
Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A scalable algorithm for simulating the structural plasticity of the
brain
Sebastian Rinke a,*, Markus Butz-Ostendorf b, Marc-André Hermanns c, Mikaël Naveau d,1,
Felix Wolf a
a Technische Universität Darmstadt, Germany
b Biomax Informatics AG, Germany
c Jülich Aachen Research Alliance, Section JARA-HPC, Forschungszentrum Jülich, Germany
d Simulation Laboratory Neuroscience, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Germany

h i g h l i g h t s

• A scalable algorithm from particle physics can be adapted to solve large-scale problems in neuroscience.
• The approximation underlying the algorithm does not adversely affect the quality of the results.
• The scalable algorithm can simulate structural plasticity in the brain with 109 neurons.
• Performance extrapolations suggest that the algorithm could in principle simulate neuron counts as found in the human brain (1011).

a r t i c l e i n f o

Article history:
Received 24 April 2017
Received in revised form 20 September
2017
Accepted 30 November 2017
Available online xxxx

Keywords:
Brain
Connectome
Dynamics
Simulation
Barnes–Hut
Large-scale

a b s t r a c t

The neural network in the brain is not hard-wired. Even in the mature brain, new connections between
neurons are formed and existing ones are deleted,which is called structural plasticity. The dynamics of the
connectome is key to understanding how learning,memory, and healing after lesions such as strokework.
However, with current experimental techniques even the creation of an exact static connectivity map,
which is required for various brain simulations, is very difficult. One alternative is to use network models
to simulate the evolution of synapses between neurons based on their specified activity targets. This is
particularly useful as experimental measurements of the spiking frequency of neurons are more easily
accessible and reliable than biological connectivity data. The Model of Structural Plasticity (MSP) by Butz
and van Ooyen is an example of this approach. However, to predict which neurons connect to each other,
the current MSPmodel computes probabilities for all pairs of neurons, resulting in a complexity O(n2). To
enable large-scale simulations with millions of neurons and beyond, this quadratic term is prohibitive.
Inspired by hierarchical methods for solving n-body problems in particle physics, we propose a scalable
approximation algorithm for MSP that reduces the complexity to O(n log2n) without any notable impact
on the quality of the results.We show that anMPI-basedparallel implementation of our scalable algorithm
can simulate the structural plasticity of up to 109 neurons—four orders of magnitudemore than the naïve
O(n2) version.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The brain is not as hard-wired as traditionally thought. Neurons
are connected to each other in a dynamically changing biological
network of synapses, also known as the connectome. Even in the
mature brain, new connections between neurons (i.e., synapses)
are continuously created and existing ones are deleted, which can

* Corresponding author.
E-mail addresses: rinke@cs.tu-darmstadt.de (S. Rinke),

wolf@cs.tu-darmstadt.de (F. Wolf).
1 Present affiliation: UNICAEN, CNRS, CHU, UMS3408, GIP CYCERON, France.

be described as structural plasticity. Studying the dynamics of
connectivity in the brain is fundamental to understanding how
learning, memory, and healing after lesions in the brain such as
strokeswork. Unfortunately, accurately observing the connectome
and its evolution empirically is very hard. Limiting factors are, for
example, the resolution of sensors and restricted access to the
brain areas of interest [14]. Thus, even creating an exact connec-
tivity map of a small region of the brain is extremely challenging.
However, it is exactly such a connectivitymap that is needed as the
basis of state-of-the-art brain simulations [2,16].

An alternative to acquiring biological connectivity data is to de-
termine the connections between neurons using a networkmodel.

https://doi.org/10.1016/j.jpdc.2017.11.019
0743-7315/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2017.11.019
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:rinke@cs.tu-darmstadt.de
mailto:wolf@cs.tu-darmstadt.de
https://doi.org/10.1016/j.jpdc.2017.11.019

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

2 S. Rinke et al. / J. Parallel Distrib. Comput. () –

For example, when the spiking frequency of a neuron is too low, it
starts to form more synapses, with the aim of increasing its elec-
trical activity. Conversely, synapses are deletedwhen the electrical
activity of a participating neuron is too high. One big advantage of
the spiking frequency is that it is easier to observe experimentally
than the connectome itself. In addition to generating static con-
nectivity maps, such a network model can also help investigate
the dynamics of connectivity, such as (i) structural plasticity in
a cell-type-dependent manner [13], (ii) the creation of structures
due to external stimuli [19], and (iii) functional reorganization and
restructuring after a lesion [23,34].

The Model of Structural Plasticity (MSP) by Butz and van
Ooyen [9] is a network model with activity-dependent dynamic
creation and deletion of synapses. In traditional models, connec-
tivity is fixed while plasticity merely arises from changes in the
strength of existing synapses, typically modeled as weight factors.
MSP, in contrast, is suitable for simulating the reorganization of the
connectome. Instead of representing a synapse by a weight factor,
MSP models a synapse as a connection between an axonal ‘‘plug’’
and a dendritic ‘‘socket’’. These synaptic elements grow and shrink
independently on each neuron. When an axonal element of one
neuron connects to the dendritic element of another neuron, a new
synapse is formed. Conversely, when a synaptic element bound
in a synapse retracts, the corresponding synapse is removed. The
governing idea of the model is that plasticity in cortical networks
is driven by the need of individual neurons to homeostatically
maintain their average electrical activity. Consequently, neurons
form new synaptic elements if their activity is below a desired
threshold, and remove elements if it exceeds the threshold. As
empirical observation shows, MSP lets networks of neurons ro-
bustly grow towards a stable homeostatic equilibrium of activity
and connectivity. It was shown that this structural-plasticity rule
can account for network rewiring after a partial loss of external
input (deafferentation) [9]. The simulation results exhibited strong
similarities with biological data from network rewiring in the
primary visual cortex after focal retinal lesions [23,34]. To make
MSP available to a larger community and combine its capabilities
with the features of a state-of-the-art brain simulator, a simplified
version of the model was recently integrated [14] into the NEST
neural network simulator [16].

In contrast to the original MSP, this simplified version does
not consider the different distances between neurons for synapse
creation, which makes it less computationally demanding at the
expense of accuracy. The largest published structural plasticity
simulations of the simplified MSP in NEST contained 105 neu-
rons [14]. However, the computational complexity of the original
MSP in terms of the number of neurons seriously limits its scala-
bility. To decide which pairs of axonal and dendritic elements will
form a synapse, MSP follows a probabilistic approach. It considers
all pairs of neuronswith a vacant axonal element on one side of the
pair and a vacant dendritic element on the other, and calculates the
probability of them establishing a connection between them. The
shorter their distance, the higher this probability becomes. Given
that every neuron creates a certain amount of both axonal and
dendritic elements (limited by a constant due to biological restric-
tions), ultimately all pairs of neurons have to be considered. Thus,
the cost grows quadratically (O(n2)) with the number of neurons.
However, as soon as we start investigating the connectivity across
individual brain regions and the number of neurons involved rises
above ahundred thousand, this cost becomesprohibitive. Note that
the human brain has about 1011 neurons [3]. For this reason, we
urgently need a scalable algorithm for MSP.

A similar challenge arises in n-body problems, where pairs of
bodies have to be considered for force calculations. To improve the
scalability of the force calculations, powerful approximationmeth-
ods have been developed [4,18]. They are based on the observation

that particles sufficiently far away from a target particle do not
need to be considered individually. It is our goal to leverage their
underlying ideas and adapt them to the problem of structural brain
plasticity. The most influential algorithms are Barnes–Hut [4] and
the Fast Multipole Method [18] (FMM). However, they cannot be
applied to our problem directly. They calculate the force exerted
on (Barnes–Hut) or the potential of (FMM) each body, whereas
we need to select pairs of neurons (bodies) for synapse creation.
Moreover, n-body simulations continuously subject each particle
to force calculations. In the brain, after an initial network creation
phase, only a small subset of neurons exhibits vacant axonal ele-
ments. Thus, vacant dendrites only have to be found for this smaller
subset.

In this paper, we present a scalable approximation method for
simulating structural plasticity based on MSP. Our algorithm, an
adaptation of Barnes–Hut, reduces the complexity of MSP from
O(n2) to O(n log2n). We further show that the approximations of
our method are still precise enough to resemble neural networks
created by the originalMSP. AnMPI-basedparallel implementation
of our scalable algorithm is the first to enable the model-based
creation of neural networks consisting of up to 109 neurons—with
the potential even for far greater problem sizes.

This work is an extension of our recent previous work [29].
Notable enhancements include the distribution of the octree across
the processes, which makes the implementation of our algorithm
far more scalable. In comparison to our previous work, the new
implementation substantially reduces the memory consumption
per process, which allows the simulation size to be increased
from 107 to 109 neurons. Finally, we use performance models to
extrapolate the execution times to the full scale of the human brain
(1011), showing that simulating structural plasticity at this size is a
realistic mid-term target. Overall, this paper makes the following
contributions:

• The insight that a scalable algorithm from particle physics
can be adapted to solve large-scale problems in neuro-
science.

• The actual adaptation, which provides a scalable solution
for the simulation of structural plasticity in the brain with
a time complexity of O(n log2n) instead of O(n2).

• The evidence that the scalable algorithm can simulate struc-
tural plasticity in the brain with 109 neurons.

• The experimental validation that the approximation under-
lying the algorithm does not adversely affect the quality of
the results.

The remainder of this article is organized as follows. After
reviewing related work in the next section, we describe the Model
of Structural Plasticity in Section 3. In Section 4, we present our
scalable algorithm, followed by our scalable implementations in
Section 5. Section 6 establishes the algorithm’s accuracy and dis-
cusses performance results. Finally, Section 7 concludes the paper,
highlighting the potential our work offers to future research.

2. Related work

Today’s largest brain simulations contain about 109 neurons.
C2 [2] and NEST [24] are examples of state-of-the-art brain sim-
ulators able to reach such a large scale. Both require the user to
describe the connectivity between neurons before the simulation
starts. During the simulation, the connectivity map remains static.
However, the strength of the synapses it defines may change over
time. Well-known models that strive to capture structural plas-
ticity include the compensation model by Dammasch et al. [12]
and the activity-dependent neurite outgrowthmodel by vanOoyen
et al. [31]. However, while the compensation model ignores topol-
ogy altogether, van Ooyen’smodel is too restrictive in that neurons

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 3

always connect to their direct neighbors before connecting tomore
distant neurons. These limitations are addressed in the Model of
Structural Plasticity [9], the subject of this paper, where synapses
are randomly created in a distance-dependent way.

An example for using n-body simulation in brain research has
been presented by Prasad et al. [28], where cortical brain regions
are represented as particles with mass proportional to the region’s
volume. Particles attract each other with a force proportional to
the strength of the connectivity between the regions they rep-
resent. The connectivity between regions was derived from dif-
fusion imaging data from patients with Alzheimer’s disease and
healthy subjects. Based on these parameters, the authors use a
gravitational n-body simulation to obtain a connectivity matrix
between brain regions. This matrix is then examined with the goal
of distinguishing between patients and healthy subjects. Our work
differs from this approach in that we do not perform an n-body
simulation. Instead,we adopt ideas of hierarchical n-bodymethods
to reduce the complexity of a structural plasticity model.

The concepts of force between particles and distance-
dependent probability for pairs of neurons are similar enough to
make the adaptation of n-body methods [4,18] to our problem a
realistic option. Another motivation is that the data locality and
approximation of advanced n-bodymethods seem to better mimic
biological behavior in the brain. In particular, while ‘‘actively’’
trying to find a vacant dendrite, a neuron’s vacant axon has only
partial knowledge of other available neurons. Our choice of n-
body methods for adaptation is the Barnes–Hut algorithm [4], a
decisionwewill outline in Section 4. An example showing the good
scalability of the Barnes–Hut approach for n-body problems is the
PEPC code [33], which has already been used to efficiently simulate
systems with about 6.4 · 1010 bodies on 458,752 cores of an IBM
Blue Gene/Q system.

3. The MSP model of structural plasticity

This section describes the Model of Structural Plasticity [9],
which consists of three basic steps to simulate network con-
nectivity in an activity-dependent fashion: (i) update of electri-
cal activity, (ii) update of synaptic elements, and (iii) update of
connectivity.

(1) Update of electrical activity. The electrical activity of each neu-
ron is continuously calculated on amillisecond timescale. Intracel-
lular calcium concentration is updated according to the electrical
activity. As calcium concentration and average firing rate are lin-
early proportional, the model uses calcium concentration to guide
the growth dynamics of the synaptic elements.

We use a Poisson spiking neuron model to determine when
a neuron generates an electrical signal (spike). The firing rate of
a neuron decreases exponentially over time by a constant de-
cay factor until it reaches a specified minimum. Spikes received
through synapses fromneighboring neurons (synaptic input) affect
the firing rate. In particular, a spike from an excitatory neuron
increases whereas a spike from an inhibitory neuron decreases the
firing rate. Based on its firing rate r , a neuron fires in a time step and
sends a spike to all its neighbors with probability r ·dt , where time
step size dt = 1 ms. After generating a spike, the neuron enters a
refractory phase for 4ms, inwhich it cannot fire anymore. Based on
electrical activity, a neuron’s intracellular calcium concentration is
calculated as follows:

dCa
dt

=

⎧⎪⎨⎪⎩
−

Ca(t)
τ

+ β if neuron fires

−
Ca(t)

τ
else

(1)

τ is the calcium decay constant and β is the calcium intake
constant denoting how much calcium is accumulated every time
the neuron fires. The calcium concentration is then used to guide
the growth of synaptic elements.

Fig. 1. Homeostatic growth curve which determines the creation and deletion of
synaptic elements based on a neuron’s calcium concentration. The curve reflects
the parameters in our simulations. The desired calcium concentration (set point) is
0.5. A neuron grows synaptic elements until the set point is reached. When calcium
concentration exceeds the set point, synaptic elements are deleted. Creation and
deletion is a continuous process, where a neuron’s number of synaptic elements is
represented by a real number x. The actual number of synaptic elements available
is the greatest integer ⌊x⌋ that is less than or equal to x.

(2)Update of synaptic elements. Thedetailedmorphology of synap-
tic elements is abstracted and represented only by the number
of synaptic contacts on axons (axonal boutons) and dendrites
(dendritic spines). We call these contacts collectively synaptic
elements. A homeostatic rule determines for each neuron when
axonal and dendritic synaptic elements are created or deleted.
If the calcium concentration is below the desired set point, they
are created. If it is above the set point, they are deleted. Creation
or deletion proceeds until the desired level of electrical activity
has been reached. The homeostatic rule is described through a
Gaussian-shaped growth curve. Fig. 1 depicts the growth curve in
our simulations.

(3) Update of connectivity. At discrete points in time, existing
synapses are deleted and new synapses are formed, depending
on the current number of synaptic elements. A synapse is deleted
after either the participating axonal or dendritic element has been
removed during the update of synaptic elements. If a synapse is
removed, a synaptic element that was previously bound in this
synapse becomes vacant again. If a source neuron with a vacant
axonal element is assumed, then the target neuron which the
axonal element will try to connect to is determined by considering
every neuron as a potential target and calculating the probability of
establishing a connection. The probability depends on the distance
between source and target, and the number of unbound dendritic
elements available at the target. Given the three-dimensional po-
sition (x, y, z) of a source neuron j and a target neuron candidate i,
we can evaluate a three-dimensional Gaussian-shaped kernel:

Kij = exp
(

−
(xj − xi)2 + (yj − yi)2 + (zj − zi)2

σ 2

)
(2)

σ is a simulation parameter that controls thewidth of the curve. To
avoid creating autapses (i.e., source neuron connecting to itself),
we set Kij = 0 for i = j. Kij is then weighted by a factor wi
denoting the number of vacant dendritic elements at the target
neuron. This yields |Neurons| (number of neurons) values of the
form {wi · Kij | j is source neuron ∧ i ∈ Neurons} for the source
neuron j. The sum of the elements in this set is not necessarily 1.
To construct probabilities, all the elements are finally scaled so that
their sum equals 1. Finally, a random number in the interval [0, 1]
selects the target neuron out of all candidates. Constructing the
probabilities in this way ensures that the closer the two neurons
are, and the more dendrites the target neuron candidate offers,

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

4 S. Rinke et al. / J. Parallel Distrib. Comput. () –

Fig. 2. The number of synapses MSP creates over time for 105 neurons. To save
simulation time, every neuron is initialized with one vacant axonal element and
two vacant dendritic elements. Otherwise, we would have to wait until synaptic
elements have grown to form synapses. At the beginning, no synapses exist and
the network is empty. Neurons start forming synapses to reach their desired level
of electrical activity. From 3 · 106 ms on, the neurons enter equilibrium and only
a few synapses are being formed. Note that some synapses are also deleted as the
simulation progresses, which is not shown here.

the higher the probability for the target neuron candidate to be
chosen for synapse formation is. During the connectivity update,
every vacant axonal element selects a target neuron, as described
above. Note that multiple axonal elements may try to connect to
the same target neuron. If the neuron does not have sufficient
vacant dendritic elements, some of the axonal elements are re-
jected. In this case, they try to find another target neuron during
the next connectivity update. The extent of changes in the neural
network is determined by the update of synaptic elements. As
these elements grow rather slowly, the connectivity update occurs
only infrequently.

Performance considerations. Steps (1) and (2) consider every neu-
ron and thus run in O(n). In step (3), every neuron is examined to
decide which of its synapses have to be deleted. As the number
of synapses per neuron is limited through a constant (due to
biological reasons), synapse deletion runs in O(n). However, for
synapse creation in step (3), probabilities are calculated for all pairs
of neurons, which takes O(n2). This worst case occurs in the early
phase of network creation where no synapses exist yet and all
neurons still have vacant axonal elements available. Fig. 2 depicts
this situation. Note that the number of synapses created during
the first 5 · 105 ms is in the order of the number of neurons and
much higher than during the remainder of the simulation. The
peaks in the plot appear because we apply the same growth curve
to all synaptic elements. That is, after all axonal elements have
been bound in synapses during connectivity updates, new axonal
elements grow and become available for all neurons at about the
same time. Especially if major structural changes occur, that is,
at the beginning or after introducing lesions, synapse creation
prevents MSP from being scaled to large neural networks. Thus,
reducing the complexity ofMSP’s synapse creation is a prerequisite
for simulating larger portions of the brain.

4. A scalable algorithm for MSP

We shall now describe our scalable approximation algorithm
for MSP, an adaptation of the Barnes–Hut n-body method to our
specific problem. Although the O(n) complexity of FMM is lower
than the O(n log n) complexity of Barnes–Hut, we chose Barnes–
Hut because FMM is harder to tailor to our needs and to imple-
ment. One noteworthy difference is that FMM groups not only

Fig. 3. A two-dimensional example of grouping neurons. Neurons 3–6 and 7–8 are
in the same respective squares. They form two groups. The length of their squares
is denoted by l, which can be seen as the spatial extent of the group. The two
groups are represented by a virtual neuron (black solid circle). The source neuron is
neuron 1. Instead of considering all individual neurons as target neuron candidates,
grouping reduces thework at this stage to considering only two virtual neurons and
two normal neurons (neuron 2 and the source neuron itself). To avoid autapses, the
source neuron’s probability is set to zero. A dashed line depicts the distance d from
the source neuron to the other neurons under consideration, which are neuron 2
and the two virtual neurons.

source but also target particles and calculates interactions between
groups. However, synapse creation is initiated by an individual
source neuronwith a vacant axon.When forming a group of source
neurons, it must be ensured that this individual source neuron can
use the group’s probabilities of establishing connectionswith other
(groups of) target neuron candidates. Recalculating these prob-
abilities when the source neuron is finally processed, or storing
them for re-use, could harm the scalability of the FMM. On the
other hand, the Barnes–Hut method groups only target neurons,
whichmore closelymatches our problem.Moreover, itwas unclear
whether adapting hierarchical n-body methods for MSP would
provide approximation techniques which are accurate enough to
resemble exact networks of MSP. The FMM appeared too complex
for this exploration. Finally, it was unsure whether the superior
scalability and thus the additional complexity of FMM may ulti-
mately be needed, given that the number of neurons in the human
brain (1011) is the largest problem that our algorithm will ever
be required to handle efficiently. For these reasons, we believe
that following the design philosophy of the simpler Barnes–Hut
algorithm is a reasonable choice.

Calculating the probabilities for creating synapses is the most
time consuming part of MSP. Similarly to Barnes–Hut, we combine
distant neurons into groups whenever possible instead of consid-
ering them individually. Neurons in the same group have a similar
distance to the source neuron. We represent a group of neurons
through a virtual neuron whose position is a linear combination
of the positions of the group members. Weight factors position
the virtual neuron closer to neurons with many vacant dendritic
elements. The number of vacant dendritic elements of the virtual
neuron is the sum of vacant dendritic elements present in the
entire group. This approach resembles the concept of the center of
mass in gravitational versions of the Barnes–Hut algorithm. Only
neurons close to the source neuron are considered individually
because they differ more in their relative distance to the source
neuron. Otherwise, the probability error, caused by using the aver-
aged position of the virtual neuron, could become too large. Fig. 3
shows an example. Neuron 2 is too close to the source neuron and
hence not considered as part of a group. Below, we explain the
three steps of our algorithm: (i) tree construction, (ii) tree update,
and (iii) target neuron selection.

Tree construction. Similarly to the Barnes–Hut algorithm, we start
by forming a tree of neuron groups. However, compared to parti-
cles in an n-body simulation, our neurons do not move. Thus, the
tree is created only once at the start of the simulation. The tree
construction proceeds as follows: Given a cube that contains all

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 5

Fig. 4. A two-dimensional tree-construction example. On the left, we see the
subdivision of the simulation domain. On the right, we see the resulting tree.
Neurons are numbered from 1 to 8. The inner nodes in the tree are virtual neurons,
while the leaves are real neurons belonging to their subdomains.

neurons in our simulation domain, we create a spatial tree repre-
sentation of the domain step-by-step. If the domain contains more
than one neuron, we subdivide it into eight cubical subdomains
of the same size. Each of the eight subdomains is then recursively
subdivided if it containsmore than one neuron. The recursion ends
when every subdomain contains at most one neuron. As a result,
we obtain an octree (i.e., a tree with at most eight children per
node) with the root representing the cube containing all neurons.
Its children are the eight subdomains that it was divided into and
so on. Every leaf in the tree represents a single neuron, every inner
node represents a virtual neuron in its subdomain. This hierarchy
of subdomains defines the groups of neurons that we need. For
ease of illustration,wehaveused two-dimensional examples in our
figures. In comparison to three dimensions, we have subdivided a
domain into four squares and the resulting tree is a quadtree (i.e., a
tree with at most four children per node). Fig. 4 shows the final
subdivision of such a domain and the resulting tree.

The depth of the tree depends on the distribution of the
neurons. The closer neurons are located to each other, the more
domain subdivisions are required and the tree depth could in prin-
ciple grow indefinitely [1]. Fortunately, biological constraints en-
sure that neurons are not positioned at purely arbitrary distances
from each other within the brain. For example, the diameter of
the soma (cell body) of neurons determines theminimum distance
between neurons. In general, neuron densities vary depending on
the brain region and the cortical layer. In this work, we consider a
high density of neurons such as in layer 5A of the rat cortex [25],
where the average distance between neurons is about 26 µm. Let
us analyze how this translates into the tree depth. We assume that
a cube with edge length L contains all neurons of the simulation.
Let the smallest distance between any two neurons be s. How often
must the cube be recursively subdivided until all neurons belong
to separate subdomains? The smallest subdomain containing two
neurons with minimum distance s has edge length s/

√
3. This

follows from calculating the distance between the closest neurons
by√(

s/
√
3
)2

+

(
s/

√
3
)2

+

(
s/

√
3
)2

=
√
3 · s/

√
3 = s. (3)

Now, we can rephrase the question: How often must the cube
be recursively halved until subdomains with edge length less than
s/

√
3 are obtained? To answer this question, we need to find

the smallest k which satisfies L/2k < s/
√
3. Solving for k yields

L
√
3/s < 2k, and finally k =

⌈
log2

L
√
3

s

⌉
. Note that k grows when

the length L of the cube increases, or the minimum distance s
between neurons decreases. For example, the average length of the
human brain is about 20 cm. We believe that the average distance
of 26 µm between densely packed neurons in the rat cortex is also
valid for the human brain. Using these biological constraints and

assigning L = 20 cm and s = 26 µm yields:

k =

⌈
log2

20 · 10−2
·
√
3

26 · 10−6

⌉
≤ 14 (4)

The result tells us that a cube containing all neurons of the
human brain is at most 14 times recursively subdivided until
every neuron belongs to a separate subdomain. Consequently, the
maximum depth of the tree would be 14. In practice, the maxi-
mum length of any simulation domain will most likely not exceed
the length of the human brain. Moreover, the smallest distance
between neurons in the human brain is not expected to be much
smaller than s = 10 µm [11], as the lower bound is the diameter
of the neuron’s cell body. For s = 10 µm, tree depth k ≤ 16. From
these observations follows that L

√
3

s ≈
20·10−2

·
√
3

10·10−6 ≈ 34, 642 =

O(n). Finally, we can provide an asymptotic upper bound for the
tree depth k:

k =

⌈
log2

L
√
3

s

⌉
≤ log2O(n) ≤ O(log n) (5)

For this reason, we conclude that the depth of the tree is
O(log n). As in Barnes–Hut, we create the tree by successively in-
serting all neurons into the tree. Since our tree is of depth O(log n),
tree creation takes O(n log n).

Tree update. Neurons do not move, but the number of their vacant
dendritic elements is subject to change. For this reason, the tree has
to be updated before creating new synapses. For every leaf (i.e., real
neuron),we store the current number of vacant dendritic elements.
For every inner node (virtual neuron), we not only update the
number of vacant elements but also the position of its virtual
neuron. The number of vacant dendritic elements is simply the
sum of those available on its (direct) children. Let v be a virtual
neuron. Then the number of vacant dendritic elements is Dv =∑

i∈ChildrenDi. The position is a linear combination of the positions
of its children and their vacant dendritic elements. After updating
its vacant element count, the x-coordinate of the virtual neuron v

is calculated as xv = 1/Dv

∑
i∈ChildrenxiDi. The y- and z-coordinates

are obtained in a similar way. We update the information in the
tree bottom-up from the leaves to the root via postorder traversal,
which takes time O(n).

Target neuron selection. After a tree update, we formnew synapses
by finding a target neuron for every vacant axonal element. Tomin-
imize the number of probability calculations, we already decide
at the coarser level of neuron groups which neurons the source
neuron will not connect to and which we therefore do not need
to consider any further. If the source neuron decides to connect
to a virtual neuron, we unfold the group it represents. This makes
all its (virtual) constituent neurons visible, from which we again
select one. Every group selection decreases the number of target
neuron candidates. The recursion ends once a single real target
neuron has been selected. Selecting a target neuron for a given
source neuron means choosing a path from the root to a leaf. To
decide which subdomains we consider as a whole on the path
down the tree, we use the acceptance criterion (AC) of the Barnes–
Hut method. Let d be the distance from the source neuron to
the virtual neuron. Let l denote the length of the virtual neuron’s
subdomain. If l/d < θ , we calculate a single connection probability
for the entire subdomain. Otherwise, we unfold it and recursively
apply the AC to its constituent subdomains. Here, θ ∈ [0, 1] is
a configurable precision parameter that ensures that subdomains
for which we calculate probabilities are distant enough from the
source neuron in relation to their size. Note that a subdomain can
be unfolded for two reasons, either because it has been selected to
form a connection or because it does not satisfy the AC.

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

6 S. Rinke et al. / J. Parallel Distrib. Comput. () –

(a) Step 1. (b) Step 2.

Fig. 5. A two-dimensional example of target neuron selection in two steps (a) and
(b). Neuron 1 is the source neuron. Areas shaded in gray identify the set of (virtual)
neurons from which one must be selected. The selection is framed. In (b), arrows
indicate the path from the root to the target neuron 6.

The reason for using the Barnes–Hut AC is as follows. Neurons
in a subdomain that satisfies the criterion have similar distances to
the source neuron. Thus, the distance of their virtual neuron seems
to properly approximate their individual distances to the source
neuron. On the other hand, the neurons in a subdomain that does
not meet the ACmay show greater relative differences in their dis-
tance to the source neuron. Consequently, their probabilities differ
more and a single virtual neuron would not properly represent all
neurons in the group.

Fig. 5 continues our previous example. Starting from the root,
the AC is applied. Because the root does not satisfy l/d < θ for its
domain, we need to unfold it. The same is true for its first child. At
this point, the recursion stops because both its children are leaves.
The other two children of the root satisfy the AC and remain closed
for now. The gray shaded area marks the first set of nodes for
whichwenowcalculate probabilities, as described in Section 3. The
difference to the original MSP is that we only consider a subset of
neurons, with some of them being virtual. Based on their probabil-
ities, we select one neuron from this subset. It is the second child of
the root (framed square), a virtual neuron. In the next step (Fig. 5b),
we unfold the subdomain of the selected neuron and apply the AC
to one virtual neuron and neuron 6. Both are accepted (gray area).
Note that a real neuron is trivially accepted since unfolding is not
possible. We calculate the connection probabilities and select one
neuron, which is neuron 6. It is a real neuron and thus the target
neuron for source neuron 1. Now, the selection terminates at this
point.

The complexity of the target neuron selection depends on the
number of nodes to consider. With θ = 0, all subdomains are
unfolded and we consider every neuron for a given source neuron.
That is, the algorithm is exact and behaves as the original MSP
with complexity O(n2). For θ > 0, we start considering groups of
neurons. Here, the complexity depends on the depth of the tree,
which we assume to be O(log n), as previously stated. When ran-
domly selecting nodes on the path down from the root to the target
neuron, after every selection the depth of the remaining subtree is
reduced in the worst case by one only. That is, we have to perform
O(log n) steps (depth of the tree) until we find a target neuron. To
determine the complexity of each step, we follow the argument
of Barnes and Hut for homogeneously distributed particles [4]. In
particular, when increasing the number of neurons, the new addi-
tional subdomains not containing the source neuron incur a certain
amount of extra probability calculations. This amount depends on
θ but not on the number of neurons. Consequently, increasing the
number of neurons by a constant factor only increases the number
of probability calculations by an additive constant (for θ). That is,
the complexity of each step is O(log n). Therefore, it takes time
proportional to O(log2n) to find a target neuron for one source
neuron. Under the biologically motivated assumption that the tree
is of depth O(log n), the complexity of finding a target neuron for
every neuron in one connectivity update is therefore O(n log2n).

4.1. Error analysis

In Fig. 5, the chain of subdomains that contain the source neuron
(root and its first child) is completely unfolded until the source
neuron is encountered. This is very helpful for avoiding autapses,
as is usually desirable in brain simulations. To avoid autapses, MSP
sets the probability of a neuron to connect to itself to zero. How-
ever, during the recursive descent, every virtual neuron’s proba-
bility, which depends on the position and number of dendrites, is
based on all neurons in its subdomain. As we have no information
about whether or not the source neuron is included in a particular
virtual neuron’s domain, we cannot exclude the source neuron’s
contribution from the virtual neuron. Consequently, the probabil-
ity assigned to a virtual neuron whose group contains the source
neuron is too high. This is because the zero probability of the source
neuron applies only if it is considered directly and not through a
virtual neuron. As a side effect, the selection also becomes biased
towards other neurons in the same domain through the inflated
probability of the source neuron. To eliminate this bias, we define
the AC in such away that the source neuron can never become part
of a virtual neuron’s domain during probability calculations. We
accomplish this by setting θ ≤ 1/

√
3.

According to the AC, every subdomain with l/d ≥ θ is unfolded,
with d again being the distance from the source neuron and l the
edge length of the subdomain. The ratio l/d decreaseswith increas-
ing distance d between the source neuron and the subdomain’s
virtual neuron. This is also true for subdomains of different sizes l
that contain the source neuron. For those, d =

√
l2 + l2 + l2 = l

√
3

is the greatest possible distance between the source neuron and
the virtual neuron (in three dimensions). After substituting l

√
3 for

d, l/d ≥
l

l
√
3

= 1/
√
3 becomes the smallest possible ratio between

l and d. As a result, setting θ ≤ 1/
√
3 and defining the AC as l/d < θ

unfolds all subdomains containing the source neuron. Note that
1/

√
3 > 0.5. That is, setting θ ≤ 0.5 is a practical usage guideline

for our algorithm. To achieve the samebehavior in twodimensions,
we need to set θ ≤ 1/

√
2.

Let us now discuss how a vacant axon of the source neuron
selects a target neuron for synapse creation in the tree. We run a
multistage probability experiment inwhich, starting from the root,
virtual neurons are randomly selected until a real neuron is chosen.
Intuitively, this corresponds to following a path from the root to a
leaf as indicated by arrows in Fig. 5b. The sample space S (set of all
possible outcomes) of the experiment comprises all possible paths
from the root to the leaves (real neurons), one path per neuron.
Tree nodes which do not satisfy the acceptance criterion AC for the
source neuron are unfolded and thus do not occur on the paths.
Since the AC depends on the source neuron’s position, every source
neuron has its own sample space.

The tree diagram in Fig. 6 illustrates the probability exper-
iment with multiple stages for our example. Neuron 1 is the
source neuron whose vacant axon tries to find a target neuron. As
can be seen, the diagram omits the virtual parent neuron of the
neurons 1 and 2 because it does not satisfy the AC. The correspond-
ing sample space is S = {1, 2, AC3, AC4, AC5, A6, B7, B8}, where
each element is the concatenation of the nodes along the path. For
example, AC4 is the path between the nodes A-C-4. Given that a
path is selected onlywhen all nodes on the path have been selected
successively, the probability of choosing path A-C-4 (event AC4) in
the example is P(AC4) = P(A∩C ∩4). Note that a node’s likelihood
of being selected in a stage depends on the nodes selected in
previous stages. In our example, node 4 can only be selected in
stage three if nodes A and C were selected in stages one to two.
Hence, P(A ∩ C ∩ 4) = P(A) · P(C | A) · P(4 | A ∩ C).

In general, before a target neuron tk at depth k in the tree is
selected for synapse creation, all virtual neurons {vi | 0 ≤ i <
k ∧ vi satisfies AC} on the path to the target neuron are selected.

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 7

Fig. 6. Tree diagram of the multistage probability experiment for neuron 1. Real
neurons are numbers, virtual neurons are letters. A vacant axon of source neuron 1
tries to find a target neuron for synapse creation. In every stage, a (virtual) neuron
is selected. The experiment terminates once a real neuron is chosen. The children
of the node selected in the current stage are the set of nodes to chose from in the
next stage.

1: Create empty network without synapses

2: Initialize number synaptic elements per neuron

3: Construct tree from domain

4: while Desired avg. calcium concentration not reached do
5:

6:

7: if Connectivity time step completed then
8: {
9: Delete synapses & update network

10: Create synapses {
11: Update tree

12: Find target neuron for every

13: vacant axonal element

14: Update network

15: }
16: }
17: end if
18: end while

UPDATEELECTRICALACTIVITY

UPDATESYNAPTICELEMENTS

UPDATECONNECTIVITY

O(n)

O(n)

O(n)

O(n)

O(n)

O(n)

O(n log n)

O(n log2 n)

O(n)

O(n log2 n)

Fig. 7. Sequential scalable algorithm: the simulation flow of MSP when using
our hierarchical algorithm. The runtime complexity of each step is shown on the
right. Simulation parameters appear in italics. n denotes the number of neurons.
The simulation terminates when the neurons reach the desired average calcium
concentration. The connectivity update is only executed when a connectivity time
step is completed.

This path is of length k. The probability of selecting tk depends on
the depth k, the precision parameter θ , and tk’s number of vacant
dendrites. While depth and precision are constant, the number
of vacant dendrites changes in the update of synaptic elements
and thus tk’s chance of being selected for synapse creation, too.
Based on the concatenated notation of the sample space above, the
probability of connecting to tk is

P(v0 . . . vk−1tk) = P(v0) · P(v1 | v0) · P(v2 | v0 ∩ v1) · . . .

· P(tk | v0 ∩ . . . ∩ vk−1).
(6)

With θ = 0, our approximation method uses the same prob-
abilities as the exact MSP for selecting a target neuron. In partic-
ular, the multistage probability experiment shrinks to one stage
where probabilities are calculated for all neurons directly without
virtual neurons in between. Here, the error of our approximation
becomes zero, while the complexity becomes quadratic. Of course,
an error analysis is supposed to indicate the extent to which the
approximated probabilities differ from the exact MSP. However, it
is difficult to determine analytically which effect the error has on
the actual structure of the resulting neural network. Hence, we run
simulations with different precision parameters and analyze their
effect on the resulting networks in Section 6.

4.2. Summary

The execution flow of our scalable MSP algorithm is depicted in
Fig. 7. We call this version sequential scalable algorithm. The steps
within the while loop are executed in every iteration. The algo-
rithm terminateswhen the neurons reach the desired average level

of calcium concentration (line 4). Note that termination does not
depend on changes in the structure of the neural network, as this is
the result that we are investigating. Moreover, depending on sim-
ulation parameters such as calcium increase when a neuron fires,
growth curve of synaptic elements, and time between connectivity
updates, network dynamicsmight not even reach equilibrium [14].
During the update of electrical activity (line 5), three steps are
performed for every neuron: (i) receive spikes (electrical signals)
from other neurons connected to it through synapses, (ii) calculate
electrical activity and calcium concentration based on the spikes
received, and (iii) determine if neuron fires a spike by considering
its updated electrical activity and send the spike to its directly
connected neighbors. Spikes generated in the current iteration are
received by the neurons in the next iteration. During the update of
synaptic elements (line 6), every neuron creates or deletes synaptic
elements based on the updated calcium concentration. As can be
seen, the connectivity update (line 8), which depends on the num-
ber of synaptic elements, has the greatest complexity. Given that
synaptic elements grow much slower compared to the frequency
at which neurons fire, the connectivity update is run only when a
connectivity time step is completed (line 7) and thus not in every
iteration. Note that this parameter should not be too large as this
might lead to high oscillations in connectivity and thus electrical
activity of the neurons [14]. However, as our experimental results
in Section 6 show, even a single connectivity update using the
exact MSP takes as long as about 40 min for 106 neurons, which
makes it the clear bottleneck. This is why we must update the
connectivity more quickly. Our algorithm brings the complexity
from O(n2) down to O(n log2n), which now becomes the overall
computational complexity of the approximated MSP.

5. Implementations of the scalable algorithm

In this section, we present two MPI-based parallel implemen-
tations of the scalable algorithm. Our first approach enabled us
to simulate neuron counts which are already two orders of mag-
nitude larger compared to the largest possible simulations of the
originalMSP (see Section 6). However, the scalability of this simple
approach is limited because of the high memory consumption per
process. By eliminating this bottleneck, our second implementa-
tion is a truly scalable implementation of our scalable approxima-
tion algorithm of MSP.

5.1. Simple approach

In our first approach, every process simulates n/p neurons,
where p is the total number of processes. Although distributing
the work of the neurons over all processes is easily achieved, an
efficient distribution of the tree is more complicated (see Sec-
tion 5.2). Hence, our simple implementation stores the complete
tree and thus all neurons on every process. This simple approach
enabled us already to simulate 107 neurons with our approxima-
tion algorithm of MSP. So far, the largest published simulations
of a simplified version of MSP contained 105 neurons [14] (see
Section 1). Fig. 8 lists the steps performed by every process with
their complexity. We call this version parallel scalable algorithm
with replicated tree. In the following, we focus on those stepswhich
require a more detailed description. Every process maintains a
subgraph of the entire neural network with the incoming and
outgoing edges (synapses) of its own neurons. Our corresponding
graph data structure can be initialized to the empty network in
constant timeO(1) as a graphnode is only addedwhen it is required
for creating an edge (line 1). Line 3 constructs the tree, which
contains all neurons. Similarly to the sequential scalable algorithm
(Fig. 7), every process executes the update of electrical activity
(line 5) and the update of synaptic elements (line 6) for all its

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

8 S. Rinke et al. / J. Parallel Distrib. Comput. () –

1: Create empty network without synapses O(1)

O(n/p)

O(n/p)

O(n/p)

O(n)

O(n/p)

2: Initialize number synaptic elements

3: Construct tree with all neurons

4: while Desired avg. calcium concentration not reached do
5:

6:

7: if Connectivity time step completed then
8: {
9: Delete synapses & update network

10: Create synapses {
11: Gather all neurons

O(n log n)

O(n/p log2 n + n)

O(n)12: Update tree of all neurons

13: Find target neurons for

14: vacant axonal elements

15: Update network

16: }
17: }
18: end if
19: end while

O(n/p)

O(n/p log2 n)

UPDATEELECTRICALACTIVITY

UPDATESYNAPTICELEMENTS

UPDATECONNECTIVITY

Fig. 8. Parallel scalable algorithm with replicated tree: the simulation flow of MSP
for each processwhen using our hierarchical algorithmwith the replicated tree. The
time complexity of each step is shown on the right. Simulation parameters appear
in italics. n denotes the number of neurons. The simulation terminates when the
neurons reach the desired average calcium concentration. The connectivity update
is only executed when a connectivity time step is completed. p denotes the number
of processes. It is explicitly stated when a step is performed for all neurons of the
simulation. Otherwise, the step processes own neurons only.

Fig. 9. Two-dimensional example of a domain decomposition into blocks and its
subdivision obtained during tree construction. The blocks of the domain decompo-
sition (regular coarse-grained grid of thick lines) are aligned with the subdivisions
of the tree construction.

neurons. However, while updating synaptic elements does not
require interprocess communication, processes need to exchange
spikes for updating the electrical activity because a neuron which
receives spikes is not necessarily located on the same process as
its firing neighbors. Before a process can update the positions and
the number of vacant dendrites of all (virtual) neurons in the tree
(line 12), it needs to gather this information about the neurons
belonging to the other processes (line 11). The time complexity
of the initialization is O(n log n), which is done once before the
simulation starts. One iteration of a complete simulation step takes
time O(n/p log2n + n). In practice, this is the dominating term as
a typical simulation executes thousands of iterations. Given that
every process stores the complete tree and thus all neurons, the
space complexity per process is O(n). This clearly limits the total
number of neurons to the memory available per compute node.
To address this limitation, the tree needs to be distributed over
all processes so that every process stores only a portion of the
neurons.

5.2. Distribution of the tree

Let us now present our implementation with a distributed
tree. The main components of the implementation are: (i) domain
decomposition, (ii) assignment of the decomposed domain to the

Fig. 10. Tree corresponding to the subdivision of the domain in Fig. 9. Tree nodes are
only depicted up to the level of subdomainswhich correspond to the regular coarse-
grained grid of blocks of the domain decomposition in Fig. 9. Every triangle denotes
the subtree below the tree node (branch node) towhich it is attached. Branch nodes
are drawn as empty squares.

processes, (iii) the distributed tree, and (iv) access to remote tree
nodes.

5.2.1. Domain decomposition
With the aim of distributing the neurons of the simulation

domain over all processes, we decompose the domain by recur-
sively dividing it into subdomains (blocks). For a two-dimensional
domain, the blocks are squares, whereas blocks are cubes for three
dimensions. These blocks are then assigned to the processes. All
neurons inside the same block are stored on and simulated by
the same process. Note that this decomposition is not the same
subdivision as obtained during the tree construction phase of the
scalable algorithm (Section 4). However, the resulting blocks are
aligned with the boundaries of the subdomains created during the
tree construction. Fig. 9 depicts a two-dimensional example of a
simulation domain’s decomposition and its subdivision obtained
during the tree construction. The decomposition is a regular sub-
division into blocks of the same size, whereas the tree construction
yields subdomains of different sizes, due to differing distances
between neurons. Note that the blocks of the decomposition re-
semble a grid on top of the subdomains of the tree. To create a grid
which is alignedwith the tree structure,wedecompose the domain
into a power of eight blocks for three dimensions (power of four
for two dimensions). This ensures that by assigning a block to a
process, this process contains all the neurons of the corresponding
subdomain in the scalable algorithm’s tree. Fig. 10 illustrates the
tree created for the example (example domain in Fig. 9). The tree
nodes are only depicted up to the level of subdomains which cor-
respond to the blocks of the domain decomposition. The Barnes–
Hut literature [32] calls the tree nodes at this level branch nodes.
A branch node is a node whose children are completely available
on the same process. The role of the branch nodes is discussed in
more detail below.

Our domain decomposition exploits that, although organized
in layers, neurons are relatively homogeneously distributed in
the brain. This ensures that every block contains about the same
number of neurons. With the goal of equally distributing neurons
and thus thework over processes, blocks are assigned to processes.
Nevertheless, block sizes and thus the smallest unit of work which
can be assigned could be too large. For example, decomposing
the domain into few large blocks could lead to load imbalance
bottlenecks between processes whose number of blocks differs by
only one. Reducing the block size and thus increasing the number
of blocks can help to achieve more balanced load between pro-
cesses. Although simple, our domain decomposition is powerful
enough to enable simulations of 109 neurons, as we will show
in Section 6. The Barnes–Hut literature proposes further load-
balancing schemes for particle simulations [15,17,32] which could
also be adapted to our brain simulation.

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 9

Fig. 11. Morton curve which passes through the blocks of the domain decomposi-
tion. A number inside every block denotes the block’s position on theMorton curve.
Block six is marked for explanations in the text. The numbers along the edges of the
domain represent x- and y-coordinates of the blocks. The curve starts at block (0, 0)
and ends at block (3, 3).

5.2.2. Assignment of the blocks of the decomposed domain
After decomposing the domain into blocks, we assign a set

of blocks to every process. This assignment is subject to equally
distributing the number of blocks over the processes while main-
taining spatial locality per process. The equal distribution accounts
for balancing the work between processes. The spatial locality
ensures that the blocks of each process are located as close as
possible to each other in the simulation domain. Locality is moti-
vated by the scalable algorithm’s acceptance criterion, according
to which a source neuron calculates probabilities for all target
neuron candidates in its close neighborhood. Neurons outside
of this neighborhood are grouped and groups are approximated
through virtual neurons, which reduces the number of calculations
for distant neurons. Hence, assigning neighboring blocks to the
same process minimizes the number of costly requests to other
processes for retrieving the position and the number of dendrites
of non-local (virtual) neurons.

To determine which blocks are close to each other, we ‘‘draw’’
a Morton curve [27] through the domain. Neighboring blocks on
this curve are often neighbors in the simulation domain, as well.
Fig. 11 continues the two-dimensional example and shows the
Morton curve through the blocks of the domain decomposition.
The Morton curve is a space-filling curve, which provides us a
mapping from a block’s three-dimensional (two-dimensional) po-
sition in the domain to its one-dimensional position on the curve.
The corresponding mapping function achieves this by interleaving
the binary coordinate values of the block. For example, let us
assume that the three-dimensional position of a block in binary
notation has the form (x2x1x0, y2y1y0, z2z1z0), where subscripts
denote bit positions. The mapping position on the Morton curve
is (z2y2x2z1y1x1z0y0x0). The two-dimensional position (2, 1) of the
blockmarked in Fig. 11 is in binary notation (x1x0, y1y0) = (10, 01).
The Morton-curve mapping yields (y1x1y0x0) = (0110), which is
position 6 on the curve.

To assign blocks to processes, we cut the Morton curve into
equally-sized sections and assign each section to one process.
Using the inverse Morton-curve mapping, every process can then
quickly determine the three-dimensional position of its blocks in
the simulation domain. This achieves balanced loadwhile preserv-
ing spatial locality. Fig. 12 shows the assignment of the blocks to
eight processes for our example.

Note that the Morton-curve contains jumps which impairs its
spatial locality property, as visible between position 7 and 8 in
Fig. 11. To reduce a negative impact on the spatial locality of our
block-to-process assignment, those jumps should coincide with
the cuts of the curve. Alternatively, more complex space-filling
curves with better spatial locality such as the Hilbert curve [26]
may improve this. Exploring their suitability is left for future
work.

Fig. 12. Assignment of the blocks of the domain decomposition in Fig. 9 to eight
processes. Each pattern type marks the blocks of one process. The number next
to each pattern refers to the rank of the process which owns the blocks with this
pattern. Neighboring process ranks are assigned neighboring blocks on the Morton
curve.

Fig. 13. Partial tree of process 0. Empty squares denote branch nodes. Every triangle
is the subtree with all (virtual) neurons below the corresponding branch node.
Numbers denote the process ranks of the owners of the tree nodes.

5.2.3. The distributed tree
By distributing the domain over the processes, every process

owns only a subset of the neurons in the simulation domain.
Consequently, processes store only part of the scalable algorithm’s
original tree. We call this part partial tree. Every process’ partial
tree contains the nodes of the original tree from the root down to
including the branch nodes. That is, this upper part is replicated
on all processes. In addition, each process expands its own partial
tree by adding all children (i.e., the subtree) of those branch nodes
which correspond to the blocks of the domain assigned to it. Fig. 13
shows the partial tree on process 0 for our example. Merging the
partial trees of all processes would yield the original tree again.
Now, every process has only incomplete knowledge of the simu-
lation domain. This resembles the real brain where neurons have
only partial knowledge of their environment.

As a result, when a process unfolds a branch node in its partial
tree and is not the owner of this branch node, it needs to know
which other process (the owner) to contact to retrieve the branch
node’s direct children. We provide this contact information by
storing theMPI rank of the owner in every tree node. Note that only
branch nodes owned by remote processes are labeled with MPI
ranks that differ from the own rank. All the remaining nodes in the
partial tree carry the same local rank. In our example, Fig. 13 shows
process 0’s partial tree augmentedwith theMPI ranks of the owner
of each node.

5.2.4. Access to remote tree nodes
To retrieve tree nodes from other processes, we use MPI’s one-

sided communication routines. They are able to combine the send
call on the sender and the receive call on the receiver of tradi-
tional two-sided communication into one call. In this approach,
which is called remote memory access (RMA), the calling process
(origin) specifies both the send buffer and the receive buffer. The
process at the other end of the RMA communication is called target.
We use MPI RMA passive-target synchronization as it does not
require the target to call any MPI routines. Our choice of MPI’s
one-sided communication model is motivated by the properties

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

10 S. Rinke et al. / J. Parallel Distrib. Comput. () –

of our scalable algorithm: First, a process does not need to be
actively involved when other processes fetch tree nodes from it,
as the corresponding data is already available in memory and does
not need to be ‘‘prepared’’ for transmission (e.g., by copying into
a contiguous send buffer). Of course, this assumes an appropri-
ate data layout in memory. Second, MSP and thus our algorithm
focuses on the mature brain in which neurons do not move, as
opposed to moving particles in a particle simulation, for example.
Consequently, restructuring the tree is not needed and thus the
owners (RMA target ranks) of tree nodes do not change.

From the programmer’s productivity perspective, using RMA
for fetching tree nodes from a remote process avoids additional
code complexity. In particular, a process needs to answer an apriori
unknown number of incoming requests for tree nodes and, at the
same time, find target neurons for its own local neurons. To avoid
deadlocks and increase performance, answering remote requests
and processing local neurons should ideally overlap. For example,
the Barnes–Hut code PEPC implements this approach with a ded-
icated communication thread [33]. With our RMA operations, this
additional communication thread is not needed, as the MPI library
transparently handles the incoming memory accesses.

Finally, MPI RMA operations have also potential to improve
performance over two-sided communication by eliminating the
need to match send and receive calls. This reduces the amount of
synchronization between processes and allows them to progress
more independently of each other. For example, combining send
and receive in one RMA call such as MPI_Get avoids scenarios
where the sender has to wait for the receiver or vice versa. How-
ever, RMA operations strongly depend on the progress these op-
erations make in the MPI library after they have been initiated.
For example, an optimized RMA implementation could ensure
progress through a dedicated progress thread internally.Moreover,
the network hardware’s support for remote direct memory access
(RDMA) operations, such as available with InfiniBand, could be
exploited. The MPI library on the Blue Gene/Q system on which
we evaluate our scalable algorithm’s implementation with the
distributed tree offers a progress thread.

In addition to the target rank, the origin of the RMA call needs
to specify the memory location of the tree node to be fetched.
We use the absolute memory addresses (pointers) that every tree
node stores of its children (at most eight in a quadtree). That is,
a tree node labeled with its process’ own rank contains pointers
to locations in local memory, while a tree node labeled with a
remote rank contains pointers to locations in the remote process’
memory. However, how does a process get the ‘‘remote’’ pointers?
As shown in Fig. 13, every branch node is the root of a subtree
which is completely owned by one process. This is why every
process broadcasts the branch nodes that it owns (i.e., labeledwith
its own rank) to the other processes. Finally, the received branch
nodes contain the remote pointers.

When a process unfolds a tree nodemarked as remote, it fetches
all children during the same RMA access epoch. MPI_Win_lock
and MPI_Win_unlock respectively start and complete the access
epoch during which we issue up to eight MPI_Get calls to fetch
the children. Only after MPI_Win_unlock returns, the children are
guaranteed to be locally available. For this reason, we have to wait
for all children before we can evaluate the acceptance criterion for
any of them and, if necessary, fetch their children, too.

Note that for finding target neurons, often the same remote tree
nodes are used for probability calculations by several source neu-
rons on the same process. Instead of retrieving the same remote
nodes repeatedly, we store them in a tree-node cache and only
issue RMA operations on cache misses. This helps to reduce the
time spent in communication.

To the best of our knowledge, the FLY [5,6] code for cosmo-
logical simulations is the only Barnes–Hut code at the time of

1: Create empty network without synapses O(1)

O(n/p)

O(n/p)

O(n/p)

O(n/p)

O(n/p)

2: Initialize number synaptic elements

3: Insert local neurons into partial tree

4: while Desired avg. calcium concentration not reached do
5:

6:

7: if Connectivity time step completed then
8: {
9: Delete synapses & update network

10: Create synapses {
11: Update lower partial tree

12: Gather branch nodes &

13: update them in the partial tree

O(n/p log n)

O(n/p log2 n + p)

O(p)

O(p)14: Update upper partial tree

15: Find target neurons for

16: vacant axonal elements

17: Update network

18: }
19: }
20: end if
21: end while

O(n/p)

O(n/p log2 n)

UPDATEELECTRICALACTIVITY

UPDATESYNAPTICELEMENTS

UPDATECONNECTIVITY

Fig. 14. Parallel scalable algorithm with distributed tree: the simulation flow of
MSP for each process when using our hierarchical algorithm with the distributed
tree. The time complexity of each step is shown on the right. Simulation parameters
appear in italics. n denotes the number of neurons. The simulation terminates
when the neurons reach the desired average calcium concentration. The connectivity
update is only executed when a connectivity time step is completed. p denotes the
number of processes.

writing which uses MPI RMA. In contrast to our approach, it also
uses RMA operations for the tree construction. In particular, all
processes cooperate and build a single tree structure one level after
the other. During the force calculation of the particles, FLY uses
an RMA-based work-stealing approach to dynamically balance the
load between processes. The authors of FLY state that the code
contains about 110 calls toMPI_Win_lock andMPI_Win_unlock and
60 calls to MPI_Put and MPI_Get [6]. Obviously, our approach of
using MPI RMA in brain simulation is more lightweight and strives
to reduce code complexity while improving performance at the
same time.

5.2.5. Summary
Let us now give an overview of our scalable algorithm’s im-

plementation using the distributed tree as described above. We
call this version parallel scalable algorithm with distributed tree.
Every process owns about the same number of neurons n/p and
performs all the steps for them. Fig. 14 lists the individual steps
with their complexity. Instead of discussing every single step,
we focus on those steps which require further explanation. In
line 11, every process updates the positions and the number of
vacant dendrites of the (virtual) neurons in its partial tree from
bottom to top. Note that after this step, the upper tree levels
above the branch nodes do still not reflect the current state of
the simulation. The reason is that only the own branch nodes are
up-to-date. Branch nodes owned by other processes need to be
updatedwith the current information from these processes. This is
why in the branch-node exchange (line 12), every process sends its
ownbranchnodes and receives those from the other processes. The
branch nodes received from other processes replace their outdated
counterparts in the partial tree (line 13). Now, all branch nodes
contain the correct current position and number of vacant den-
drites of their corresponding virtual neuron. Finally, the remaining
upper tree levels are updated up to the root (line 14). At this point,
every process’ partial tree reflects the current state of the neurons
in the simulation. The total time of a single simulation step is
O(n/p log2n+ p). With our design of the distributed tree, the space
complexity per process drops fromO(n) toO(n/p+p). Note that the

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 11

(a) Number of edges. (b) Average
Euclidean distance.

(c) Average shortest
path length.

(d) Global efficiency. (e) Average
betweenness
centrality.

(f) Average clustering
coefficient.

Fig. 15. Network comparison between the original MSP and our algorithm for 103, 104, 105 neurons. The bars at each cluster correspond from left to right to θ =

0.1, 0.2, 0.3, 0.4.

additive term p stems from the branch node exchange between all
the processes. However, our practical results in Section 6 do not
indicate memory capacity issues even for 256k processes.

6. Results

Let us now evaluate our algorithm in terms of impact of the
approximation on the result quality and performance. Our simu-
lation parameters correspond to layer 5A of the rat cortex [25],
which is about 500 µm thick with a density of 54,500 neurons
per mm3. With this density, the average distance between neu-
rons in all three dimensions is about 26 µm. Of the neurons,
20% are inhibitory, the remaining 80% are excitatory. Initially, no
synapses exist. Every neuron is initialized with vacant synaptic
elements: one excitatory and one inhibitory dendritic element
plus one axonal element. The type of the axonal element depends
on the type of the neuron. Excitatory neurons form excitatory
axonal elements while inhibitory neurons form inhibitory axonal
elements. However, both neuron populations grow excitatory and
inhibitory dendritic elements. Synapses are only possible between
synaptic elements of the same type. That is, excitatory axonal ele-
ments only connect to excitatory dendritic elements. A similar rule
applies to inhibitory synaptic elements. During all simulations, we
run the connectivity update every 100 ms biological time, which
equals 100 simulation steps. In our experiments, we consider an
MPI-based version of the original MSP algorithm and our two
implementations of the scalable MSP approximation algorithm
(Section 5).

6.1. Accuracy

To validate the accuracy of our algorithm, we compare the neu-
ral networks it generates to those of the original MSP. We consider
a neural network as a weighted directed graph where neurons are
the vertices and synapses are the directed edges pointing from a
source neuron to a target neuron. The number of synapses reaching
from the source to the target is the edge weight. Our comparison is
based on the following graph topology metrics that Butz et al. [8]
use to describe the structure of neural networks: (i) number of
edges, (ii) average Euclidean distance, (iii) average shortest path
length, (iv) global efficiency, (v) average betweenness centrality,
and (vi) average clustering coefficient. We compare networks of
the originalMSP and our algorithmwith 103, 104, and 105 neurons.
The quadratic computational complexity of some of the graphmet-
rics prevents us from evaluating them for larger neuron counts.We
randomly distribute the neurons in a volume of height 500µmand
let the other two dimensions grow with the number of neurons.
We start with an empty network and initially vacant synaptic
elements. The biological simulation time is 6·106 ms,which allows

60,000 connectivity updates. At this time, the neuronal electrical
activity (desired average calcium concentration) and the network
have reached their equilibrium and change only insignificantly.
Note that equilibrium is in fact already reached after about 50,580
updates of connectivity in our experiments. However, even during
equilibrium small numbers of neurons are rewired to maintain the
desired electrical activity. Continuing the simulation until 60,000
connectivity updates captures additional minor structural changes
which could affect the accuracy of the approximated networks of
our algorithm.

Fig. 15 shows the metrics of the networks generated by our
algorithm relative to those of the original MSP. Except for the aver-
age clustering coefficient, the networks produced by our algorithm
differ only by about 1% from the original MSP. This is even true for
low precisions. However, for 104 neurons the average clustering
coefficient differs by about 5% with even a small θ = 0.2. To
investigate this case further, we calculate the average and standard
deviation of the metrics over 11 simulations for both algorithms
(Fig. 16). We use a different random number seed for every run.
Interestingly, even for the exactMSP, individual average clustering
coefficients vary by about 5% across measurements. That is, the 5%
difference can also be found between different runs of the exact
MSP. Fig. 16 gives an overview of how the results vary. It can be
seen that the difference between the average of the exact MSP
and our algorithm is below 1% for all metrics. Also the standard
deviations are similar except for the average Euclidean distance.
However, although the ‘‘spread’’ around the average is different for
this metric, the actual average of our method only differs by 0.14%.
Hence, we do not consider the difference in the standard deviation
as significant.

These experiments support our claim that our approximated
networks are still precise enough to represent neural networks
of the exact MSP. Nevertheless, to account for the variation of
the results due to MSP’s probabilistic approach, several simulation
runs are necessary to reliably capture the essential structure of a
neural network at the end of the simulation. This is true for both,
the exact MSP and our approximation of it. Thus, the scalability of
the MSP algorithm is even more critical.

6.2. Performance

Our performance evaluation consists of three parts. First, we
investigate the performance of our parallel scalable algorithmwith
replicated tree and compare it to the original MSP algorithm.
Second, to analyze the scalability of our approximation algorithm,
we run large-scale simulations with up to 109 neurons using the
parallel scalable algorithm with distributed tree. Finally, we ex-
trapolate the performance of the scalable algorithm to 1011, the
number of neurons in the human brain.

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

12 S. Rinke et al. / J. Parallel Distrib. Comput. () –

(a) Number of edges. (b) Average
Euclidean distance.

(c) Average shortest
path length.

(d) Global efficiency. (e) Average between-
ness centrality.

(f) Average clustering
coefficient.

Fig. 16. Network comparison between the original MSP and our algorithmwith θ = 0.2 for 104 neurons. The results per method are based on 11 simulations with a different
random number seed for each run. Each dot denotes the average of the 11 simulations. Bars depict the standard deviations.

(a) Weak scaling of replicated tree vs. original
MSP.

(b) Weak scaling of replicated tree. (c) Strong scaling of replicated tree.

Fig. 17. Scaling results. (a–b) Weak scaling execution times with different precision parameters. The number of neurons per core (MPI process) is 104 . The numbers of
neurons (cores) are: 105 (10), 5 · 105 (50), 106 (100), 5 · 106 (500), 107 (1000). (c) Strong scaling execution time with θ = 0.3.

6.2.1. Simple approach vs. original MSP
We run the experiments for the original MSP algorithm and

the scalable algorithm with the replicated tree on the Lichtenberg
cluster at TU Darmstadt. Our compute nodes are equipped with
two Intel Xeon E5-2670 (8 cores each) and 32 GiB RAM. The cluster
network is InfiniBand FDR10. In both experiments, we randomly
distribute the neurons in a volume of height 500 µm and let the
other two dimensions grow with the number of neurons. Every
process simulates the samenumber of neuronsn/p. Similarly to the
algorithm with replicated tree, the original MSP stores all neurons
on every process as every neuron considers all the other neurons
for synapse creation. Due to the high memory consumption, we
only run two processes per compute node in the experiments. In
contrast to the original MSP, the algorithm with replicated tree
performs tree construction and tree update (Fig. 8, lines 3 and
12). Nevertheless, even for 107 neurons tree construction does not
exceed 2 min. We do not include this time in our measurements
as it is a one-off expense. Another difference is the synapse forma-
tion, which is accelerated via approximation in the replicated tree
algorithm (Fig. 8, lines 13–14). Fig. 17a and 17b showweak scaling
results for one connectivity update for the original MSP and the
replicated tree algorithm. We simulate the very first connectivity
update where no synapses yet exist and every neuron has vacant
elements, as described above. That is, every neuron is trying to find
a target neuron for its vacant axonal element. The original MSP
needs about 40 min for 106 neurons, while the algorithm with
replicated tree terminates in 2 min. On the other hand, even for
high precision with θ = 0.1, the replicated tree algorithm is still in
the range of 5min for 107 neurons. This large number of neurons is
practically out of reach for the original MSP. The results also show
that reducing the precision of our method from 0.1 to 0.2 can help

to further reduce the execution time by at least a factor of 2.5.
Fig. 17c depicts strong scaling results for the replicated tree. The
results exhibit good scalability given that successively doubling
the number of cores respectively reduces the execution time by a
factor of two. Note that the timings presented above partly differ
fromour previous recent publication of the scalable algorithm [29].
The reason is that previous measurements were partially affected
by interference with other jobs running on our compute nodes.

6.2.2. Distribution of the tree
To investigate the scalability of our approximation algorithm,

we perform large-scale structural plasticity simulations on the
IBM Blue Gene/Q system JUQUEEN [22] at Forschungszentrum
Jülich. The system houses 28,672 compute nodes where each node
is equipped with one IBM PowerPC A2 (16 cores) and 16 GiB
RAM. The network is a 5d-torus custom design. To improve RMA
performance, we enable the progress thread of JUQUEEN’s MPI
library during our measurements. In our experiments, all neurons
are randomly distributed in a cube where the average distance
between neurons is 26 µm. Note that some experiments exceed
the number of neurons in the rat brain (2 · 108) [20]. However,
we believe that the parameter of 26 µm average distance between
neurons is also a valid assumption in the human brain, which is
the final scalability target of our algorithm. As in the previous
experiments, we simulate the very first connectivity update where
no synapses yet exist and every neuron has vacant elements, as
described above. Similarly, we do not include the initializations
(e.g., inserting local neurons into the partial trees) in our tim-
ings, since they are executed only once before simulation start.
However, for all experiments, initialization is below 2 s. We run
simulations for numbers of processes (cores) which are powers

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 13

(a) Weak scaling of distributed tree.

(b) Weak scaling of distributed tree with extrapolation.

Fig. 18. Weak scaling results of the distributed tree algorithm and extrapolation to the human brain (1011 neurons). (a)Weak scaling execution timeswith different precision
parameters. The number of neurons per core (MPI process) is 5,000. The numbers of cores start from 128 and are doubled until 262,144. (b) Scaling results from (a) and
extrapolation of the execution time to a human-brain sized simulation. See Eq. (7) for the performance models f (p) and g(p).

of two. Given that the simulation domain is decomposed into a
power of eight blocks, every process is assigned one, two, or four
blocks. We execute one process on every core, which amounts to
16 processes per compute node.

Fig. 18a shows weak scaling results of the distributed tree
algorithm for one connectivity update for up to 109 neurons and
different precisions. Every process (core) contains 5,000 neurons.
Each timing result is the average of 5 runs. For all results, the stan-
dard deviation is always below 1 s. As can be seen, the precision
parameter θ clearly determines the slope of the execution times.
While the graphs of the functions for θ = 0.3 and 0.4 are closer
together, θ = 0.2 shows a much larger increase. A similar pattern
is also visible for the replicated tree for θ = 0.1 and 0.2 (Fig. 17b).
Note that this behavior can also be observed for Barnes–Hut due
to the non-linear relationship between the work and precision
θ [7,21,30]. In particular, work is proportional to 1/θ3. Neverthe-
less, all our weak scaling results scale logarithmically with the
number of neurons. Doubling the number of neurons increases
execution time by an additive constant only. Consequently, our
asymptotic upper bound of O(n/p log2n+p) for the execution time
is confirmed by our experimental results.

Another remarkable result is the fluctuation of execution times.
Although less pronounced for θ = 0.3 and 0.4, all timings exhibit
the same fluctuation pattern which consist of groups of three
increasing execution times. More precisely, in Fig. 18a, the first
group contains 128, 256, and 512 processes, the second group
contains the next three process counts, and so on. Themain reason
for the timing fluctuations is the number of tree levels that are
replicated on every process. Note that the more levels a process
stores locally, the fewer virtual neurons must be fetched remotely.
Given that every process is assigned at least one of 8k blocks of the
decomposed domain, the number of blocks must grow with the
number of processes. Decomposing the domain into more blocks
(i.e., 8k+1) of smaller size, increments the depth of the replicated
portion of the tree. Consequently, every process replicates k + 1
instead of k levels. For example, for 512 processes in Fig. 18a, every
process owns one of 512 = 83 blocks. To assign at least one block
to each of the 1,024 processes, we divide the domain into the next
larger power of eight 84

= 4 · 1,024 blocks. Now, the depth of the
replicated portion increases by one and every process is assigned
4 blocks of the domain. The corresponding execution time for 1,024
processes decreased slightly. Interestingly, timings vary less with

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

14 S. Rinke et al. / J. Parallel Distrib. Comput. () –

(a) Strong scaling of distributed tree with θ = 0.3. (b) Strong scaling of distributed tree with θ = 0.4.

Fig. 19. Strong scaling results of the distributed tree algorithm. (a) Strong scaling execution time with θ = 0.3. (b) Strong scaling execution time with θ = 0.4.

decreasing precision (i.e., larger θ). The reason is that the Barnes-
Hut acceptance criterion is already satisfied by nodes at smaller
depth in the tree, and thus deep excursions towards the leaves are
avoided. Similarly, replicating more tree levels on every process
lowers the timing benefit of one additional level because many
nodes are already locally available. At the expense of O(n) space
complexity per process, our algorithm with the replicated tree
eliminates these fluctuations. The replicated and distributed tree
implementations of our scalable algorithm illustrate the common
trade-off between performance and memory consumption. In
Section 6.1, we saw that using θ = 0.3 or 0.4 still yields neural
networks of the same quality as θ = 0.2 or even 0.1. This is why
θ = 0.3 or 0.4 are appropriate parameters for large-scale structural
plasticity simulations with our scalable approximation algorithm.

The results of the strong scaling experiments are depicted in
Fig. 19. For θ = 0.3 and 0.4, we simulate 227

≈ 108 and
230

≈ 109 neurons on up to 262,144 cores. The largest number of
neurons per core (process) is 16,384 for both neuron counts. The
smallest number of neurons per core is 512 for 108 neurons, and
4,096 for 109 neurons.We observe an almost perfect strong scaling
for all experiments. Unfortunately, the JUQUEEN system does not
contain 524,288 cores which is the reason why we stopped the
experiments at 262,144 cores.

Our weak and strong scaling results show that our scalable
approximation algorithm is able to simulate the dynamics of neu-
ral networks of up to 109 neurons and it can also efficiently
use more compute cores to speed up the simulation. Note that
109 neurons correspond to today’s largest brain simulations with
fixed connectivity [2,24]. That is, our approximation algorithm
of MSP could extend state-of-the-art brain simulators with the
ability to create large-scale neural networks from scratch and to
rewire their neurons during simulation, and thus help to deepen
the understanding of the brain.

6.2.3. Extrapolation
Despite good scaling behavior of our distributed tree algorithm,

we are still not able to run full-scale simulations of the human
brain. The reason is that to reach 1011 neurons, we still need to
increase the size of our largest simulation of 109 neurons by twoor-
ders of magnitude. Currently, as in our weak scaling experiments,
every process (core) with 5,000 neurons occupies about 390 MiB
RAM on JUQUEEN. In these 390 MiB, there is still free memory for
about 1.2 million tree nodes which have been preallocated with
MPI_Alloc_mem for access via RMA. Under the assumption that
the memory footprint per process does not exceed 500 MiB, a
simulation of 1011 neurons would require 1011/5,000 = 2 · 107

processes (cores) with 500 MiB each. This amounts to 9.3 PiB
RAM in total. Today’s largest supercomputers in the TOP500 list

(November 2016) are equipped with at most 2 PiB memory and
contain at most 107 cores. Nevertheless, with reference to exascale
computing, we would like to be able to ‘‘forecast’’ the execution
time expected for such a simulation if a system with sufficient
compute resources was available. For this reason, we create per-
formance models based on our weak scaling timings on JUQUEEN.
We use the performance model generator Extra-P [10] to obtain
a function for the execution time. The input parameter to this
function is the number of processes (cores) p. Fig. 18b illustrates
our weak scaling results together with the performancemodels for
θ = 0.3 and 0.4. For the sake of clarity, we start to draw themodels
behind the timings obtained experimentally. The models f (p) for
θ = 0.3 and g(p) for θ = 0.4 are:

f (p) = 0.961461 + 0.14743 · log2p

g(p) = 0.415784 + 0.0652235 · log2p
(7)

The statistical quality measures of the model for θ = 0.3 are (i)
residual sum of squares (RSS) = 0.1018 and (ii) adjusted R2

=

0.9682. The RSS is less than 4% of the average of the timings.
For θ = 0.4, RSS = 0.0169 and adjusted R2

= 0.9728. Here,
the RSS is less than 2% of the average of the timings. Note that
both models have an adjusted R2 close to 1, where 1 indicates
a perfect fit between model and data. Given these measures, we
consider our models to be good representations of the timings.
The corresponding plots show us an estimate of the execution
time of the first connectivity update of MSP with 1011 neurons. In
particular, the extrapolated time is about 4.5 min for θ = 0.3 and
2 min for θ = 0.4.

Of course, given that these forecasts are based on scaling be-
havior for smaller neuron counts, they should be considered with
a healthy degree of skepticism. Nevertheless, they can still provide
us a reasonable lower bound of the execution time on a potential
exascale computer with similar performance characteristics as
the Blue Gene/Q system JUQUEEN. Based on this extrapolation,
we believe that simulating structural plasticity of the full human
brain with our scalable approximation of MSP could be feasible
on an exascale supercomputer. However, given that our algorithm
performs only a modest amount of floating point operations, the
tremendous amount of computing power of an exascale machine
might not even be needed. In contrast, a scalable special-purpose
system with modest floating point performance and with focus
on low latency communication might be an even more practical
solution for brain simulation. Such a neuromorphic computing
system is also expected to consume only a fraction of the power
of a fully-featured exascale supercomputer.

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

S. Rinke et al. / J. Parallel Distrib. Comput. () – 15

7. Conclusion

The quadratic time complexity of MSP in terms of the number
of neurons limits the largest possible structural-plasticity simula-
tions to networks with 105 neurons, which is less than one finds
in the brain of a mouse. For example, one connectivity update for
106 neurons takes about 40 min with the original MSP, which is
prohibitive considering the frequency of suchupdates. Our approx-
imation algorithm for MSP reduces the complexity to O(n log2n).
As a result, the scalable implementation of our algorithm with
the replicated tree reduces the execution time required for one
connectivity update of 106 neurons using the same number of
processors already by a factor of 20. Using more processors allows
even further speedup.

For the first time, it will now be possible to simulate structural
plasticity at the scale of a rat brain (2 · 108 neurons) and beyond.
Encouraging performance results demonstrating the practical fea-
sibility of simulating 109 neurons have already been presented in
this study. With this, neuroscientists can now more easily create
connectivity maps for large-scale brain simulations. Overall, our
results will allow more realistic large-scale brain simulations that,
for the first time, account for the dynamics of the connectome. This
is of utmost importance to investigating the mechanisms behind
learning and healing.

Finally, our performance models predict that even with today’s
technology a full-scale simulation of the dynamics of the connec-
tome in the human brain is possible in principle. While this would
require a machine with about twice the number of compute cores
and about five times thememory capacity of today’smost powerful
supercomputer, a system that meets these requirements might
emerge quite soon.

Acknowledgments

This project has received funding from the European Union’s
Horizon 2020 Research and Innovation Programme under Grant
Agreement No. 720270 (HBP SGA1). This work was also par-
tially supported by the Helmholtz Association through the
Helmholtz Portfolio Theme ‘‘Supercomputing and Modeling for
the Human Brain’’ and by the Jülich Aachen Research Alliance
(JARA) with funding from the Excellence Initiative of the Ger-
man federal and state governments. The authors gratefully
acknowledge the computing time granted by the JARA-HPC Ver-
gabegremium and provided on the JARA-HPC Partition part of the
supercomputer JUQUEEN [22] at Forschungszentrum Jülich.

References

[1] S. Aluru, J. Gustafson, G. Prabhu, F. Sevilgen, Distribution-independent hier-
archical algorithms for the N-body problem, J. Supercomput. 12 (4) (1998).
http://dx.doi.org/10.1023/A:1008047806690.

[2] R. Ananthanarayanan, S. Esser, H. Simon, D. Modha, The cat is out of the bag:
cortical simulations with 109 neurons, 1013 synapses, in: Proc. of SC’2009,
2009. http://dx.doi.org/10.1145/1654059.1654124.

[3] F.A.C. Azevedo, L.R.B. Carvalho, L.T. Grinberg, J.M. Farfel, R.E.L. Ferretti, R.E.P.
Leite, W.J. Filho, R. Lent, S. Herculano-Houzel, Equal numbers of neuronal and
nonneuronal cells make the human brain an isometrically scaled-up primate
brain, J. Comp. Neurol. 513 (5) (2009) 532–541. http://dx.doi.org/10.1002/cne.
21974.

[4] J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature
324 (6096) (1986). http://dx.doi.org/10.1038/324446a0.

[5] U. Becciani, V. Antonuccio-Delogu, Are you ready to FLY in the universe? A
multi-platform N-body tree code for parallel supercomputers, Comput. Phys.
Comm. 136 (1–2) (2001) 54–63. http://dx.doi.org/10.1016/S0010-4655(00)
00253-8. arXiv:0101148v1.

[6] U. Becciani, V. Antonuccio-Delogu, M. Comparato, FLY: MPI-2 high resolution
code for LSS cosmological simulations, Comput. Phys. Comm. 176 (3) (2007)
211–217. http://dx.doi.org/10.1016/j.cpc.2006.10.001. arXiv:0703526.

[7] G. Blelloch, G.Narlikar, A practical comparisonofn-body algorithms, in: Parallel
Algorithms, in: Series in Discrete Mathematics and Theoretical Computer
Science, American Mathematical Society, 1997.

[8] M. Butz, I. Steenbuck, A. vanOoyen, Homeostatic structural plasticity increases
the efficiency of small-world networks, Front. Syn. Neurosci. 6 (7) (2014).
http://dx.doi.org/10.3389/fnsyn.2014.00007.

[9] M. Butz, A. van Ooyen, A simple rule for dendritic spine and axonal bouton for-
mation can account for cortical reorganization after focal retinal lesions, PLoS
Comput. Biol. 9 (10) (2013). http://dx.doi.org/10.1371/journal.pcbi.1003259.

[10] A. Calotoiu, T. Hoefler, M. Poke, F. Wolf, Using automated performance mod-
eling to find scalability bugs in complex codes, in: Proc. of the ACM/IEEE
Conference on Supercomputing (SC13), Denver, CO, USA, ACM, 2013, pp. 1–12.
http://dx.doi.org/10.1145/2503210.2503277.

[11] M.F. Casanova, L. De Zeeuw, A. Switala, P. Kreczmanski, H. Korr, N. Ulfig, H.
Heinsen, H.W.M. Steinbusch, C. Schmitz, Mean cell spacing abnormalities in
the neocortex of patients with schizophrenia, Psychiatry Res. 133 (1) (2005)
1–12. http://dx.doi.org/10.1016/j.psychres.2004.11.004.

[12] I. Dammasch, G.Wagner, J. Wolff, Self-stabilization of neuronal networks, Biol.
Cybernet. 54 (4) (1986). http://dx.doi.org/10.1007/BF00318417.

[13] V. De Paola, A. Holtmaat, G. Knott, S. Song, L. Wilbrecht, P. Caroni, K. Svoboda,
Cell type-specific structural plasticity of axonal branches and boutons in the
adult neocortex, Neuron 49 (6) (2006). http://dx.doi.org/10.1016/j.neuron.
2006.02.017.

[14] S. Diaz Pier, M. Naveau, M. Butz-Ostendorf, A. Morrison, Automatic generation
of connectivity for large-scale neuronal network models through structural
plasticity, Front. Neuroan. 10 (57) (2016). http://dx.doi.org/10.3389/fnana.
2016.00057.

[15] J. Dubinski, A parallel tree code, New Astron. 1 (2) (1996) 133–147. http:
//dx.doi.org/10.1016/S1384-1076(96)00009-7. arXiv:9603097v1.

[16] M. Gewaltig, M. Diesmann, NEST (NEural Simulation Tool), Scholarpedia 2 (4)
(2007). http://dx.doi.org/10.4249/scholarpedia.1430.

[17] A. Grama, V. Kumar, A. Sameh, Scalable parallel formulations of the Barnes-
Hut method for n-body simulations, Parallel Comput. 24 (5) (1998) 797–822.
http://dx.doi.org/10.1016/S0167-8191(98)00011-8.

[18] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput.
Phys. 73 (2) (1987). http://dx.doi.org/10.1016/0021-9991(87)90140-9.

[19] T. Hensch, Critical period plasticity in local cortical circuits, Nat. Rev. Neurosci.
6 (11) (2005). http://dx.doi.org/10.1038/nrn1787.

[20] S. Herculano-Houzel, The human brain in numbers: a linearly scaled-up pri-
mate brain., Front. Hum. Neurosci. 3 (November) (2009) 31. http://dx.doi.
org/10.3389/neuro.09.031.2009. URL http://journal.frontiersin.org/article/10.
3389/neuro.09.031.2009/full.

[21] L. Hernquist, Performance characteristics of tree codes, Astrophys. J. Suppl.
Ser. 64 (1987) 715–734. http://dx.doi.org/10.1086/191215. URL http://www.
sciencedirect.com/science/article/pii/S0021999184710503.

[22] Jülich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q supercomputer
system at the Jülich supercomputing centre, J. Large-Scale Res. Facil. 1 (A1)
(2015). http://dx.doi.org/10.17815/jlsrf-1-18.

[23] T. Keck, T. Mrsic-Flogel, M. Vaz Afonso, U. Eysel, T. Bonhoeffer, M. Hübener,
Massive restructuring of neuronal circuits during functional reorganization of
adult visual cortex, Nat. Neurosci. 11 (10) (2008). http://dx.doi.org/10.1038/
nn.2181.

[24] S. Kunkel, M. Schmidt, J. Eppler, H. Plesser, G. Masumoto, J. Igarashi, S. Ishii, T.
Fukai, A. Morrison, M. Diesmann, M. Helias, Spiking network simulation code
for petascale computers, Front. Neuroinf. 8 (78) (2014). http://dx.doi.org/10.
3389/fninf.2014.00078.

[25] H. Meyer, D. Schwarz, V. Wimmer, A. Schmitt, J. Kerr, B. Sakmann, M.
Helmstaedter, Inhibitory interneurons in a cortical column form hot zones
of inhibition in layers 2 and 5A, Proc. of Nat. Acad. of Sci. 108 (40) (2011).
http://dx.doi.org/10.1073/pnas.1113648108.

[26] B. Moon, H.V. Jagadish, C. Faloutsos, J.H. Saltz, Analysis of the clustering
properties of the hilbert space-filling curve, IEEE Trans. Knowl. Data Eng. 13 (1)
(2001) 124–141. http://dx.doi.org/10.1109/69.908985.

[27] Morton, A computer oriented geodetic data base and a new technique in file
sequencing, Tech. Rep., IBM Ltd., Ottawa, Ontario, Canada, 1966.

[28] G. Prasad, J. Burkart, S. Joshi, T. Nir, A. Toga, P. Thompson, A dynamical clus-
tering model of brain connectivity inspired by the n-body problem, in: Proc.
of Int’l Workshop on Multimodal Brain Image Analysis (MBIA), 2013. http:
//dx.doi.org/10.1007/978-3-319-02126-3_13.

[29] S. Rinke, M. Butz-Ostendorf, M.-A. Hermanns, M. Naveau, F. Wolf, A scalable
algorithm for simulating the structural plasticity of the brain, in: Proc. of the
28th International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD), Los Angeles, CA, USA, 2016, pp. 1–8. http:
//dx.doi/org/10.1109/SBAC-PAD.2016.9.

[30] J.K. Salmon, M.S. Warren, Skeletons from the treecode closet, J. Comput. Phys.
111 (1) (1994) 136–155. http://dx.doi.org/10.1006/jcph.1994.1050. URL http:
//www.sciencedirect.com/science/article/pii/S0021999184710503.

[31] A. van Ooyen, J. van Pelt, Activity-dependent Neurite Outgrowth and Neural
Network Development, in: Progr. in Brain Res., vol. 102, 1994. http://dx.doi.
org/10.1016/S0079-6123(08)60544-0.

http://dx.doi.org/10.1023/A:1008047806690
http://dx.doi.org/10.1145/1654059.1654124
http://dx.doi.org/10.1002/cne.21974
http://dx.doi.org/10.1002/cne.21974
http://dx.doi.org/10.1002/cne.21974
http://dx.doi.org/10.1038/324446a0
http://dx.doi.org/10.1016/S0010-4655(00)00253-8
http://dx.doi.org/10.1016/S0010-4655(00)00253-8
http://dx.doi.org/10.1016/S0010-4655(00)00253-8
http://arxiv.org/abs/0101148v1
http://dx.doi.org/10.1016/j.cpc.2006.10.001
http://arxiv.org/abs/0703526
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb7
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb7
http://dx.doi.org/10.3389/fnsyn.2014.00007
http://dx.doi.org/10.1371/journal.pcbi.1003259
http://dx.doi.org/10.1145/2503210.2503277
http://dx.doi.org/10.1016/j.psychres.2004.11.004
http://dx.doi.org/10.1007/BF00318417
http://dx.doi.org/10.1016/j.neuron.2006.02.017
http://dx.doi.org/10.1016/j.neuron.2006.02.017
http://dx.doi.org/10.1016/j.neuron.2006.02.017
http://dx.doi.org/10.3389/fnana.2016.00057
http://dx.doi.org/10.3389/fnana.2016.00057
http://dx.doi.org/10.3389/fnana.2016.00057
http://dx.doi.org/10.1016/S1384-1076(96)00009-7
http://dx.doi.org/10.1016/S1384-1076(96)00009-7
http://dx.doi.org/10.1016/S1384-1076(96)00009-7
http://arxiv.org/abs/9603097v1
http://dx.doi.org/10.4249/scholarpedia.1430
http://dx.doi.org/10.1016/S0167-8191(98)00011-8
http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/10.1038/nrn1787
http://dx.doi.org/10.3389/neuro.09.031.2009
http://dx.doi.org/10.3389/neuro.09.031.2009
http://dx.doi.org/10.3389/neuro.09.031.2009
http://journal.frontiersin.org/article/10.3389/neuro.09.031.2009/full
http://journal.frontiersin.org/article/10.3389/neuro.09.031.2009/full
http://journal.frontiersin.org/article/10.3389/neuro.09.031.2009/full
http://dx.doi.org/10.1086/191215
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://dx.doi.org/10.17815/jlsrf-1-18
http://dx.doi.org/10.1038/nn.2181
http://dx.doi.org/10.1038/nn.2181
http://dx.doi.org/10.1038/nn.2181
http://dx.doi.org/10.3389/fninf.2014.00078
http://dx.doi.org/10.3389/fninf.2014.00078
http://dx.doi.org/10.3389/fninf.2014.00078
http://dx.doi.org/10.1073/pnas.1113648108
http://dx.doi.org/10.1109/69.908985
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb27
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb27
http://refhub.elsevier.com/S0743-7315(17)30331-3/sb27
http://dx.doi.org/10.1007/978-3-319-02126-3_13
http://dx.doi.org/10.1007/978-3-319-02126-3_13
http://dx.doi.org/10.1007/978-3-319-02126-3_13
http://dx.doi/org/10.1109/SBAC-PAD.2016.9
http://dx.doi/org/10.1109/SBAC-PAD.2016.9
http://dx.doi/org/10.1109/SBAC-PAD.2016.9
http://dx.doi.org/10.1006/jcph.1994.1050
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://www.sciencedirect.com/science/article/pii/S0021999184710503
http://dx.doi.org/10.1016/S0079-6123(08)60544-0
http://dx.doi.org/10.1016/S0079-6123(08)60544-0
http://dx.doi.org/10.1016/S0079-6123(08)60544-0

Please cite this article in press as: S. Rinke, et al., A scalable algorithm for simulating the structural plasticity of the brain, J. Parallel Distrib. Comput. (2018),
https://doi.org/10.1016/j.jpdc.2017.11.019.

16 S. Rinke et al. / J. Parallel Distrib. Comput. () –

[32] M.S. Warren, J.K. Salmon, A portable parallel particle program, Comput. Phys.
Comm. 87 (1–2) (1995) 266–290. http://dx.doi.org/10.1016/0010-4655(94)
00177-4.

[33] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause, P. Gibbon, A massively
parallel, multi-disciplinary Barnes-Hut tree code for extreme-scale N-body
simulations, Comput. Phys. Comm. 183 (4) (2012) 880–889. http://dx.doi.org/
10.1016/j.cpc.2011.12.013.

[34] H. Yamahachi, S. Marik, J. McManus, W. Denk, C. Gilbert, Rapid axonal sprout-
ing andpruning accompany functional reorganization in primary visual cortex,
Neuron 64 (5) (2009). http://dx.doi.org/10.1016/j.neuron.2009.11.026.

Sebastian Rinke is a research associate at the Labora-
tory for Parallel Programming at TU Darmstadt in Ger-
many. He received hisMasters degree in computer science
from TU Chemnitz in 2009. After graduation, he investi-
gated novel computer architectures for supercomputing
at the Jülich Supercomputing Centre of Forschungszen-
trum Jülich. Later, he worked on programming models
for network-attached accelerators and scalable algorithms
for brain simulation at RWTH Aachen University. In 2015,
he moved to TU Darmstadt and began to explore large-
scale natural language processing on supercomputers.

Currently, he pursues a doctoral degree in the field of scalable algorithms in
neuroscience.

Markus Butz-Ostendorf studied informatics and biology
and holds a Ph.D. in neuroanatomy. He did several post-
docs e.g. at the Bernstein Center for Computational Neuro-
science Göttingen, the Neuroscience Campus VU Univer-
siteit Amsterdam and the Forschungszentrum Jülich. His
research focus is on modeling structural plasticity in the
healthy and diseased brain. He phrased a computational
theory on the driving forces for homeostatic structural
plasticity following brain lesions. The underlying algo-
rithms are freely available in the modeling framework for
large-scale spiking neuronal networks NEST. He recently

edited Frontiers Research Topic ‘‘Anatomy and plasticity in large-scale neuronal
networks’’ and is editor of the first book on modeling structural plasticity entitled
‘‘The Rewiring Brain-A Computational Approach to Structural Plasiticity in theAdult
Brain’’, Academic Press June 2017.

Marc-AndréHermanns is a research assistant at the Jülich
Supercomputing Centre of Forschungszentrum Jülich. He
specializes in design and implementation of performance
analysis tools for one-sided communication. Further re-
search interests include scientific software development
processes and visual performance analytics. He received
his Master’s degree in computer science in 2008 from the
University of Hagen. Since 2008, he has also been an active
part of the MPI Forum working group for tools interfaces.
He is the author and co-author of several publications
on performance tools and related topics. He is currently

pursuing his Ph.D. studies on the scalable performance analysis of one-sided com-
munication.

Mikaël Naveau is a Research Engineer of the CYCERON
imaging platform. He received his M.Sc. degree in Bioin-
formatics from Paris Diderot University (France) and a
Ph.D. in Neurosciences from Caen University (France).
His research interests cover various aspects of biolog-
ical data simulation and analysis including brain func-
tional networks from the cellular to the macroscopic
scales, multimodal imaging of the brain as well as ap-
plications of high performance computing tools to the
management and analysis of large clinical and preclinical
datasets.

Felix Wolf is a full professor of parallel programming at
the Department of Computer Science of TU Darmstadt in
Germany. He specializes in software and tools for parallel
computers. After receiving his Ph.D. degree from RWTH
Aachen University in 2003, he worked more than two
years as a postdoc at the Innovative Computing Labo-
ratory of the University of Tennessee. In 2005, he was
appointed research group leader at the Jülich Supercom-
puting Center. From 2009 until recently, he was head of
Parallel Programming at the German Research School for
Simulation Sciences. Prof. Wolf has published more than

a hundred refereed articles on parallel computing, several of which have received
awards.

http://dx.doi.org/10.1016/0010-4655(94)00177-4
http://dx.doi.org/10.1016/0010-4655(94)00177-4
http://dx.doi.org/10.1016/0010-4655(94)00177-4
http://dx.doi.org/10.1016/j.cpc.2011.12.013
http://dx.doi.org/10.1016/j.cpc.2011.12.013
http://dx.doi.org/10.1016/j.cpc.2011.12.013
http://dx.doi.org/10.1016/j.neuron.2009.11.026

	A scalable algorithm for simulating the structural plasticity of the brain
	Introduction
	Related work
	The MSP model of structural plasticity
	A scalable algorithm for MSP
	Error analysis
	Summary

	Implementations of the scalable algorithm
	Simple approach
	Distribution of the tree
	Domain decomposition
	Assignment of the blocks of the decomposed domain
	The distributed tree
	Access to remote tree nodes
	Summary

	Results
	Accuracy
	Performance
	Simple approach vs. original MSP
	Distribution of the tree
	Extrapolation

	Conclusion
	Acknowledgments
	References

