
Off-Road Performance Modeling –
How to Deal with Segmented Data

M. Kashif Ilyas, Alexandru Calotoiu, and Felix Wolf

Technische Universität Darmstadt, 64289 Darmstadt, Germany
cashif.pk@gmail.com, {calotoiu,wolf}@cs.tu-darmstadt.de

Abstract. Besides correctness, scalability is one of the top priorities
of parallel programmers. With manual analytical performance model-
ing often being too laborious, developers increasingly resort to empirical
performance modeling as a viable alternative, which learns performance
models from a limited amount of performance measurements. Although
powerful automatic techniques exist for this purpose, they usually strug-
gle with the situation where performance data representing two or more
different phenomena are conflated into a single performance model. This
not only generates an inaccurate model for the given data, but can also
either fail to point out existing scalability issues or create the appear-
ance of such issues when none are present. In this paper, we present an
algorithm to detect segmentation in a sequence of performance measure-
ments and estimate the point where the behavior changes. Our method
correctly identified segmentation in more than 80% of 5.2 million syn-
thetic tests and confirmed expected segmentation in three application
case studies.

Keywords: parallel computing, performance tools, performance modeling

1 Introduction

The increasing number of processors in our computing hardware poses new chal-
lenges to developers. Increasing software parallelism challenges traditional ways
of writing and debugging programs. Badly designed parallel programs may fail
to reach the expected performance when run on a larger number of processors.
Therefore, finding and removing scalability bugs is key to the achievement of
sustainable parallel performance. The term scalability bug refers to those parts
of a program whose scaling behavior is unintentionally poor, i.e., which perform
worse than expected when using a larger number of processors [2]. As scalability
bugs do not become manifest unless the program is actually run at larger scales,
it is very difficult for developers to discover them. Often, they are found when
the software is already deployed and changes are more expensive.

One approach capable of finding such bugs early and easily is empirical per-
formance modeling: a performance model of a program is built from measure-
ments of relevant performance metrics. We can do this even for individual regions



of the code, henceforth called kernels. Typically, we run the program on different
numbers of processors p and and measure the metric m of interest for each run,
creating for each kernel data points of the form (p,m). These data points are then
analyzed using regression and turned into a mathematical performance model of
the kernel. Empirical models are not necessarily as accurate as analytical models
but are good enough to show the scaling trend of the kernel. Problematic kernels
can then be examined by the developer in more detail. The whole process can
be automated to obtain empirical models for all possible kernels of a program,
hence avoiding the risk of overlooking any critical kernel, at least for the given
input set.

Extra-P [2] is an automatic tool that implements the above approach. It
generates empirical models for each kernel (i.e., call path) of a program in a
human-readable form. Extra-P also extrapolates performance to a chosen target
scale such that it can be compared with developer expectations. While Extra-P’s
workflow is quite effective in finding scalability bugs, it fails if the input data
represents two or more distinct behaviors of a program. Extra-P assumes that
the performance of a kernel can be characterized by a single function, however,
some kernels do not follow a single trend in every situation. There are many
practical scenarios where programs change their behavior. For example, modern
MPI implementations switch from one algorithm to another, depending on the
message size, the number of processes, or the network topology [9]. Overlooking
such segmentation not only results in the creation of inaccurate models but also
poses the risk of ignoring potential scalability bugs or confusing the user with
false positives.

In this paper, we introduce a novel method to detect such segmentation
before generating empirical models. Driven by the requirements of performance
modeling in HPC, where trial runs can be quite expensive, a particular challenge
our method addresses is the low number of data points. Specifically, we propose

– an algorithm to find segmentation in data with as few as six points, and
– a method to estimate the change point.

Our approach (i) correctly identified segmentation in more than 80% of more
than five million randomly generated datasets and (ii) confirmed expected seg-
mented behavior in three realistic use cases, including a climate code, a simple
matrix multiplication benchmark, and several MPI collective operations.

In the next section, we review the existing workflow of Extra-P and explain
how it struggles with segmented data. In Section 3, we explain our approach
with the help of an example. We demonstrate its effectiveness in Section 4. In
Section 5, we compare it to related work and argue why it fits our purpose best.
We conclude the paper in Section 6, where we also discuss future work.

2 Performance Modeling with Extra-P

As our work is intended to improve Extra-P, we briefly review how it generates
models from performance data. Extra-P exploits the observation that perfor-
mance models of most practical programs can be expressed as n terms involving



2 4 6 8 10

0

20

40

(1, 1) (2, 4)

(3, 9)

(4, 16)

(5, 25)

(6, 36)

(7, 37) (8, 38)

(9, 39) (10, 40)

Number of processors (p)

R
u
n
ti

m
e

p2

30 + p

log22(p)

Fig. 1: Data points from two different functions (solid lines) and the model gen-
erated by Extra-P (dashed line).

logarithms and powers of the model parameter p, which is usually the num-
ber of processors but can also be something different like the input size. Hence,
performance models can be represented in the performance model normal form
(PMNF):

f(p) =

n∑
k=1

ck · pik · logjk2 (p)

As identification of scalability bugs rather than prediction accuracy is the
primary objective of Extra-P, the sets I and J from which ik and jk are selected,
do not need to be arbitrarily large to obtain reasonably accurate models. The
authors suggest n = 2, I =

{
0
2 ,

1
2 ,

2
2 ,

3
2 ,

4
2 ,

5
2 ,

6
2

}
and J = {0, 1, 2} as default. The

generation algorithm starts with a set of simple (i.e., short) candidate models and
chooses the winner using K-fold validation. The size of the candidates is gradually
increased until either the maximum of n is reached or signs of overfitting appear.

This approach works as long as all the performance measurements represent
a single behavior. However, if a certain kernel exhibits segmented behavior, i.e.,
its performance trend changes after a certain point, the resulting model will be
inaccurate. To clarify our point, we consider an example of segmented data and
the corresponding model generated by Extra-P, which are shown in Figure 1.
The data was generated using the functions f1(p) = p2 for p ∈ {1, 2, ..., 5}
and f2(p) = 30 + p for p ∈ {6, 7, ..., 10}. With these data as input, Extra-P
generates the model f(p) = 1.65 + 3.97 · log2

2(p). This is misleading because the
actual functions are quadratic and linear, but not logarithmic. At p = 1024, the
prediction error of the model is almost 62%.

3 Approach

Our algorithm is designed to help Extra-P detect segmentation in the data before
models are generated. Its input is a set of performance measurements, while the



Performance
profiles

Performance
profiles

Performance
profiles

Create
subsets

Subsets
s1, ..., sr
Subsets
s1, ..., sr
Subsets
s1, ..., sr

Generate
models

Models
m1, ...,mr

Models
m1, ...,mr

Models
m1, ...,mr

Match?
Analyze
pattern

Change
point

Change
point

Change
pointsNot

Segmented

Yes

No

Fig. 2: Steps involved in segematation detection and change-point identification.

output indicates whether the given measurements show segmented behavior or
not. If the data turns out to be segmented, the algorithm tries to identify the
change point. With this information, Extra-P can generate separate models for
each segment and/or request new measurements if any segment is too small for
model generation. Figure 2 highlights the different steps of our algorithm. Below,
we discuss each step in detail and apply it to the example from Section 2.

3.1 Detecting Segmentation

Our algorithm rests on the observation that models generated from homogeneous
subsets of the input data set (i.e., subsets representing a single behavior), will
differ from models created from heterogeneous subsets (i.e., subsets representing
multiple behaviors). In this work we focus on subsets defined by consecutive data
points corresponding to subintervals of the input parameter.

As an example, we try to divide the segmented data from Figure 1 into
subsets representing five consecutive values of the model parameter p. We use
a sliding window of five measurement points to create subsets which results in
a total of six subsets, each containing five points. The first subset s1 contains
the first five points {1, 4, 9, 16, 25}, the second subset s2 contains the five points
starting from second point {4, 9, 16, 25, 36}, and so on. All these subsets are
listed in Table 1. Note that the subsets s1, s2, and s6 are homogeneous, as they
exhibit a single behavior while the subsets s3, s4, and s5 are heterogeneous,
mixing points from the two behaviors. Then, we create models m1, . . . ,mr for
each of the subsets s1, . . . , sr, respectively. The number of subsets r depends
on the number of input data points and on the number of values each subset
is allowed to contain. Ideally, each subset should contain five data points, as
recommended in the original research work by Calotoiu et. al [2]. Below, we
introduce two model properties that can be used to decide whether a subset is
segmented or not.

Absolute nRSS. We define a generalized error value for each model, which is
a normalized form of the common RSS. Residual Sum of Squares (RSS) is a
measure of the discrepancy between the data and an estimation model and is
used to measure the goodness of a model. The normalized residual sum of squares
(nRSS) is calculated by dividing the square root of the RSS by the mean of the



Table 1: Subsets created for the data from Figure 1, their respective models, and
their nRSS values. Heterogeneous subsets are highlighted.

Subset Model nRSS ε

s1 = {1, 4, 9, 16, 25} p2 ≈ 0 −
s2 = {4, 9, 16, 25, 36} p2 ≈ 0 ≈ 1
s3 = {9, 16, 25, 36, 37} −49.41 + 33.45 · √p 0.18 5 · 1018

s4 = {16, 25, 36, 37, 38} −28.53 + 23.17 · log2(p) 0.19 1.05
s5 = {25, 36, 37, 38, 39} −6.19 + 14.83 · log2(p) 0.16 0.84
s6 = {36, 37, 38, 39, 40} 30 + p ≈ 0 ≈ 0

points used to generate the models:

nRSS =

√
RSS

ȳ

Calculating the nRSS for each subset yields r error terms e1, . . . , er. For our
example data from Figure 1, we get six models and their corresponding nRSS
values, which are shown in Table 1. The nRSS of the heterogeneous subsets is
much higher than the one of the homogeneous subsets because a well-fitting
model cannot be found for such diverse data. We identify a subset si as poten-
tially heterogeneous if its nRSS ei > 0.1 and homogeneous otherwise. We classify
a data set as segmented if the maximum absolute value of the nRSS across all
subsets exceeds a threshold of θ = 0.5, an empirically determined value reflect-
ing our experiences after analyzing more than five million synthetic data sets.
In most cases, using θ = 0.5 correctly identifies segmented behavior if it exists,
while producing only few false positives (i.e., non-segmented behavior falsely
identified as segmented).

Relative nRSS. The secondary indicator is the relative nRSS, which is the ratio
of the nRSS values of two consecutive subsets. It is applied only when 0.1 ≤
nRSS ≤ 0.5. The relative nRSS ε can be mathematically expressed as εi =
ei+1/(ei + η). η is a minimal non-zero value added to avoid division by zero.
This criterion has the advantage that it rules out false positives that occur when
noise lifts all errors above the threshold. It also covers those scenarios where
the absolute nRSS values are smaller than the threshold but the heterogeneous
subsets still show a much higher nRSS than the homogeneous ones. We found
that ε > 4 provides a good additional criterion to determine segmentation when
0.1 ≤ nRSS ≤ 0.5.

In our example from Table 1, it is clear that the heterogeneous subsets s3, s4

and s5 have much higher absolute nRSS values than the homogeneous ones, but
the maximum resides still below the threshold. However, because ε3 >> 4 we
still conclude correctly that the data is segmented.

3.2 Identifying the Change Point

Identifying the change point goes beyond a binary decision whether the data is
segmented or not. If a change point can be detected, then a separate model for



s3

s4

s5

Fig. 3: Selection of points for the subsets s3, s4 and s5. Squares and circles
represent data points from different behaviors, the sixth point is common to
both behaviors.

each behavior, divided by the change point, can be determined, provided enough
data points are available. To accomplish this, we tag each subset with a zero if
its nRSS classifies it as homogeneous and with a one otherwise. For the data
from Table 1, we obtain the pattern 001110.

For the sake of simplicity, we assume that there is a single change point in
the data, but the same method can be extended to multiple change points via
recursion. Since we create subsets containing five points and we assume that
only two different behaviors are present in the data, at most four subsets can
be heterogeneous (one point representing the first behavior combined with four
points representing the second one, then two combined with three, and so forth).
If the two behaviors share a common data point such as in the example, only
three such subsets will exist. Therefore, each sequence of values corresponding to
the series of subsets will contain either three or four ones, preceded and followed
by an arbitrary number of zeros.

The location of the change point can therefore be deduced by examining
only the pattern of ones. Practically, we select the subset corresponding to the
second one in the pattern. If a common data point for both behaviors exists and
therefore the pattern contains three ones, then the change point will be the third
data point of that subset. If no common data point for both behaviors exists,
then the change point will be between the third and the fourth data point of
that subset. In the example, the relevant subsets are s3, s4, and s5, thus the
change point is p = 6, as shown in Figure 3. In most cases, we do not see a single
change point, but two points between which the change happens.

4 Evaluation

To ensure our method correctly distinguishes segmented from non-segmented be-
havior, we first applied it to millions of synthetic data sets. After that, we tested
it with application data known to be segmented, which we correctly identified
as such without producing false positives.

4.1 Synthetic Data

We ran our algorithm on data from two categories of randomly generated func-
tions:

– Functions guaranteed to be within the search space, with randomly generated
coefficients and exponents chosen at random from those present in the search



0 5 10

0

0.5

1

·105

Number of processors (p)

M
et

ri
c

o
f

in
te

re
st

67 + 63 · p0.125 · log22(p)

93 + 64 · p1.67 · log32(p)

(a) True positive

0 5 10

0

1

2

3
·104

Number of processors (p)
M

et
ri

c
o
f

in
te

re
st

97 + 12 · x · log52(p)

79 + 85 · x0.43 · log42(p)

(b) False negative

Fig. 4: Two examples from synthetic data set used for evaluation of the algo-
rithm. Both functions were generated with random coefficients and exponents
and a 5% of noise was added. In first case, the segmentation was correctly de-
tected while the second case is a false negative because algorithm failed to detect
segmentation.

space. These functions can be exactly matched by the algorithm and errors
will only appear due to noise or segmentation.

– Functions not guaranteed to be within the search space, with randomly gen-
erated exponents and coefficients. These functions are unlikely be matched
exactly and likely to have larger overall errors, therefore making the detec-
tion of segmented behavior harder.

For each category, we generated tests using data from one function, which
should not be marked as segmented, and from two different functions, which
should be marked as segmented. A failure in the first case is a false positive,
while a failure in the second case is a false negative. Additionally, to observe the
accuracy of our algorithms under production conditions, we applied different
levels of noise ranging from 0% to 15%. For a noise level of x%, we added a
randomly selected percentage of noise between -x and x to the original value. For
each noise level, Figure 5a presents the percentages where the algorithm correctly
identified the data as segmented or not segmented. The algorithm was always
provided with ten data points, either all from one function or equally divided
among two different functions. Figure 4a shows an example where randomly
generated data was correctly detected as segmented while Figure 4b represents
a case of false negative.



0% 5% 10% 15%

0

20

40

60

80

100

Noise

C
o
rr

ec
t

re
su

lt
s

[%
]

Non-segmented data in search space Segmented data in search space

Non-segmented data not in search space Segmented data not in search space

(a) Fraction of correct results for different noise levels.

10
(5
−

5)

8
(5
−

3)

6
(5
−

1)

8
(3
−

5)

6
(1
−

5)

8
(4
−

4)

7
(4
−

3)

7
(3
−

4)

6
(3
−

3)

0

20

40

60

80

100

Point combinations

C
o
rr

ec
t

re
su

lt
s

[%
]

(b) Fraction of correct results for different point combinations with 5% noise. The
x-axis shows the total number of points used. The numbers in brackets represent the
split of points between the different behaviors.

Fig. 5: Fractions of correctly classified data sets (i.e., neither falsely positive nor
falsely negative) for different levels of noise. Each bar was created by analyzing
100,000 synthetic data sets.

Apart from different noise levels, we also tested the accuracy of our algo-
rithm for different numbers and combinations of measurement points. We used
a maximum of ten and a minimum of six points and tried various combina-
tions of contributions from each function. In general, our algorithm works best
when there are ten or more data points with at least five data points from each
function. If there are less than five data points from either of the functions, the
percentage of true positives decreases. Figure 5b shows the fractions of point
combination where data was correctly identified as segmented or not segmented.

For functions within the search space, the algorithm correctly found the
location of the change point in about 90% of the cases. However, the percentage
decreases with increasing noise. In those cases where the functions were not
guaranteed to be in the search space, the algorithm correctly found the location
of the change point around 70% of the time.



Our approach generates less than 1% false positives for a noise level of upto
5%, sparing the user unnecessary confusion and work. With as few as six data
points, or one measurement more than usually required by Extra-P, our approach
correctly identifies more than 50% of the occurrences of segmented data, and this
percentage increases sharply if more measurements are made available. The user
can therefore obtain significant gains at very little additional cost.

4.2 Case Studies

In this section, we present three cases studies where we correctly identify ex-
pected segmentation in real performance measurements. One of the presented
applications, HOMME [4], had already been studied before and has a known
segmentation in performance measurements while the other two, namely ma-
trix multiplication and MPI collective operations, are expected to exhibit such
a behavior based on how they work.

HOMME. This code is the dynamical core of the Community Atmosphere Model
(CAM). The scalability of HOMME was studied by Calotoiu et. al [2] and in
addition to identifying scalability issues, they found certain kernels to exhibit
segmentation. We used performance measurements with processor counts p ∈
{600, 1176, 2400, 4056, 7776, 11616, 13824, 14406, 15000, 16224, 23814, 31974,
43350, 54150} which were taken on the IBM Blue Gene/Q system Juqueen in
Jülich according to developer recommendations.

Our algorithm identified 25 out of 664 kernels as segmented and estimated the
change point each time to lie between 15, 000 and 16, 224. The execution time
of one such kernel, laplace sphere wk, was previously characterized as f(p) =
27.7 + 2.23 · 10−7 · p2 using the non-segmented algorithm. Using the segmented
approach, we came up with the following segmented model:

fseg(p) =

{
49.36 p ≤ 15, 000

20.8 + 2.3 · 10−7 · p2 p ≥ 16, 224

Figure 6a shows the measured execution times and both segmented and non-
segmented models for this kernel. The reason for this segmentation is a ceiling
term in the code, causing those kernels to be called only once when using 15,000
processors or less, hence resulting in constant time. However, beyond 15,000 pro-
cessors, the kernels are called quadratically, causing quadratic models to appear.
This case study illustrates the advantage of our algorithm, which can detect such
segmentation automatically without any user intervention.

Matrix multiplication. A practical scenario of abrupt change in behavior is the
effect of cache spilling. The runtime of a memory-bound program heavily depends
on the time required to fetch data from the memory. If the data is small enough to
fit in the cache, the runtime stays very small. However, as soon as the amount of
data exceeds the size of the cache and memory access time becomes the limiting
factor, the runtime changes abruptly and follows a completely different pattern.



0 2 4 6
·104

0

200

400

600

Number of processors (p)

R
u
n
ti

m
e

(s
)

(a) Kernel laplace sphere wk of HOMME

0 200 400 600 800

50

60

70

Matrix size (floats)

E
x
ec

u
ti

o
n

ti
m

e
/

F
L

O
P

s
(n

se
c)

(b) Matrix multiplication

0 200 400

0

50

Number of processors (p)

R
u
n
ti

m
e

(µ
s)

(c) IntelMPI MPI Allreduce

0 200 400

0

200

400

Number of processors (p)

R
u
n
ti

m
e

(µ
s)

(d) OpenMPI/MPI Gather

Fig. 6: Graphs showing measurement points, non-segmented models (dashed
lines) and segmented models (solid lines). Estimated locations of change points
are shown by vertical lines.

We used a sequential naive matrix multiplication to observe this effect and
see whether our algorithm can correctly identify the change. We ran our program
with increasing matrix sizes and measured the runtime for each matrix size on
an Intel Core i5 processor with 2 cores, one 256 kB L2 cache per core, and a
3 MB shared L3 cache. We then divided the runtime by the number of FLOPs to
measure the influence of the memory-access time. As the matrix reached a size
large enough to not fit in the L2 cache, we saw a sudden drop in the performance
(Figure 6b). We not only detected the segmentation of data but also identified
the change point between a matrix size of 244 kB and 295 kB, which roughly



Table 2: MPI collective operations which exhibit segmentation. While the left
model is listed for all operations, the right model is listed only for those where
we had enough data points to create one.

Segmented models
Library Collective operation Left Right

IntelMPI
MPI Gather 4.80 + 0.06 · p · log2(p) Not enough points
MPI Allreduce −1.71 + 5.50 · √p Not enough points

OpenMPI MPI Gather −23.3 + 11.17 · log2(p) −23.11 + 16.95 · √p

matches the size of the L2 cache. Overall, the segmented model much better
reflects the memory hierarchy than the more inaccurate unified model.

MPI collective operations. The performance of MPI collective operations highly
depends on the network topology, the number of processes, and the size of mes-
sages. Some algorithms perform very well on short messages but fail to perform
the same way on larger messages while others behave the opposite way [10].
To maximize performance in every situation, modern MPI libraries offer a wide
variety of algorithms for each collective operation and switch between them ac-
cording to the environment [9,5]. Of course, switching between algorithms leads
to segmented performance behavior.

To study this, we measured the runtimes of selected MPI collective oper-
ations from Open MPI and Intel MPI for different numbers of processes p ∈
{16, 32, 64, 128, 256, 512} on the Lichtenberg Cluster of TU Darmstadt. We found
that MPI Allreduce and MPI Gather from Intel MPI change their behavior after
256 and 128 processes, respectively. With Open MPI, such behavior was only
noticed for MPI Gather after 64 processes, as shown in Table 2. The change
point was in agreement with the threshold found in the code base of Open MPI,
at which the default decision function switches the gather algorithm from linear
to binomial. The performance measurements and both the segmented and the
non-segmented models are shown in Figures 6c and 6d. Despite restricting the
segmentation analysis to only six data points in this case study, our algorithm
provides valuable feedback on the performance variability of these collectives. By
looking at the results of the analysis, the user can know which extra measure-
ment points he needs to provide to improve model accuracy. It is also evident
from Figure 6 that the non-segmented models predicted by Extra-P would result
in misleading predictions at higher scales.

5 Related Work

The change point estimation problem has been discussed in the literature since
1966. Several algorithms have been suggested and used by researchers since then
and are being further improved to this day. Auger and Lawrance [1] suggested
an algorithm in 1989 to find segmented neighborhoods in the data collected
by the experiments of molecular biology. The algorithm runs in O(kn2) time,



where k is the maximum number of change points. The algorithm was later
improved by Jackson et. al. [6] to decrease the time complexity to O(n2). In
2012, Killick et. al [7] proposed a variation of the same algorithm that runs in
linear time in the best case, but incurs quadratic cost in the worst case. All the
above mentioned methods are collectively called optimal partitioning methods
and give the exact location of the change point. However, these algorithms are
too slow and need much more points than we have in our experiments. Another
popular method and the most similar one to ours was suggested by Scott and
Knott [8] in 1944 and is known as binary segmentation. It is a recursive algorithm
that finds the change points by first finding a point and then recursively dividing
and reapplying the method to each segment. It continues to do so until no more
change points can be found. To tackle multiple change points, our method could
be used in a similar way, but in general too few data points are provided to justify
its recursive application. The main difference, however, is that our change-point
identification scheme is much simpler and faster.

Shao-Tung et. al [3] used fuzzy c-partitioning as a way to find change points
in data. They argue that finding change points is similar to arranging data in
clusters and hence fuzzy logic can be applied. Similarly, Bingwen et. al [11]
used the sparse group lasso (SGL) method to estimate change points. In SGL,
two penalty terms of the fitting function make sure to find the best fit for the
data. Both of the methods, however, require much more data points than our
method to give any reasonable answers. It is important to mention that all of
those methods are generic and do not take advantage of the small search space
resulting from the performance model normal form like our method does and
hence, are much slower, more complicated, and need more data points than our
method does.

6 Conclusion

The results of our synthetic data tests as well as the case studies confirm that
the proposed algorithm can be used as an effective way to find segmentation in
performance data when creating empirical performance models. The suggested
algorithm does not require any extra effort on the user’s side, is very simple to
implement, and can work very well on as few as six points. The algorithm has
correctly identified segmented behavior, and did not signal such behavior when
none was present in more than 80% of 5.2 million test cases. Hence, it is capable
of finding segmentation in the majority of cases, where it would go unnoticed
otherwise and leave the user with inaccurate models. We plan to integrate our
approach into the next release of Extra-P.

Acknowledgements. This work was supported in part by the German Research
Foundation (DFG) through the Priority Programme 1648 Software for Exascale
Computing (SPPEXA) and the Programme Performance Engineering for Scien-
tific Software. Additional support was provided by the German Federal Ministry
of Education and Research (BMBF) under Grant No. 01IH16008, and by the



US Department of Energy under Grant No. DE-SC0015524. Finally, we would
like to thank the University Computing Center (Hochschulrechenzentrum) of TU
Darmstadt for providing us with access to the Lichtenberg Cluster.

References

1. I. Auger and C. Lawrance. Algorithms for the optimal identification of segment
neighborhoods. Bulletin of Mathematical Biology, 51(1):39–54, February 1989.

2. A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using automated performance
modeling to find scalability bugs in complex codes. SC 1́3 Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, November 2013.

3. S. Chang, K. Lu, and M. Yang. Fuzzy change-point algorithms for regression
models. IEEE Transactions on Fuzzy Systems, 23:2343 – 2357, 2015.

4. J. M. Dennis, J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin,
A. St-Cyr, M. A. Taylor, and P. H. Worley. CAM-SE: A scalable spectral ele-
ment dynamical core for the community atmosphere model. Intl. Journal of High
Performance Computing Applications, 26:74–89, 2012.

5. G. E. Fagg, J. Pjesivac-grbovic, G. Bosilca, J. J. Dongarra, and E. Jeannot. Flexible
collective communication tuning architecture applied to OpenMPI. In In 2006 Euro
PVM/MPI, 2006.

6. B. Jackson, J. D. Sargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis, E. Gwin,
P. Sangtrakulcharoen, L. Tan, and T. T. Tsai. An algorithm for optimal partition-
ing of data on an interval. Signal Processing Letters, 12(2):105–108, 2005.

7. R. Killick, P. Fearnhead, and I. Eckley. Optimal detection of change points with
a linear computational cost. Journal of the American Statistical Association,
107:1590–1598, 2012.

8. A. Scott and M. Knott. A cluster analysis method for grouping means in the
analysis of variance. Biometrics, 30:507–512, 1974.

9. H. Steve. Intel R© MPI library collective optimization on the Intel Xeon Phi co-
processor using environment variable collective operation control, 2015.

10. R. Thakur and W. Gropp. Improving the performance of collective operations in
MPICH. Proceedings of the 10th European PVM/MPI Users Group Meeting (Euro
PVM/MPI 2003), pages 257–267, 2003.

11. B. Zhang, J. Geng, and L. Lai. Change-point estimation in high dimensional linear
regression models via sparse group LASSO. 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 815–821, 2015.


