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Abstract Many scientific research questions such as the drug diffusion through the
upper part of the human skin are formulated in terms of partial differential equa-
tions and their solution is numerically addressed using grid based finite element
methods. For detailed and more realistic physical models this computational task
becomes challenging and thus complex numerical codes with good scaling proper-
ties up to millions of computing cores are required. Employing empirical tests we
presented very good scaling properties for the geometric multigrid solver in [28]
using the UG4 framework that is used to address such problems. In order to further
validate the scalability of the code we applied automated performance modeling
to UG4 simulations and presented how performance bottlenecks can be detected
and resolved in [38]. In this paper we provide an overview on the obtained results,
present a more detailed analysis via performance models for the components of the
geometric multigrid solver and comment on how the performance models coincide
with our expectations.

Andreas Vogel
Goethe Universität Frankfurt, Germany e-mail: andreas.vogel@gcsc.uni-frankfurt.de

Alexandru Calotoiu
Technische Universität Darmstadt, Germany e-mail: calotoiu@cs.tu-darmstadt.de

Arne Nägel
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1 Introduction

The mathematical description for many important scientific and industrial questions
is given by a formulation in terms of partial differential equations. Numerical sim-
ulations of the modeled systems via finite element and finite volume discretizations
(e.g., [9, 13, 19]) can help to better understand the physical behavior by comparing
with measured data and ideally provide the possibility to predict physical scenarios.
Using detailed computational grids the discretization thereby leads to large sparse
systems of equations and these matrix equations can be resolved using advanced
methods of optimal order — such as the multigrid method (e.g., [9, 18]).

Looking at the variety of applications and the constantly growing computing
resources on modern supercomputers the efficient solution of partial differential
equations is an important challenge and it is advantageous to address the numer-
ous problems with a common framework. Ideally, the framework should provide
scalable and reusable components that can be applied in all of the fields of interest
and serve as a common base for the construction of applications for concrete prob-
lems. To this end the UG software framework has been developed and a renewed
implementation has been given in the current version 4.0 ([3, 36]) that pays special
attention to parallel scalability.

In order to validate the scaling properties of the software framework on such ar-
chitectures we carried out several scalability studies. Starting with a hand-crafted
analysis we presented close to optimal weak scaling properties of the geometric
multigrid solver in [28]. However, the study focussed only on a few coarse-grained
aspects leaving room for potential performance bottlenecks, that are not visible at
current scales due to a small execution constant, but may become dominant at largest
scales due to bad asymptotic behavior. Therefore, in a subsequent study we analyzed
entire UG 4 runs in [38] applying an automated performance modeling approach by
Calotoiu et al. [10] to UG 4 simulations. The modeling approach creates perfor-
mance models at a function level granularity and uses few measurement runs at
smaller core counts in order to predict the asymptotic behavior of each code kernel
at largest scales. By detecting bad asymptotic behavior for code kernels in the grid
setup phase we were able to detect and remove a performance bottleneck.

In this paper we focus on more detailed models for the geometric multigrid solver
and explain how the observed performance models meet our expectations. Since the
geometric multigrid solver is one of the crucial aspects for simulation runs in terms
of scalability, we have evaluated in more depth the models for fine-grained kernels
of the employed geometric multigrid solver and compare the observed behavior to
the intended implementation.

The main aspects of this report are:
• Summarize the automated modeling approach and obtained results for its ap-

plication to the simulation framework UG 4.
• Provide a detailed analysis for components of the geometric multigrid solver.
• Validation of the scaling behavior for the multigrid solver components.
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The remainder of this paper is organized as follows. In Sect. 2, the UG 4 sim-
ulation environment is presented with focus on the parallelization aspects of the
parallel geometric multigrid (Sect. 2.2) and the skin permeation problem (Sect. 2.3)
used in the subsequent studies. Sect. 3 outlines the performance modeling approach.
In Sect. 4 we briefly summarize previously obtained analysis results for entire sim-
ulation runs and then present a detailed performance modeling for the geometric
multigrid solver used in a weak scaling study for the skin problem. Sect. 5 and
Sect. 6 are dedicated to related work and concluding remarks.

2 The UG4 Simulation Framework

As a real world target application code for the performance modeling approach we
will focus on the simulation toolbox UG 4 ([36]). The software framework is written
in C++ and uses grid-based methods to numerically address the solution of partial
differential equations via finite-element or finite-volume methods. With the main
goal to address questions from biology, technology, geology and finance with one
common effort, several components are reused in all types of applications and thus
the performance modeling for those program parts provides insight into the perfor-
mance of all these applications. In the following we give a brief overview on the
used numerical methods and especially comment on the parallelization aspects.

2.1 Concepts and numerical methods

In order to construct the required geometries the meshing software ProMesh ([2,
27]) is used that shares code parts with the UG 4 library. Meshes can be com-
posed of different element types (e.g., tetrahedron, pyramid, prism and hexahedron
in 3d) and subset assignment is used to distinguish parts of the domain with different
physics or where boundary conditions are to be set. Once loaded in UG 4 meshes
are further processed to create distributed, unstructured, adaptive multigrid hierar-
chies with or without hanging nodes. Implemented load-balancing strategies ([27])
range from simple but fast bisection algorithms to more advanced strategies includ-
ing usage of external algorithms such as ParMetis ([1]). In this study, however, we
restrict ourselves to a 3d hexahedral grid hierarchy generated through globally ap-
plied anisotropic refinement (cf. [38]). A study for adaptive hierarchies with hanging
nodes is work in progress and will be considered in a subsequent study.

A flexible and combinable discretization module allows to combine different
kinds of physical problems discretized by finite-element and finite-volume methods
(e.g., [9, 13, 19]) and boundary conditions in a modular way to build a new physical
problem selecting from basic building blocks ([36, 37]). As algebraic structures for
the discretized solutions and associated matrices , block vectors and a CSR (com-
pressed sparse row) matrix implementations are provided. For the parallel solution
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Fig. 1 Illustration for a 1d process hierarchy on 4 processes. Ghost elements (red) are sent during
redistribution. Data is communicated between ghosts and actual elements through vertical inter-
faces (orange) (cf. [27, 28])

.

of such matrix equations several solvers are implemented, including Krylov meth-
ods such as CG and BiCGStab and preconditioners such as Jacobi, Gauss-Seidel,
incomplete LU factorization, ILUT and block versions of these types (e.g., [29]).
In addition, a strong focus is on multigrid methods (e.g. [18]) and geometric and
algebraic multigrid approaches ([20, 28]).

The parallelization for the usage on massively parallel computing clusters with
hundred thousands of cores is achieved using MPI. The separate library called PCL
(parallel communication layer, [28]) builds on top of MPI and is used to ease the
graph-based parallelization. Both, the parallelization of the computing grid – assign-
ing a part of the multigrid hierarchy to each process – and of the algebraic structures
are programmed based on the PCL. By storing parallel copies on each process in a
well-defined order in interface containers identification is performed in an efficient
way [27, 28, 36], and global IDs are dispensable.

In order to hide parallelization aspects and ease the usage for beginners the script-
ing language Lua ([21]) is used as end-user interface. A flexible plugin system al-
lows to add additional functionality if required.

2.2 Parallel hierarchical geometric multigrid

The multigrid method ([19]) is used to solve large sparse systems of equations that
arise typically by the discretization of some partial differential equation. We briefly
recap the idea of the algorithm and our modifications and implementation ([28]) for
the parallel version. Given the linear equation system ALxL = bL on the finest grid
level L, the desired solution xL is computed iteratively: Starting with some arbitrary
initial guess xL, in every iteration the defect dL = bL−ALxL is used to compute a
multigrid correction cL = ML(dL), where ML is the multigrid operator, that is added
to the approximate solution xL := xL + cL. In order to compute the correction cL
not only the fine grid matrix AL is used but several auxiliary coarse grid matrices
Al ,LB ≤ l ≤ L, are employed, where LB denotes the base level. The multigrid cy-
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cle is then defined in a recursive manner: given a defect dl on a certain level l the
correction is first partly computed via a smoothing operator (e.g. Jacobi iteration).
Then the defect is transferred to the next coarser level, where the algorithm is ap-
plied to the restricted defect dl−1. The thereby computed coarse grid correction cl−1
is then prolongated to the finer level and added to the correction on level l, followed
by some postsmoothing. Once the algorithm reaches the base level LB, the correc-
tion is computed exactly as cl = A−1

l dl by, e.g., using LU factorization. Algorithm
1 summarizes this procedure.

Algorithm 1 cl = Ml(dl) ([19, 28])
Requirement: dl = bl−Alxl
if l = LB then

Base solver: cl = Al
−1dl

return cl
else

Initialization: d0
l := dl , c0

l := 0
(Pre-)Smoothing for k = 1, . . . ,ν1:

c = Sl(dk−1
l ),

dk
l = dk−1

l −Alc, ck
l = ck−1

l + c
Restriction: dl−1 = PT

l dν1
l

Coarse grid correction: cl−1 = Ml−1(dl−1)
Prolongation:

cν1+1
l = cν1

l +Plcl−1,
dν1+1

l = dν1
l −AlPlcl−1

(Post-)Smoothing for k = 1, . . . ,ν2:
c = Sl(d

ν1+k
l ),

dν1+1+k
l = dν1+k

l −Alc, cν1+1+k
l = cν1+k

l + c
return cν1+1+ν2

l
end if

The matrix equations for complex problems can easily grow beyond the size
of billions of unknowns. In order to solve such problems, massively parallel lin-
ear solvers with optimal complexity have to be used. The multigrid algorithm only
depends linearly on the number of unknowns and therefore good weak scaling prop-
erties are to be expected. As demonstrated in [28] geometric multigrid solvers can
exhibit nearly perfect weak scalability when employed in massively parallel envi-
ronments with hundred thousands of computing cores.

To this end, the components of the algorithm must be parallelized. The basic idea
is to construct a distributed multigrid hierarchy as follows:

1. Start with a coarse grid on a small number of processes.
2. Refine the grid several times to create additional hierarchy levels.
3. Redistribute the finest level of the hierarchy to a larger set of processes.
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Fig. 2 Illustration for a 1d parallel multigrid hierarchy distributed onto two processes. Parallel
copies are identified via horizontal (blue) and vertical interfaces (orange) (from [38], cf. also [28])

4. Repeat at (2) until the desired grid resolution is obtained. At this point all active
processes should contain a part of the finest level of the multigrid hierarchy.

Refining the grid, new levels of the multigrid hierarchy are created and after some
refinements the finest grid level is distributed to a larger set of processes and commu-
nication structures (called vertical interfaces) are established. This process can be
iterated, successively creating a tree structure of processes holding parts of the hier-
archical grid. Fig. 1 shows a process hierarchy for a distributed multigrid hierarchy
on four processes (cf. [27, 28]). The communication structures in vertical direction
are used to parallelize the transfer between the grid levels, i.e. to implement the
transfer of data between grid levels at restriction and prolongation phases within a
multigrid cycle. However, if no vertical interface is present the transfer operators act
completely process-locally. For the communication within multigrid smoothers on
each grid level additional horizontal interfaces are required. These interfaces will be
used to compute the level-wise correction in a consistent way. An illustration for the
resulting hierarchy distribution and interfaces is given in Fig. 2 (cf. [27, 28, 37, 38]).
In order to compute the required coarse grid matrices, each process calculates the
contribution of the grid part assigned to the process itself. Thus, the matrices are
stored in parallel in an additive fashion and no communication is required for this
setup.

A Jacobi smoother has very good properties regarding scalability, however it
may not be suitable for more complicated problems (e.g. with anisotropic coeffi-
cients or anisotropic grids). To handle this issue for anisotropic problems, we use
anisotropic refinement in order to construct grid hierarchies with isotropic elements
from anisotropic coarse grids: Refining only those edges in the computing grid that
are longer than a given threshold, and halving this threshold in each step, the ap-
proach yields a grid hierarchy which contains anisotropic elements on lower levels
and more and more isotropic elements on higher levels. An illustration for a resulting
hierarchy is shown in Fig. 3. The used refinement strategy produces non-adaptive
grids, i.e. meshes that fully cover the physical domain. This eases the load-balancing
compared to adaptive meshes where huge differences in the spatial resolution and
thereby element distribution may occur during refinement and redistribution is nec-
essary. In this work we focused on the non-adaptive strategy only, however, plan to
report on the adaptive case in future works.
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Reconsidering the hierarchical distribution approach described above, lower lev-
els of the multigrid hierarchy are only contained on a smaller number of processes.
This is well suited for fast parallel smoothing, prolongation and restriction opera-
tions thanks to maintaining a good ratio between computation and communication
costs on all levels. A smoothing operation on coarser levels with only few inner
unknowns would be dominated by the communication and thus the work is agglom-
erated to fewer processes resulting in idle processes on coarse levels. However, the
work on finer grid levels is dominating the overall runtime.

2.3 Application: Human skin permeation

As an exemplary application from the field of computational pharmacy we focus on
the permeation of substances through the human skin. These simulations consider
the outermost part of the epidermis, called stratum corneum, and are used to estimate
the throughput of chemical exposures. An overview on different descriptions of the
biological and geometric approaches to simulate such a setting can be found in [24]
and the references therein. For this study, we use the same setup as used in [38]:
The transport in two subdomains s ∈ {cor, lip} (corneocyte, lipid) is described by
the diffusion equation

∂tcs(t,x) = ∇ · (Ds∇cs(t,x)),

using a subdomain-wise constant diffusion coefficient Ds. We use a 3d brick-and-
mortar model consisting of highly anisotropic hexahedral elements with aspect ra-
tios as bad as 1/300 in the coarse grid. Employing anisotropic refinements we con-
struct a grid hierarchy with better and better aspect ratios on finer levels. The result-
ing grid hierarchy is displayed in Fig. 3. For a more detailed presentation we refer
to [38].

3 Automated Performance Modeling

The automated modeling approach used to analyze the UG 4 framework has been
presented by Calotoiu et al. in [10, 11]. Here, we give a brief overview on the pro-
cedure and ideas. For further details please refer to [10, 31, 38, 40].

Automated performance modeling is used to empirically determine the asymp-
totic scaling behavior for a large number of fine-grained code kernels. These scaling
models can then be inspected and compared to the expected complexity: A dis-
crepancy indicates a potential scalability bug that can be addressed and hopefully
removed by the code developers. If no such scalability issues are found this can be
taken as a strong evidence that no unexpected scalability problems are present. In
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Fig. 3 Grid hierarchy created by anisotropic refinement for the 3d brick-and-mortar model (in
exploded view). The aspect ratios of the grid elements improves with every refinement step

addition the created models can also be used to predict the resource consumption at
larger core counts if required.

In order to create the models, the simulation framework UG 4 has been instru-
mented to measure relevant metrics such as time, bytes sent/received or floating-
point operations in program regions at a function level granularity. Running simu-
lations at different core counts now offers the opportunity to determine via cross-
validation [26] which choice of parameters in the performance model normal form
(PMNF, [10])

f (p) =
n

∑
k=1

ck · pik · log jk
2 (p),

with ik, jk ∈ I,J ⊂ Q, best fits the measurements. The approach is applicable to
strong and weak scaling. In this study, however, we have focused on weak scaling
only. In order to account for jitter, several runs for every core count have to executed.
The required effort for this approach therefore is to run the application a few times
at a few core counts.

For the correct analysis of the multigrid algorithm in weak scaling studies, a more
careful approach than just analyzing the code kernels directly has to be taken ([38]).
This is due to the following observation: within a weak scaling study the problem
size has to be increased and for multigrid approaches this leads to an increase in
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the number of grid levels. The multigrid algorithm - traversing the multigrid hierar-
chy top-down and then again bottom-up, applying smoothers and level transfers for
every level - will thus create a different call tree at different core counts for multi-
grid functions due to the varying numbers of grid levels. However, the performance
modeling approach usually assumes the same call tree for all core counts. Therefore,
we preprocess the call tree: only kernels present in all measurements remain in the
modified call tree and measurement data of code kernels not present in modified call
trees is added to the parent kernel. This approach is not only limited to multigrid set-
tings but may be useful for all codes that use recursive calls whose invocation count
increases within a scaling study.

4 Results

The automated performance modeling (Sect. 3) has been applied to entire simulation
runs of the UG 4 simulation framework (Sect. 2) and several aspects of the analysis
have been reported in [38]. In order to analyze and validate the code behavior the
proceeding and reasoning is as follows: We run several simulations at different core
counts p and measure detailed metric information (times, bytes sent) at a function
level granularity. By this, we receive fine grained information for small code ker-
nels. For all of these kernels and all available metrics we create performance mod-
els and then rank these by their asymptotic behavior with respect to the core count.
All code kernels with constant or only logarithmical dependency are considered op-
timal. However, if some code kernel, e.g., in the multigrid method would show a
linear or quadratic dependency, this would not match our performance expectations
and we consider it a scalability bug that has to be addressed and removed. Inspect-
ing all measured code kernels thus provides us with a fine grained information for
different parts of the simulation code. Given that all code kernels show an optimal
dependency we finally obtain a validation of the expected scaling properties.

Here, we first briefly give an overview on the results presented in [38] and then
show more detailed results focussing on the multigrid kernels and their scaling prop-
erties.

4.1 Analysis for grid hierarchy setup and solver comparison

In a first test, we analyzed entire runs in a weak scaling study for the human
skin permeation simulating the steady-state concentration distribution on a three-
dimensional brick-and-mortar skin geometry. A scalability issue has been detected
by the performance modeling that can be explained and resolved ([38]): At the ini-
tialization of the multigrid hierarchy an MPI Allreduce operation for an array of
length p was used to inform each process about its intended communicator group
membership. The resulting p ·O(MPI Allreduce) dependency has been addressed
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by using MPI Comm split instead that can be implemented with a O(log2 p) [32]
behavior. By this, we were able to remove this potential bottleneck at this stage of
code development.

In a second study, we provided a comparison for two different types of solvers:
the geometric multigrid solver has been compared in a weak scaling study to the
unpreconditioned conjugate gradient (CG) method. The unpreconditioned conju-
gate gradient method is known to have unpleasant weak-scaling properties due to
the increase by a factor of two for the iteration count resulting in a O(

√
p) depen-

dency (see [38] for a detailed theoretical analysis). Due to the created models we
confirmed that the theoretical expectations are met by our implementation of the
parallel solvers.

4.2 Scalability of code kernels in the geometric multigrid

In this section we give a more detailed view on the code kernels for the geomet-
ric multigrid. For the analysis of the multigrid solver we consider the human skin
permeation model: We compute the steady state of the concentration distribution
for the brick-and-mortar model described in Sect. 2.3 and choose the diffusion pa-
rameter to Dcor = 10−3 and Dlip = 1. For the solution of the arising linear system of
equations, the geometric multigrid solver is used. As acceleration an outer conjugate
gradient method is applied. For the smoothing a damped Jacobi is employed with
three smoothing steps. As cycle type the V-cycle is used and as base solver we use
a LU factorization. The stopping criterion for the solver is the reduction of the ab-
solute residuum to 10−10. The anisotropic refinement as laid out in Sect. 2.2 is used
to enhance the aspect ratios of the hierarchy from level to level. Once satisfactory
ratios are reached, this level is used as base level for the multigrid algorithm.

In Fig. 4 we present the accumulated wallclock times for exemplary coarse-grain
kernels of the multigrid method and provide information on the number of used
cores and the size of the solved matrix system (degrees of freedom). Please note that
the iteration counts are bounded as expected for a multigrid method. Since the as-
sembling for the matrix is an inherent parallel process without any communication
it can be performed - given an optimal load-balancing - with constant wall-clock
time in the weak scaling. This is confirmed by the generated performance model.
All other shown aspects of the multigrid method show a logarithmical dependency.
This is due to the fact that the number of involved coarse grid levels L = O(log p)
depends on the number of processes in a weak scaling. We consider this logarith-
mical dependency still as optimal since even allreduce operations implemented in a
tree-like fashion will show the same behavior and are used to check for convergence.

The performance models for several code kernels are shown in Tab. 1. Please
note that all code kernels in our measurements have shown constant or logarith-
mical dependency with respect to the number of processes. Here, we show some
selected kernels in order to give more details on the parallelization aspects of the
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p L DoF ngmg

16 6 290,421 25
128 7 2,271,049 27

1024 8 17,961,489 29
8192 9 142,869,025 29

65536 10 1,139,670,081 29

Kernel Model for time [s]

GMG Init 8.17+0.002 · log2 p
GMG Cycle 19.41+0.30 · log2 p
Matrix Setup 1.78
PreSmoothing 0.850+0.015 · log2 p
Prolongation 0.081+0.001 · log2 p

Fig. 4 Measured accumulated wallclock times (marks) and models (lines) for the skin 3d problem
(self time and subroutines). Shown are: (a) (cf. [38]) initialization of the multigrid solver and time
spent in the multigrid cycle, (b) times for coarse matrix assembling, smoothing and prolongation.
(c) (from [38]) Number of grid refinements (L), degrees of freedom (DoF) and number of iterations
of the solver (ngmg). (d) Performance models for the kernels shown in the graphs
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Table 1 Skin 3d study: Models for self-time and bytes sent for selected kernels of the geometric
multigrid method with outer CG iteration. |1−R2|, the absolute difference between R2 and the
optimum scaled by 10−3, can be considered a normalized error

Kernel

Time Bytes sent

Model |1−R2| Model |1−R2|

time = f (p)[ms] [10−3] bytes = f (p) [10−3]

CG→ GMG→ PreSmooth→ Jacobi→ apply
→ step

18.9+0.4 · log p 42.6 0 0.0

CG→ GMG→ PreSmooth→ Jacobi→ apply
→ AdditiveToConsistent→ MPI Isend

1.51+1.12 · log p 36.0 5.77 ·105 +0.95 ·105 · log p 53.2

CG→ GMG→ Restrict→ init 510 0.0 0 0.0
CG→ GMG→ Restrict→ apply 51.0+0.05 · log p 378 0 0.0
CG→ norm 3.52+0.002 · log2 p 544 0 0.0
CG→ norm→ AdditiveToUnique→ MPI Isend 0.52+0.45 · log p 38.9 1.95 ·105 +0.34 ·105 · log p 45.5
CG→ norm→ allreduce→ MPI Allreduce 1.67+0.92 · log2 p 7.5 O(MPI Allreduce) 0.0

multigrid method. For a more detailed description on the mathematical algorithm
and parallelization aspects we refer to Sect. 2 and [28].

The presmoothing is performed in a two step fashion: First, the Jacobi iteration
is applied on process-wise data structures resulting in no data transfer (CG→ GMG→
PreSmooth→ Jacobi→ apply→ step). In a second phase update information is
exchanged between nearest neighbors in order to gain a consistent update resulting
in data transfer (PreSmooth → Jacobi → apply → AdditiveToConsistent →
MPI Isend). All behaviors are found to depend logarithmically due to the increase
in grid levels that are using this method.

The grid transfer is performed process-wise as well (Restrict → apply). No
communication is needed unless vertical interfaces are present. The setup phase
(Restrict→ init) simply assembles the transfer operators into a matrix structure
on each process and a constant time within a weak scaling is thus observed.

Finally, we show some kernels for the outer CG iteration. In order to check for
convergence, the norm of a defect vector is computed in each iteration step. After
a nearest neighbor communication in order to change the storage type of the vector
(CG→ norm→ AdditiveToUnique→ MPI Isend), the norm is first computed on
each process (CG→ norm) and then summed up globally (CG→ norm→ allreduce
→ MPI Allreduce).

This way our expectations for the code kernels of the multigrid solver are con-
firmed and we have strong evidence that only logarithmical complexity with respect
to the core count (or better) occurs.

5 Related Work

Numerous analytical and automated performance modeling approaches have been
proposed and developed. The field ranges from manual models [8, 25], capable to
effectively describe characteristics of entire tool chains, over source-code annota-
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tions [35] to specialized languages [33]. Automated modeling methods are devel-
oped based on machine-learning approaches [22], and via extrapolating trace mea-
surements in [42] (extraplating from single-node to parallel architectures), in [41]
(predicting communication costs at large core counts) and in [12] (extraplating
based on a set of canonical functions). The Dimemas simulator provides tools for
performance analysis in message-passing programs [16].

Various frameworks to solve partial differential equations use multigrid methods.
Highly scalable multigrid methods are presented, in [7], [17], [30], [34], and [39] for
geometric multigrid, and in [4], [5], and [6] for algebraic multigrid methods. Work
on performance modeling for multigrid can be found in [15, 38] for geometric and
in [14] for algebraic multigrid. For an overview for the numerical treatment of skin
permeation, we refer to [23] and the references therein.

6 Conclusion

The numerical simulation framework UG4 consists of half a million lines of code
and is used to address problems formulated in terms of partial differential equa-
tions employing multigrid methods to solve arising large sparse matrix equations.
In order to analyze, predict and improve the scaling behavior of UG4 we have con-
ducted a performance modeling at code kernel granularity. Inspecting automated
performance models we validated the scalability of entire simulations and presented
the close to optimal weak scaling properties for the components of the employed
geometric multigrid method that only depend logarithmically on the core count.
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