4.5M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

ocean-ncp
ocean-cp

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 919 CRB: 9

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 945 CRB: 10

ncp: 2.19%
cp: 2.39%

copy_red()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

10K

20K

30K

40K

50K

60K

70K

80K

90K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

ocean-cp

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14
P
ro

d
u
ce

r
T
h
re

a
d

CRH: nan CRB: nan

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 84 CRB: 138

ncp: N/A
cp: 0.09%

Figure 7: Communication analysis results for ocean_ncp and ocean_cp.

CRD CRR (water_nsquared) CRR (water_spatial) LL Cache Miss
Ratio

INTERF()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

1.0M

2.0M

3.0M

4.0M

5.0M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

water-nsquared
water-spatial

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 1377 CRB: 28

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 994 CRB: 8

nsq: 0.24%
spat: 0.02%

POTENG()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

200K

400K

600K

800K

1.0M

1.2M

1.4M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

water-nsquared
water-spatial

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 2319 CRB: 7

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 1002 CRB: 7

nsq: 0.16%
spat: 0.007%

PREDIC()

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

20K

40K

60K

80K

100K

120K

140K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

water-nsquared
water-spatial

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 355 CRB: 159

0 4 8 12
Consumer Thread

0

2

4

6

8

10

12

14

P
ro

d
u
ce

r
T
h
re

a
d

CRH: 362 CRB: 275

nsq: 1.45%
spat: 0.76%

Figure 8: Communication analysis results for water_nsquared and water_spatial.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Arya Mazaheri, Felix Wolf, and Ali Jannesari

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K

700K

800K

900K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

bmod

luncb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

50K

100K

150K

200K

250K

300K

350K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

daxpy

luncb-simdev
luncb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu

luncb-simdev
luncb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

bmod

lucb-simsmall

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

daxpy

lucb-simsmall
lucb-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

200

400

600

800

1K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

lu

lucb-simsmall
lucb-simdev

(a) lu

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

10K

20K

30K

40K

50K

60K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

rescal

oceanncp-simsmall
oceanncp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

500K

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

4.5M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

jacobcalc

oceanncp-simsmall
oceanncp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

20K

40K

60K

80K

100K

120K

140K

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

rescal

oceancp-simsmall
oceancp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

500K

1.0M

1.5M

2.0M

2.5M

N
u
m

b
e
r

o
f

re
fe

re
n
ce

s

jacobcalc

oceancp-simsmall
oceancp-simdev

0 2 4 6 8 10 12 14 16
Occurence distance (log scale)

0

100K

200K

300K

400K

500K

600K
N

u
m

b
e
r

o
f

re
fe

re
n
ce

s
laplacalc

oceancp-simsmall
oceancp-simdev

(b) ocean

(c) water
Figure 9: The effect of two input sizes (simdev and simsmall) on CRD histograms for the applications lu, ocean, and water.

Unveiling Thread Communication Bottlenecks Using Hardware-Independent Metrics ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Before optimization after optimization
Benchmark Bottleneck region CRD H B CRD H B Data-affinity opt. Thread-affinity opt. Speedup
Back Propagation backprop.c: L321 - L327 5 84 21 2 54 14 Loop reordering, Array blocking - 15%

Needleman-Wunsch needle.cpp: L161 - 167, L176-L181 10 278 139 5 239 45
Data affinity (32 OMP chunk size),
Array blocking

- 29%

SRAD main.c: L254 - L290, L296-L320 13 1124 153 4 981 89 Loop reordering Thread mapping 35%

Particle filter
ex_particle_OPENMP_seq.c:
L488 - L495, L480-L482

8 321 89 3 384 121 Loop fusion - 56%

Streamcluster streamcluster_omp.cpp: L540 - L548 3 1409 6 - - - - Thread mapping 19%

Table 2: The detailed results of communication bottleneck analysis for a subset of the Rodinia [6] benchmarks. Each metric
is reported twice. Once for the non-optimized and once for the optimized version. H and B denote homogeneity and balance,
respectively. Highlighted bold numbers indicate high metric values, instructing to apply relevant optimization.

Figure 9 demonstrates the effect of two input sizes (simdev and
simsmall) on the CRD histograms of our test cases. The results
of both versions of lu show that only function bmod is affected
by a larger input size. Other diagrams show that a larger input
size increases both the number of communication events and their
distances. Hence, there is a risk of higher cache misses related to
communication after increasing the input size. In the ocean bench-
mark, we observed a similar behavior. The results show that the
optimized version still suffers from high communication overhead.
In contrast to lu and ocean, water_spatial shows better scalability, as
its CRD profile does not seem to be affected a lot. This clearly shows
that the optimized algorithm performs better for larger inputs.

4.3 Communication bottleneck analysis
We used the Rodinia benchmark suite [6] to show the effectiveness
of the proposed metrics in finding communication bottlenecks. We
succeeded to detect bottlenecks in the five benchmarks of Rodinia
listed in Table 2. For each application, the problematic code regions
are reported along with the metric results before and after optimiza-
tion. High CRD value demands to apply data locality optimizations,
which are mostly done by code optimizations like array blocking
and loop reordering. Conversely, high homogeneity and balance
values are a hint to apply runtime thread-affinity optimizations.

Computing the minimum cutoff distance for each application
identified high median CRD values in the benchmarks Backpropa-
gation, Needleman-Wunsch, SRAD, and Particle Filter. High CRD
indicates potential communication locality issues, which we tried to
address with code optimizations and runtime OpenMP scheduling.
These optimizations lowered the communication reuse distance
and led to a considerable amount of speedup. In Streamcluster and
SRAD, we noted high communication reuse heterogeneity among
threads, which calls for locality-aware threadmapping optimization.
We could not measure the effect of thread mapping on our metrics,
because our analysis currently focuses on the data and thread map-
ping just alters the thread placement. However, a notable speedup
was achieved just by optimized thread mapping.

Our analysis results provided optimization insights, both related
to data and threads, which improved the runtime performance by
up to 56%. To the best of our knowledge, other methods do not
provide such detailed information on program communication for
selecting the right type of optimization. Our method can be used
in companion with other performance debugging tools to extend
the scope of performance analysis.

5 RELATEDWORK
To the best of our knowledge, no similar paper is published on eval-
uating the locality of communication in shared memory systems.
Gprof [16] and Threadspotter [13] are two well-known methods for
optimization suggestion, yet they are unable to produce compara-
ble results. Profiling multi-threaded applications using Threadspot-
ter will primarily generate results only valid for a single thread
(master). Furthermore, these methods do not necessarily focus on
communication bottlenecks, which is the main target of this pa-
per. Nevertheless, we discuss previous efforts on communication
pattern detection and multi-core reuse distance below.

Various methods have been proposed for analyzing the com-
munication pattern in parallel applications. Most of them target
distributed-memory applications [14, 15, 18, 20, 25] though, which
makes the communication analysis straightforward but cannot be
extended to shared-memory programs. Simulation-based methods
try to simulate the system by logging and recording every change
during program execution [1, 23]. This is impractical as it implies
high runtime overhead and produces extra large output files of more
than 100 GB for a moderate input size [1]. On the contrary, our
method uses a memory efficient profiler. Other studies [7, 10, 11]
utilized Intel Pin to extract communication patterns and used them
for thread and data mapping. However, their output is a single com-
munication matrix. Thus, they are not able to detect the dynamic
behavior of an application in different code regions.

Reuse distance analysis has been studied extensively for single-
core architectures [12, 35]. However, due to nondeterministic run-
time scheduling of threads in multi-threaded applications, alter-
native methods have been introduced to preserve hardware in-
dependence [17, 24, 28, 29, 34]. Recent methods [33] are based on
statistical models to predict the concurrent reuse distance. However,
this method only works for specific regions like loops. Furthermore,
none of these methods can be used to analyze communication
events. Our method combines communication reuse distance with
thread communication analysis, which yields more comprehensive
results.

Two studies [19, 27] tried to combine reuse distance analysis with
other metrics. Rane et al. [27] proposed a tool comprised of different
analyses and metrics, such as reuse distance analysis, cycles per
access, hit ratios and access strides to investigate data structures
and find out their bottlenecks. However, they only focus on data
structures and neglect the effect of threads on communication.
Another study [19] introduces architecture-independent metrics,
including multi-core reuse distance and communication analysis

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Arya Mazaheri, Felix Wolf, and Ali Jannesari

to perform performance analysis. However, no additional insights
into thread communication are provided.

6 CONCLUSION AND OUTLOOK
Platform-independent communication metrics enable the analysis
of parallel programs in terms of their inherent data communica-
tion without being tied to a particular hardware. In this paper, we
propose a set of metrics to identify data communication bottle-
necks. Communication reuse distance (CRD) reflects the effect of
communication on the cache, while the communication reuse ra-
tio (CRR) matrix sheds light on the amount of reuse after a true
communication between threads. With the help of two quantita-
tive metrics, the homogeneity and balance of CRR matrices can be
easily evaluated. We showed that our method is not only able to
detect communication bottlenecks in different code regions, but
also can help programmers apply a suitable type of optimization.
Additionally, we demonstrated that such analysis is helpful for de-
termining the input scalability of a given application with regard
to its cache usage. As a next step, we plan to compute the proba-
bility of cache misses between the minimum and maximum cutoff
distances. Moreover, we aim at reducing the profiling overhead via
sampling.

Acknowledgment. This research has been supported by the Klaus
Tschira Foundation, the Hessian LOEWE initiative within the
Software-Factory 4.0 project, German Academic Exchange Service
(DAAD), the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IH16008D, and the US Department of
Energy under Grant No. DE-SC0015524. We thank our colleagues
Mohammad Norouzi and Dr. Alexandru Calotoiu for their invalu-
able feedback and insights.

REFERENCES
[1] Nick Barrow-Williams, Christian Fensch, and Simon Moore. 2009. A communi-

cation characterisation of Splash-2 and Parsec. In International Symposium on
Workload Characterization (IISWC). IEEE, 86–97.

[2] Kristof Beyls and Erik D’Hollander. 2001. Reuse distance as a metric for cache
behavior. In IASTEDConference on Parallel and Distributed Computing and systems,
Vol. 14. 350–360.

[3] Kristof Beyls and Erik H D’Hollander. 2005. Generating cache hints for improved
program efficiency. Journal of Systems Architecture 51, 4 (2005), 223–250.

[4] Christian Bienia, Sanjeev Kumar, and Kai Li. 2008. PARSEC vs. SPLASH-2:
A quantitative comparison of two multithreaded benchmark suites on chip-
multiprocessors. In International Symposium on Workload Characterization
(IISWC). IEEE, 47–56.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
International Conference on Parallel Architectures and Compilation Techniques
(PACT). ACM, 72–81.

[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In International Symposium on Workload Characterization (IISWC).
IEEE, 44–54.

[7] Eduardo HM Cruz, Matthias Diener, Laércio L Pilla, and Philippe OA Navaux.
2015. An efficient algorithm for communication-based taskmapping. In Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP). IEEE, 207–214.

[8] Matthias Diener, Eduardo HM Cruz, Marco AZ Alves, Mohammad S Alhakeem,
Philippe OA Navaux, and Hans-Ulrich Heiß. 2015. Locality and balance for
communication-aware thread mapping in multicore systems. In European Con-
ference on Parallel Processing. Springer, 196–208.

[9] Matthias Diener, Eduardo HM Cruz, Marco AZ Alves, and Philippe OA Navaux.
2016. Communication in shared memory: Concepts, definitions, and efficient
detection. In 24th Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP). IEEE, 151–158.

[10] Matthias Diener, Eduardo HM Cruz, and Philippe OA Navaux. 2015. Locality
vs. balance: Exploring data mapping policies on NUMA systems. In Parallel,
Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro International
Conference on. IEEE, 9–16.

[11] Matthias Diener, Eduardo HM Cruz, Laércio L Pilla, Fabrice Dupros, and
Philippe OA Navaux. 2015. Characterizing communication and page usage
of parallel applications for thread and data mapping. Performance Evaluation 88
(2015), 18–36.

[12] Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through
reuse distance analysis. In ACM SIGPLAN Notices, Vol. 38. ACM, 245–257.

[13] David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling of LRU
caches. In International Symposium on Performance Analysis of Systems & Software
(ISPASS). IEEE, 55–65.

[14] Ahmad Faraj and Xin Yuan. 2002. Communication characteristics in the NAS
parallel benchmarks. In IASTED PDCS. 724–729.

[15] German Florez, Zhen Liu, Susan M Bridges, Anthony Skjellum, and Rayford B
Vaughn. 2005. Lightweight monitoring of mpi programs in real time. Concurrency
and Computation: Practice and Experience 17, 13 (2005), 1547–1578.

[16] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A call
graph execution profiler. In ACM Sigplan Notices, Vol. 17. ACM, 120–126.

[17] Yunlian Jiang, Eddy Zhang, Kai Tian, and Xipeng Shen. 2010. Is reuse distance
applicable to data locality analysis on chip multiprocessors?. In Compiler Con-
struction. Springer, 264–282.

[18] Shoaib Kamil, John Shalf, Leonid Oliker, and David Skinner. 2005. Understanding
ultra-scale application communication requirements. In International Symposium
on Workload Characterization (IISWC). IEEE, 178–187.

[19] Milind Kulkarni, Vijay Pai, and Derek Schuff. 2011. Towards architecture indepen-
dent metrics for multicore performance analysis. ACM SIGMETRICS Performance
Evaluation Review 38, 3 (2011), 10–14.

[20] Ingyu Lee. 2009. Characterizing communication patterns of NAS-MPI benchmark
programs. In IEEE Southeastcon 2009. IEEE, 158–163.

[21] Zhen Li, Ali Jannesari, and Felix Wolf. 2015. An Efficient Data-Dependence
Profiler for Sequential and Parallel Programs. In 29th IEEE International Parallel
& Distributed Processing Symposium (IPDPS).

[22] Arya Mazaheri, Ali Jannesari, Abdolreza Mirzaei, and Felix Wolf. 2015. Charac-
terizing Loop-Level Communication Patterns in Shared Memory. In 44th Interna-
tional Conference on Parallel Processing (ICPP). IEEE, 759–768.

[23] Eduardo Henrique Molina da Cruz, Zanata Alves, Alexandre Carissimi, Philippe
Olivier Alexandre Navaux, Christiane Pousa Ribeiro, and J Mehaut. 2011. Using
memory access traces to map threads and data on hierarchical multi-core plat-
forms. In International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 551–558.

[24] Qingpeng Niu, James Dinan, Qingda Lu, and P Sadayappan. 2012. PARDA: A
fast parallel reuse distance analysis algorithm. In 26th International Parallel &
Distributed Processing Symposium (IPDPS). IEEE, 1284–1294.

[25] Sean Peisert. 2010. Fingerprinting communication and computation on HPC
machines. Lawrence Berkeley National Laboratory (2010).

[26] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. 2012. Parcae: a system
for flexible parallel execution. ACM SIGPLAN Notices 47, 6 (2012), 133–144.

[27] Ashay Rane and James Browne. 2011. Performance optimization of data structures
using memory access characterization. In Cluster Computing (CLUSTER), 2011
IEEE International Conference on. IEEE, 570–574.

[28] Derek L Schuff, Milind Kulkarni, and Vijay S Pai. 2010. Accelerating multicore
reuse distance analysis with sampling and parallelization. In 19th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
53–63.

[29] Derek L Schuff, Benjamin S Parsons, and Vijay S Pai. 2010. Multicore-aware reuse
distance analysis. In International Parallel & Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 1–8.

[30] Sean Whalen, Sophie Engle, Sean Peisert, and Matt Bishop. 2012. Network-
theoretic classification of parallel computation patterns. International Journal of
High Performance Computing Applications (2012).

[31] Sean Whalen, Sean Peisert, and Matt Bishop. 2013. Multiclass classification of
distributed memory parallel computations. Pattern Recognition Letters 34, 3 (2013),
322–329.

[32] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. 1995. The SPLASH-2 programs: Characterization and methodolog-
ical considerations. In ACM SIGARCH Computer Architecture News, Vol. 23. ACM,
24–36.

[33] Meng-Ju Wu and Donald Yeung. 2013. Efficient reuse distance analysis of multi-
core scaling for loop-based parallel programs. ACM Transactions on Computer
Systems (TOCS) 31, 1 (2013).

[34] Meng-Ju Wu, Minshu Zhao, and Donald Yeung. 2013. Studying multicore proces-
sor scaling via reuse distance analysis. In ACM SIGARCH Computer Architecture
News, Vol. 41. ACM, 499–510.

[35] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality analysis
using reuse distance. ACM Transactions on Programming Languages and Systems
(TOPLAS) 31, 6 (2009).

	Abstract
	1 Introduction
	2 Background
	2.1 Communication in shared memory systems
	2.2 Reuse distance analysis

	3 Approach
	3.1 Instrumentation and profiling
	3.2 Communication pattern detection
	3.3 CRD: Communication reuse distance
	3.4 CRR: Communication reuse ratio matrix
	3.5 Communication bottleneck analysis

	4 Experimental Results
	4.1 Communication analysis validation
	4.2 Communication scalability analysis
	4.3 Communication bottleneck analysis

	5 Related Work
	6 Conclusion and Outlook
	References

