Boda: A Holistic Approach for Implementing Neural Network
Computations

Matthew W. Moskewicz, Ali Jannesari and Kurt Keutzer
University of California, Berkeley
moskewcz,jannesari, keutzer@eecs.berkeley.edu

Abstract

Neural networks (NNs) are currently a very popular topic in ma-
chine learning for both research and practice. GPUs are the domi-
nant computing platform for research efforts and are also gaining
popularity as a deployment platform for applications such as au-
tonomous vehicles. As a result, GPU vendors such as NVIDIA
have spent enormous effort to write special-purpose NN libraries.
On other hardware targets, especially mobile GPUs, such vendor
libraries are not generally available. Thus, the development of
portable, open, high-performance, energy-efficient GPU code for
NN operations would enable broader deployment of NN-based al-
gorithms. A root problem is that high efficiency GPU programming
suffers from high complexity, low productivity, and low portability.
To address this, this work presents a framework to enable pro-
ductive, high-efficiency GPU programming for NN computations
across hardware platforms and programming models. In particular,
the framework provides specific support for metaprogramming and
autotuning of operations over ND-Arrays. To show the correct-
ness and value of our framework and approach, we implement a
selection of NN operations, covering the core operations needed
for deploying three common image-processing neural networks.
We target three different hardware platforms: NVIDIA, AMD, and
Qualcomm GPUs. On NVIDIA GPUs, we show both portability
between OpenCL and CUDA as well competitive performance com-
pared to the vendor library. On Qualcomm GPUs, we show that our
framework enables productive development of target-specific opti-
mizations, and achieves reasonable absolute performance. Finally,
On AMD GPUs, we show initial results that indicate our framework
can yield reasonable performance on a new platform with minimal
effort.

CCS Concepts -Computing methodologies — Neural networks;

«Software and its engineering — Source code generation;

Keywords computer vision, code generation, neural networks,
mobile computing, convolution

1 Introduction

Productive, efficient parallel programming remains a challenging
task with no general solution. In this work, we focus on a single
facet of this broad issue: implementing neural network operations
on GPUs. Taking a vertical approach spanning from high-level
application to low-level programming, we present several contri-

butions:
o A framework that provides a novel unified methodology,
based on metaprogramming and autotuning, for productive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

CF’17, Siena, Italy

© 2017 ACM. 978-1-4503-4487-6/17/05...$15.00

DOI: http://dx.doi.org/10.1145/3075564.3077382

development of portable, efficient implementations of a
broad class of numerical functions targeting GPUs or similar
platforms.

e Support for metaprogramming with ND-Arrays as a key
data type, using named dimensions for improved produc-
tivity and type checking.

o A proof-of-concept use of the framework to implement the
core set of operations needed for deploying three common
image-processing neural networks, i.e., AlexNet, Network-
in-Network, and Inception-V1 across three different GPU
targets.

e An experimental evaluation of the resulting implementa-
tion, including a comparison to highly-tuned vendor library.

An additional contribution is that we provide a platform for
future research, further experiments, and benchmarking related to
GPU portability and metaprogramming. While our current focus
is on neural network operations, any numerical operations that
operate over ND-Arrays should be reasonably well supported by our
approach. The entire framework, including support for automated
replication of all results presented here, is made available as open
source with a permissive license!.

However, note that we specifically do not attempt to address the
general problems of parallel programming, such as language and
compiler design. We instead take the more pragmatic approach of
layering over existing languages and compilers that are available
on the platforms we target. Currently, creating efficient imple-
mentations of the types of operations we consider in this work is
extremely difficult and time consuming. While the semantics of the
operations are generally easy to express in a few lines of code in any
language, efficient implementations for GPUs often require many
programmer-years of effort. We provide one alternative method to
develop such implementations. We show that our approach to such
development represents a novel tradeoff among portability, speed,
and productivity.

We achieve this with the careful application of both metapro-
gramming and autotuning in our proposed framework. We demon-
strate the approach via a case study of mapping a core set of NN
deployment computations, particularly convolutions, pooling, and
activation functions, to NVIDIA, Qualcomm, and AMD GPUs. We
show that we can target the same NVIDIA GPU hardware using
either OpenCL or CUDA and achieve similar, high-efficiency results.
This portability is possible due to the metaprogramming support
provided by the framework, which allows syntactic compatibil-
ity between the core languages of the programming models (i.e.
OpenCL and CUDA). Additionally, the framework abstracts away
details related to compilation, allocation, scheduling, and execu-
tion that differ between OpenCL and CUDA. Also, we show that
our approach eases the cumulative burden of targeting NVIDIA,
Qualcomm, and AMD GPUs. Using the NVIDIA-tuned code as a
starting point, we were able to achieve reasonable performance on
a Qualcomm mobile GPU with only a few weeks of part-time effort
by a programmer unfamiliar with the target. Then, using all the

!https://github.com/moskewcz/boda

96 Filters, each:
3-channel (11x11)

Data
3x227x227
Conv1_filts

96x3x11x11

Conv+RelLU
stride=4

Output t
96-channel Y
(55x55)
Input . output
3-channel (RGB) stride=4 96X55x55
(227x227) pad=0

Figure 1. An illustration of a typical NN convolution (left) and the
corresponding compute graph fragment (right).

code developed for the NVIDIA and Qualcomm platforms, we show
the initial results of applying autotuning to target another new
hardware platform, AMD GPUs. With no manual effort, we achieve
a modest level of performance on AMD hardware, and argue that
the profiling and tuning capabilities of the framework provide a
great starting point for platform-specific optimizations.

2 Background and Motivation

Convolutional neural networks (CNNs) are NNs which make heavy
use of 2D convolutions over multi-channel 2D images. CNNs have
been quite successful in many computer vision applications such
as object detection [4] and video classification [6]. In this work,
the proof-of-concept set of operations we implement using our
framework is drawn from three common CNNs: “AlexNet” [7],
“Network-in-Network” [10], and the first version of Google’s “In-
ception” network [16].

In addition to convolutions, CNNs commonly contain other oper-
ations such as pooling and nonlinear activation functions. However,
for CNNs, convolution operations typically dominate the compu-
tation. Typically, convolutions require many operations (100s to
1000s or more) to produce a single output pixel, as each output pixel
depends on all input pixels across all input channels within a con-
volution kernel-sized window of the input. In our discussion, we
focus on convolution operations, as they are the most challenging
operations to implement. However, note that we do implement all
the operations necessary for deployment of our three considered
CNNs, including the pooling and activation operations.

ND-Arrays, or collections of numbers with N indexes (sometimes
also called N-D Matrices or tensors), are the main data type used
for CNN computations. In particular, the input image, the filtered
images produced by each layer (and fed as input to the next layer),
and the filters themselves are all ND-Arrays. That is, each layer of
convolutions in a CNN can be defined as the function output = conv
(input, filters), where output, input and filters are all ND-Arrays.
The left side of Figure 1 shows an example of a single convolutional
layer. Each output value of the convolution is the result of a dot-
product between one of the 96 filters and an 11x11 region of the
input image.

2.1 Problem Statement

Convolution, as used in neural networks, has simple-to-express
semantics but is very difficult to implement efficiently. In partic-
ular, evidence suggests that such efforts invariably involve both
low level programming and a significant degree of metaprogram-
ming [9] [2]. Thus, rather than try to shield the programmer from
such issues, we embrace both metaprogramming and direct, low-
level programming in our approach, and attempt to make both
activities as productive as possible.

Ideally, programmers could express NN operations such as con-
volution in a simple forms, such as a sets of simple nested loops,
in the languages of their choice. Then, the compiler (or entire
development toolchain) would create or provide an efficient imple-
mentation for the target platform. However, this has always been
an elusive goal. At best, it simply shifts the fundamental imple-
mentation problems from the end developer to the developer of
the toolchain. At worst, it adds substantial new problems, since
the toolchain must solve a much more general problem than that
of implementing a specific, known operation. In general, creating
high-efficiency GPU implementations of numerical operations is no
simple task. Many algorithmic and implementation issues must be
considered, and a wide design space must be explored. In the end,
the result of such work may be captured in many forms: libraries,
frameworks, languages, or compilers. However, in this work, we
are concerned more with how the initial algorithmic work and
exploration is performed in the first place, rather than how it is
eventually captured for final use (although this is also important).
That is, let us say one believes that a compiler or language should
handle some general case of creating efficient numerical code for
some platform. However, in that case, it is still a prerequisite that
it is known how to create efficient code for such operations for the
given platform.

Our high level task is, given a NN and its inputs, efficiently
compute its outputs. We can define a NN as a directed acyclic
graph of (stateless) functions and ND-Arrays. We refer to this
type of graph as a compute graph. Figure 1 shows an example
of a convolution operation and its corresponding compute graph
fragment. We term the process of converting from some description
of a NN to the corresponding compute graph the NN front-end.
In this work, as we are focused on the implementation of core
computations, we are NN front-end neutral; as long as a suitable
compute graph can be produced, any NN front-end can be used
with our approach. Further, as mentioned earlier, while there are
various operations in the compute graph, convolution is the most
computationally challenging. Due to space limitations, we limit our
discussion here primarily to the implementation of convolution.

2.2 Key Problems of Efficient GPU Convolutions

When implementing convolutions across multiple types of GPUs,
there are two categories of problems. First, there are the fundamen-
tal challenges of implementing efficient convolutions on any GPU.
Second, there are the issues of portability that arise when targeting
multiple GPUs. Together, the full set of high-level problems we
address with our approach are:

e Incompatible GPU programming models across different
hardware: OpenCL and CUDA.

o GPU-hardware-specific constraints: memory size and ac-
cess methods, organization and control of compute primi-
tives.

e Data movement: getting data from off-chip to compute units
and back, sizes and bandwidths of storage locations.

e Parallelism: what computations happen when and where.

e Managing overheads: conditionals, control flow, indexing.

To the best of our knowledge, our approach is the first to address
these concerns in a unified, vertical framework for implementing
NN convolutions on GPUs. In Section 3, we will discuss how our
approach addresses each of these concerns using metaprogramming,
autotuning, and other techniques.

2.3 Why portability?

One might ask, why not simply target each GPU separately to
avoid portability issues? In short, there are many downsides to
reimplementing convolutions for every GPU target. Aside from
the initial duplicated effort, which is perhaps the primary issue,
separate implementations complicate testing and maintenance. In
practice, the bulk of high-performance, high-efficiency GPU code
currently resides inside highly tuned libraries. Such libraries are
generally tuned for only a small subset of GPUs - typically only
those from a single vendor. As they are developed independently,
they are often incompatible and support different sets of operations.
They are also generally not extendable by end users. So, having a
portable approach helps ensure compatibility and functional cor-
rectness across all platforms, both existing and new. Further, it
encourages collaboration, which helps ease both extensiblity and
the ability to efficiently target new hardware platforms.

3 Approach

Our general approach is to create a vertical framework that pro-
vides support for solving exactly the set of problems encountered
when trying to efficiently implement convolutions on GPUs. We
choose a middle path between the traditional library and compiler
approaches to the mapping problem:

e Compared to a traditional library, our approach is more
complex but much more flexible.

o Compared to general-purpose compilation, our approach is
more limited but much simpler.

Compeared to a full compiler, we do not aspire to support general
purpose programming, and we avoid all mandatory, pre-existing,
already-specified intermediary layers present in typical compila-
tion flows. Thus, we can avoid much of the complexity of full,
general purpose compilers. Although less general-purpose than a
traditional compiler, we embrace compiler-like metaprogramming
techniques, where the programmer writes code to dynamically
generate and transform other code. Thus, we have much more
flexibility to generate customized code for every possible combi-
nation of specific operations and hardware targets encountered at
runtime, unlike a traditional pre-compiled library. Overall, using
this approach, we can achieve high efficiency for the set of opera-
tions required for our application, while keeping overall complexity
manageable. One key to efficiency and reduced complexity is that,
at runtime, we need only handle the specific operations present
in the input. Unlike a traditional library, we need not write and
pre-compile code to handle the general case, and we are free to
use all input-specific runtime information to aid in optimization.
In particular, for each operation, we need only handle the specific
input sizes used. As the number of possible input sizes is very
large, such specialization is cumbersome and/or limited in the tradi-
tional library approach. Additionally, we can use information about
the specific sequences of operations present to perform additional
optimizations, such as fusion, as discussed in Section 3.4.

While we believe our approach is perhaps the most productive
way to achieve our particular goals, we also realize the benefits
of the traditional library and compiler approaches as well. In fact,
we would argue that, as progress is made on the key problems of
implementing efficient GPU convolutions (using our approach), it
is then natural to: (1) generalize the techniques and embed them in
a compiler, or (2) apply additional effort (and perhaps compromise
speed) to allow for a fixed-library implementation.

Target back-ends: Allocation,
Compilation, Execution

Snapdragon 820
(Qualcomm GPUs)

NN Boda

\/ana‘nt Autotuning
selection

Front-end

Compute | | Graph-level Code o
Graph optimizations Generation Nvidia GPUs

Template .
substitution Seizillliy

Figure 2. Overall structure of Boda.

AMD GPUs

3.1 Framework Structure

An overview of our framework for mapping NN computations to
GPU hardware is shown in Figure 2. A compute graph is input to
Boda, which performs various tasks to map it to different target
back-ends. As with the front-end, our framework is back-end neu-
tral. We require only that the target platform provide mechanisms
for:

e Run-time Compilation (for metaprogramming/specializa-
tion),

e Memory allocation and execution of code, and

e Per-function-call timing (for profiling/autotuning).

Note that we do not support arbitrary languages or programming
models throughout our framework, but only what is necessary
for the back-ends we wish to target. Conveniently, all modern
GPUs support similar programming models and input languages.
NVidia hardware supports both CUDA [12] and OpenCL [14]. Other
hardware vendors, such as AMD and Qualcomm, support only
OpenCL. Both OpenCL and CUDA offer comparable interfaces for
memory allocation, compilation, and execution of code. Further,
the core language for describing computation supported by both
OpenCL and CUDA has C-like syntax and semantics.

Programming model portability with CUCL. Now, we discuss
how our approach abstracts away the incompatibilities between
OpenCL and CUDA.While CUDA and OpenCL share C as a base,
they use different syntax for various GPU-programming-specific
concepts. We start with the cross-compatible intersection of CUDA
and OpenCL to form a language we call CUCL. Then, we abstract
away the syntactic differences (e.g. CUDA’s threadIdx versus
OpenCL’s get_local_id) by adding special syntax to CUCL for
them (e.g CUCL’s LOC_ID_1D mapsto get_local_id(@) in OpenCL
and (threadldx.x) in CUDA; see the relevant back-end sources at
in ocl_util.cc and nvrtc_util.cc for a full list. When neces-
sary or desired, though, our framework allows the use of back-end
specific languages or features. Of course, use of back-end specific
features limits the portability of any code that uses them. Yet, a far
more limiting and important issue is that of performance portability.
While it is convenient to share a common syntax and semantics
for computation (i.e. C) across targets, this ensures only functional
equivalence. This is very helpful for development, testing, and
debugging. However, it does not address our goal of achieving
high efficiency across all back-ends. Currently, GPU compilers are
unable to produce efficient runtime code from high-level, portable
descriptions of convolutions. So, we instead aim to minimize the
effort needed in order to optimize and specialize (to whatever de-
gree in necessary) operations of interest across our limited set of
target back-ends.

ND-Arrays. Our first guiding observation is that the majority of
NN operation inputs and outputs are ND-Arrays. Hence, ND-Array
specific support, particularly for metaprogramming, forms a cor-
nerstone of our approach. Typically, ND-Arrays consist of a single
contiguous block of memory filled with a flat array of elements.

Importantly, in our application, the sizes of all such arrays are
known and fixed at the compute graph level. Thus, we may stati-
cally specialize all operations based on the sizes of their input and
output ND-Arrays. All indexing and bounding calculations on such
ND-Arrays may be reduced to multiplication, division, and modulo
by constants. The resulting expressions are amenable to efficient
implementation and various optimizations. Further, in user-written
templates, we require that all dimensions of each ND-Array must
be named. This use of mnemonic, semantically-significant names
for array dimensions helps clarify code using ND-Arrays. By anal-
ogy, imagine code that used C structures where each field was
simply referred to by index rather than name. Not only do named
ND-Array dimensions improve readability, but they are used to
implement a form of type checking for all ND-Array arguments.
All ND-Array arguments passed to a function must have the same
number of dimensions with the same names as given in their argu-
ment declarations. For example, a function expecting a 4D-Array
with dimension names in_chan:out_chan:y:x (i.e. a set of filters)
could not be passed a 4D-array with dimension names img:chan:y:x
(i.e. a batch of images).

3.2 Metaprogramming

As discussed earlier, metaprogramming is, by necessity, commonly
used to create high efficiency GPU implementations of NN opera-
tions. Thus, the novelty of our approach is not merely the usage
of metaprogramming, but in the specific design choices made to
balance speed, portability, and productivity. We start with allowing
the user to write only mildly restricted native GPU code in our CU-
DA/OpenCL subset language, CUCL. Compared to directly using
CUDA or OpenCL, CUCL:

e provides language-neutral idioms to replace those from
CUDA and OpenCL, and
e requires all ND-Array function arguments to be decorated
with their dimension names, and
e requires access to ND-Array metadata (sizes, strides) to use
a special template syntax: %(myarray_mydim_size).
Many simpler operations can be directly written as a single CUCL
function template. To produce OpenCL or CUDA functions from a
CUCL function template, the framework: (1) replaces CUCL idioms
with OpenCL or CUDA ones, and (2) replaces references to ND-
Array sizes and strides with either (at the user’s explicit choice) (2a)
constants for the specific input ND-Array sizes, or (2b) references
to dynamically-passed ND-Array metadata. Typically, we care most
about the case where the sizes are replaced with constants, as this
gives the most possibility for optimizations and therefor efficiency.
However, this does require instantiation of the given CUCL tem-
plate for every unique set of called argument sizes. Sometimes, for a
given operation, this is unnecessary for performance, and perhaps
even creates prohibitive overhead. Thus, at the user’s selection, our
framework also allows dynamically passing the sizes and strides of
ND-Arrays as automatically-generated function arguments. Note,
however, that CUCL code insulates the user from this issue, since
the same syntax is used to refer to ND-Array metadata regardless
of if it is dynamic or static, allowing easy experimentation with
both methods for each ND-Array.

In general, our approach does not require a GPU programmer to
learn any new languages. CUCL is simply a set of optional idioms
to allow portability between OpenCL and CUDA. For metapro-
gramming, the user can optionally write unconstrained C/C++ to
generate CUCL using a simple string-based template system. But,
to be clear: a user can, as a starting point, take existing OpenCL or
CUDA functions and run them inside Boda with only minor changes

(to meet the interface of Boda for inputs and outputs), without writ-
ing any metacode or using any CUCL idioms. However, to get
programming model portability, they will need to update their code
to use only shared subset of OpenCL and CUDA. In this case, the
CUCL idioms serve to aid the process, as they allow portable usage
of various OpenCL/CUDA features that exist in both languages
but with different syntax. Similarly, to get performance portabil-
ity, they will likely need to employ metaprogramming. But, here,
Boda’s simple string-based metaprogramming system eases the
programmer into learning this skill.

Metaprogramming for NN Convolutions. NN convolution can
be viewed as generalized matrix-matrix multiplication. In fact, in
early approaches, NN convolution was often implemented using
BLAS (Basic Linear Algebra Subroutines) library SGEMM (Single-
precision General Matrix-Matrix multiply) calls for the bulk of the
computation. But, as discussed in Section 5, the use of special-
purpose code for NN convolutions is currently the dominant ap-
proach. However, writing efficient NN Convolution code is difficult,
as it requires:

o large blocks consisting of many moves or multiplies,

e supporting many regimes of input sizes and modes, and

e having fine-grained control over data movement and exe-
cution.

All of these issues share a common solution: metaprogramming.
With metaprogramming, one can easily write loops at the metacode
level to generate long sequences of moves or multiplies. Multiple
input regimes can be handled with metacode level case-splits that
do not incur runtime overhead. Finally, one can generate specific
memory and register indexing patterns without repetitive, error-
prone manual effort. Prior efforts have indeed uniformly used
metaprogramming to varying degrees to address these issues; see
Section 5 for more discussion and a detailed comparison with this
work. At a high level, we choose to take a very general and flexible
approach to metaprogramming. Rather than use some language-
level metaprogramming facility, we choose to directly write code
generators in our framework’s host language of C++. We use our
framework’s native support for ND-Arrays at the metacode layer
to (when desired) allow code generation to exploit fixed, exact sizes
for all inputs and outputs. For example, when cooperatively loading
data across threads on a GPU, one must typically employ a loop
with a conditional load. If there are N threads loading W words,
the loop must iterate [W/N7] times. For each iteration, the load
must be guarded on the condition that i * N + thread_id < W. In
CUCL, OpenCL, or CUDA, here is a simplified version of how such
a loop might appear:
for(int i = 0; i < ((W-1)/N)+1; ++i) {
int const ix = i*N + thread_id;
if (ix< W){filts_buflix] = filts[ix1;}
}

However, if N and W are fixed, we know we need exactly [W/N1]
individual loads. Further, only the last load need be conditional,
and then only if (W mod N) is non-zero. In some cases, just mak-
ing W and N constant may allow the platform-specific compiler
to unroll the loop and eliminate unneeded conditionals without
additional effort. We show our framework’s support for this simple
metaprogramming approach here, where we have replaced the W
and N variables with template variables that will be expanded to
integer string constants:

#pragma unroll

for(int i = 0; i < ((%(W)-1)/%(N))+1; ++i) {
int const ix = i*%(N) + thread_id;
if(ix<%(W)){filts_bufl[ix] = filts[ix]1;}

}

Although simpler metaprogramming approaches (such as C++ tem-
plates, discussed more in Section 5) might be sufficient to handle
this case, we have observed that the platform-specific compiler of-
ten does not successfully unroll the loop and/or remove unneeded
conditionals (we provide an example later in this section). In such
cases, our framework allows us to smoothly and easily shift more
complexity to the metacode level and directly emit the sequence of
desired loads. To do this, we move the loop to the metacode level,
and replace it entirely with a template variable in the CUCL code:
%(filts_buf_loads)
Then, at the metacode level, we write code to generate the needed
sequence of loads, which is similar in structure to the original loop:

string ix_str, load_str;
for(int i = @0; i < ((W-1)/N)+1; ++i) {

int const max_ix = i*N + (N-1);
ix_str = str(i*N)+"+thread_id";
load_str = "filts_buf["+ix_str+"]";
load_str += "=_filts["+ix_str+"];";
if(max_ix >= W){ // need bound check
load_str = "if("+ix_str+"<"+str (W)

+ "y("+load_str+"}";
)
emit("filts_buf_loads", load_str);

3

While metaprogramming clearly adds complexity, the virtue of a
string-based C++ approach is simplicity. If the programmer can
write GPU-style C code, they can certainly write C (or C++) that
prints the same GPU-style C code. Then, they can easily promote
code from the code to the meta-code level to exploit run-time infor-
mation to specialize the final generated code. And, in the event of
errors at the generator level, or for profiling, they can easily inspect
the generated code. We argue that, compared to compiler-style
approaches, our approach is both valid and one that some fraction
of the rare programmers expert in efficient low-level numerical
programming favor. Returning to our example, when this metacode
is run for the case of (N=96,W=256), the result is exactly the desired
sequence of loads:

filts_buf[@+thread_id] = filts[thread_id];

filts_buf[96+thread_id] = filts[96+thread_id];

if(192+thread_id<256){

filts_buf[192+thread_id] = filts[192+thread_id];

}

In one case (with N=128,W=512), this approach resulted in 4
assembly-level load instructions. In contrast, a loop-based approach
failed to remove the conditional guarding the load, and yielded
dozens of instructions in including four conditional jumps. The
details of this example are too long to include here, but are available
in the Boda source as test/meta-smem-load-example. txt.

Further, generation of global-to-shared memory load sequences
(where access patterns are critical), and generation of register-
blocked, unrolled sequences of fused multiply-adds (which are
often hundreds of instructions long) were tasks that significantly
benefited from metaprogramming. Although too complex to discuss
in detail here, the reader is referred to our full metacode implemen-
tation in the Boda source code in src/cnn_codegen.cc.

In summary, it is not easy to determine what sequences of C-
level code will execute well on a given platform, but our framework
aims to make the process easier. Further, metaprogramming al-
lows the programmer to exploit run-time knowledge to make many
values (such as sizes, strides, loop bounds, and offsets) constant,
and to reduce the usage of loops and conditionals. Generally, this
allows the platform-specific compiler to generate more efficient
binary code. But, perhaps more importantly, when the compiler
fails to automatically generate efficient code, metaprogramming
allows for the ability to emit very low-level code, so that the final

instruction sequence can be carefully guided. This allows the ability
to productively experiment with different compute and memory
access patterns without needing to manually rewrite large sections
of target-specific code. Access to detailed documentation, disassem-
blers and/or instruction-level profiling tools for each given platform
make this process much more productive. However, it is perhaps
when such aids are not available that Boda’s ability to speed the
cycle of experimentation is most vital.

Now, we discuss our overall meta-programming flow, which
includes the framework layers shown in Figure 3.

Performance portability
Compute Variant selection per-operation & Annotated

Graph (CG) setting tuning parameters CG

Graph-level
optimizations

Refined

Programming
model portabilit,

CG
Code generation with metadata Generated Pre-allocation CuUCL Compilation
& template substitution function & scheduling function | & execution

Figure 3. Boda flow: from compute graph to code.

3.3 Variant Selection and Autotuning

As mentioned, NN Convolutions have a wide range of possible
input sizes and parameters. It is difficult to write a single function,
even with metaprogramming, that runs well over a broad range
of input sizes. Furthermore, each back-end target may need spe-
cific optimizations, which may be difficult to combine in a single
function. Perhaps one target can use a single function for many
input sizes, but requires special techniques for memory access. On
the other hand, perhaps a range of targets can share code, but only
for certain ranges of input sizes. Thus, depending on their specific
goals, we expect the user will create multiple variants of certain im-
portant operations (such as convolution). Further, each variant may
have various tuning parameters that affect code generation, so they
can run well in more cases. Such tuning parameters might control
thread blocking, memory access patterns, or load/store/compute
vector widths. Consider a typical set of tuning parameters and
their values: MNt=4:4,MNb=16:16,Kb=4,vw=4. These parameters
specify 4x4 register blocking, 16x16 thread blocking, an inner-
loop-unroll-factor of 4, and a vector/SIMD width of 4. Given an
input size and target platform, it may be tractable to manually or
heuristically choose a variant and its tuning parameters — partic-
ularly when variants are written with specific targets and input
size ranges in mind. However, when considering many operations
across many input sizes across many target platforms, this task be-
comes at best onerous and at worst intractable. Thus, an important
complimentary technique is autotuning, where such parameters
can be selected automatically by the framework. By performing a
brute-force, guided, or sampled exploration of the space of variants
and tuning parameters, we can both: (1) find the best parameters
for a given operation, as well as (2) learn much about a new target
platform.

Figure 4 demonstrates the key features of autotuning: automatic
per-platform variant selection and automated sweeps over tuning
parameters. Currently, we apply a simple brute-force search com-
bined with some heuristic parameter selection, which is tractable
given the relatively small number of operations, variants, and tun-
ing parameters. For example, in the experimental evaluation of
Section 4, which considers 43 operations on 3 targets, we needed
to compile and execute a total of 1150 functions. This took on the
order of 1 hour, with compilation time being the dominant cost. As

future work, we plan to explore a wider tuning space, over which
using brute-force would be intractable. In that case, we plan to use
techniques such as those from OpenTuner [1] to limit the number
of points in the space that must be tested.

Platform Info
BW=1 TB/s
PC=9 TFLOPS

Autotuner:
pick variant
& set tuning
params

variant=tconv
vector_width=4
blocking=8:8:4:16

Convolution
3x227x227
96x55x55

stride=4

Figure 4. Autotuning in Boda.

3.4 Graph-level Optimizations

Next, we discuss graph-level optimizations: a critical but relatively
simple part of our flow. In particular, there are two important
graph-level optimizations for NN compute graphs:

o Fusing of adjacent convolution and activation operations,
and
o Inserting any needed data-format-conversion operations.

Convolution operations are commonly followed by the applica-
tion of some element-wise activation function. In some cases, the
overhead to read and re-write the output ND-Array to apply the
activation function is significant. In these cases, one may inline
the code for the activation function in the convolution operation
to avoid a read-modify-write of the output. While this may in-
crease the code size of the output-writing part of the convolution
operation, it is generally still favorable to do this, as activation
functions such as ReLU add only a few instructions per existing
output store. So, our framework simply always performs this fusion
when possible, using string substitution to insert an application of
the activation function for all output-value writes. The insertion of
data-format-conversion operations is necessary due to the fact that
some variants may use different layouts or padding of their input
or output ND-Arrays. That is, since we are able to freely choose the
format of most internal ND-Arrays, we can exploit this to achieve
higher efficiency within each variant. While the user must gener-
ally manually pick data layouts chosen to work well for a given
case, the framework’s support for ND-Array access and metadata
handling eases the burden of creating transformation functions and
experimenting with different layouts. Also, as long as different lay-
outs are distinguished by different ND-Array signatures (different
dimension cardinality or naming), the framework can error-check
that all ND-Arrays are in the proper format prior to each operation.
In many cases, data-format-conversion operations can be inserted
automatically, based on the context in which an ND-Array is used.

3.5 Code Generation, Scheduling, and Execution

Once we have generated and compiled callable functions for each
needed operation, we execute the compute graph. For this, we must
first perform operation scheduling and ND-Array allocation. For
our current target application, scheduling is not difficult. The bulk
of execution time is spent on operations that can each individually
saturate the target hardware’s compute capacity by themselves. So,
we need not attempt to run multiple operations in parallel; any
topological sort of the compute graph yields a reasonable execu-
tion order. Further, for our current use cases, we are generally not
limited by GPU memory. Hence, we can employ a naive alloca-
tion strategy and simply pre-allocate all ND-Arrays in the compute
graph. However, with some additional work, our framework should
be easily capable of supporting more complex scheduling and allo-
cation policies if needed or desired. After allocation and scheduling,

we issue the resultant sequence of function calls to the target back-
end, which in turn performs all the desired computations. The
output ND-Arrays are then resident in GPU memory, ready to be
read back to the CPU or processed further as desired.

4 Results

We now report per-convolution-operation runtime results across
hardware targets and programming models, organized to illustrate
the key contributions of our work. The benchmark set of opera-
tions was chosen by extracting the unique convolutions from three
common DNNs: “AlexNet” [7], “Network-in-Network” [10], and
the first version of Google’s “Inception” network [16]. Further, we
choose to report a selection of 43 operations with:

e a batch size of 5, which models a streaming deployment
scenario with some latency tolerance, and

o have more than 1e8 FLOPS (as we focused our optimization
efforts on these more computationally intensive sizes).

As show in Table 1, we organize the operations by sorting them by
FLOP count, which is a reasonable proxy for the difficulty of a given
operation. However, depending on the exact convolution parame-
ters, two operations with similar FLOP counts may substantially
differ in both:

o their theoretical maximum efficiency for a given hardware
platform (based on Roofline [19] analysis), as well as

o the empirical performance of any given convolution algo-
rithm.

So, while one expects a general trend that operations with larger
FLOP counts will take longer to execute, there is no expectation
of smoothness. Of particular note, the two operations with large
spikes in runtime in most graphs are Fully Connected layers, where
each filter is the size of the full input image and thus there is only
one output pixel per image. Compared to other convolutions with
similar FLOP counts, such operations offer less opportunity for
parallelism and data reuse, and thus tend to be slower to execute.
However, these fully connected layers can be handled with a faster,
less general version of convolution. This special case is not fully
implemented in Boda yet, and it appears cuDNN does not properly
invoke its specialized version for these cases, perhaps since they
are not explicitly marked as fully connected (though this can be
easily deduced). Adding optimizations for these special cases to
Boda is a good subject for future work.

The NVIDIA GPU used is a Titan-X(Maxwell). The AMD GPU
used is an R9-Nano. The Qualcomm GPU used is the Adreno 530
GPU portion of the Snapdragon 820 System-on-Chip (abbreviated
“SD820” hereafter). For the CUDA platform, we use the NVIDIA-
provided nvrtc library to allow run-time compilation for CUDA.
All timings are performed using CUDA and OpenCL level timing
functions, and thus should include only time spent on the GPU, and
should not depend on the host CPU or other machine configuration
details. The input data given to the convolutions is all-non-zero
pseudo-random noise. Note that runtimes should not (in general)
depend on the input data, as long as it has proper range and sparsity.
All outputs are cross-checked for numerical correctness using a hy-
brid relative/absolute tolerance of 1e-3. It is generally the case that
NN calculations do not rely on precision for values with very small
magnitudes (i.e. large negative exponents). So, when comparing
each value between known-good and under-test implementations,
we calculate a relative difference, but clamp it to the maximum
absolute value of the two values being compared. Thus, as the
values to compare become smaller than the specified relative error
tolerance, the tolerance becomes absolute instead of relative. See

KSZ S OC B input XXYXChan FLOPs

5 1 32 5 28%x28%16 le+08

5 1 64 5 14X14X32 le+08

1 1 256 5 7X7x832 1.04e+08
1 1 112 5 14X14Xx512 1.12e+08
1 1 128 5 14X14%512 1.28e+08
1 1 04 5 28X28%256 1.28e+08
1 1 64 5 56X56X64 1.28e+08
1 1 128 5 14X14X528 1.32e+08
1 1 144 5 14Xx14%512 1.45e+08
1 1 9% 5 28%28%192 1.45e+08
1 1 384 5 7X7x832 1.57e+08
1 1 160 5 14Xx14%x512 1.61e+08
1 1 160 5 14X14%528 1.66e+08
1 1 409 5 1X1x4096 1.68e+08
1 1 192 5 14X14x480 1.81e+08
5 1 128 5 14X14X32 2.01e+08
3 1 320 5 7X7x160 2.26e+08
1 1 384 5 13X13X384 2.49e+08
1 1 128 5 28x28%x256 2.57e+08
1 1 256 5 14X14Xx528 2.65e+08
1 1 96 5 54x54x96 2.69e+08
3 1 384 5 7X7x192 3.25e+08
3 1 208 5 14Xx14%96 3.52e+08
1 1 1000 5 6X6x1024 3.69e+08
1 1 1024 5 6%X6x1024 3.77e+08
6 1 409 5 6X6X256 3.77e+08
3 1 224 5 14x14x112 4.43e+08
1 1 256 5 27X27X256 4.78e+08
3 1 256 5 14x14x128 5.78e+08
5 1 96 5 28X28%32 6.02e+08
3 1 288 5 14x14x144 7.32e+08
3 1 128 5 28X28%96 8.67e+08
3 1 320 5 14x14x160 9.03e+08
11 4 96 5 224%224%3 1.02e+09
11 4 9% 5 227X227X3 1.05e+09
7 2 64 5 224x224%3 1.18e+09
3 1 1024 5 6X6X384 1.27e+09
3 1 256 5 13X13X384 1.5e+09
3 1 384 5 13X13X256 1.5e+09
3 1 192 5 28%x28%128 1.73e+09
3 1 384 5 13X13X384 2.24e+09
3 1 192 5 56X56x64 3.47e+09
5 1 256 5 27X27%X96 4.48e+09

Table 1. List of benchmark convolution operations. KSZ: kernel
X/Y window size; S: X/Y stride; OC: # of output channels; B: # input
images per batch

the function min_sig_mag_rel_diff () in src/boda_base.cc for
the exact implementation.

Programming model portability — OpenCL vs. CUDA. On
NVIDIA hardware, we show that we can achieve almost identical
per-operation runtime, using the same CUCL code, regardless of
which programming interface we use (programming model porta-
bility). This is contrary to the common perception that CUDA
offers higher performance than OpenCL for NVIDIA hardware.
Although this may often be true in practice, the fact that Boda
emits only low-level code insulates the user from the differences
between OpenCL and CUDA. Instead of using complex program-
ming methods at the level of OpenCL and CUDA, Boda instead
shifts much of the implementation complexity into the metacode
layer, which is relatively programming platform neutral. Thus, the
resulting OpenCL and CUDA code is quite simple and portable,
using little beyond basic C constructs and the (common to OpenCL

and CUDA) GPU threading model. Also, we abstract away various
higher-level issues in terms of compilation, allocation, scheduling,
and execution that differ between the two platforms. This is (to the
best of the author’s knowledge) a novel illustration of the lack of
importance of using CUDA versus OpenCL for a high-efficiency,
difficult-to-implement GPU programming task. A comparison of
CUDA vs. OpenCL efficiency on our benchmark set of operations
is given in Figure 5. In the figure, all runtimes are for running
each operation using the best function generated by Boda for that
operation, selected by autotuning. The two plotted cases differ
only in the choice of backend (OpenCL or CUDA) for compilation
and execution; the generated CUCL code for both cases is identical.
In both the OpenCL and CUDA backends, it is possible to output
the compiled “binary” code (in this case, NVIDIA PTX portable
assembly code). For several cases that were inspected, the same
CUCL source code yields the nearly the same PTX when compiled
using either OpenCL or CUDA. However, there are some minor
differences: the addressing modes and internal LLVM compiler ver-
sions appear to slightly differ between NVIDIA’s internal OpenCL
and CUDA compilation flows. These issues, combined with normal
runtime variation/noise, can easily explain the remaining small
differences in runtime between the OpenCL and CUDA cases.

As a gauge of the overall absolute quality of our results, in
Figure 6, we show the performance of Boda relative to the highly-
tuned vendor CNN library cuDNN version 5. Note that Boda is
particularly slower in cases with 3x3 kernel sizes, where cuDNN
is using Winograd convolution [8], which is not yet implemented
in Boda. A case study to determine the effort/speed tradeoff of
implementing Winograd convolution in Boda is a key topic of
future work. However, overall, we are reasonably competitive, and
even faster than the reference library in a few cases.

Tuning for Qualcomm Mobile GPUs . In Figure 7, the boda-
initial values show the initial (poor) performance when running the
general-case fallback convolution variant on the SD820 platform.
When starting work on this platform, the general-case fallback
variant was the only variant that could be run, since bugs in the
Qualcomm OpenCL implementation and portability issues (primar-
ily related to usage of shared memory and high register usage)
prevented any of the existing optimized-for-NVIDIA variants from
running at all. The few missing bars in the boda-initial series de-
note cases where even the simple fallback variant failed to compile
or run. However, with a few weeks of effort, we were able to cre-
ate a new convolution variant that both worked around bugs in
the Qualcomm platform as well as used some platform-tailored
optimizations for memory access. Additionally, based on analysis
and experimentation, we added new points in the space of tuning
parameters (specific thread and register blocking constants) to be
searched over. The final results of using the combination of the
new variant and expanded tuning space are shown in the figure
as boda-autotuned, with the same meaning as in other figures: the
values show the runtimes of the best variant and tuning parameters
for each operation.

Improving efficiency by autotuning. We now move to some ini-
tial results on AMD hardware that demonstrate the value of auto-
tuning. Using the expanded library of variants and tuning space
from targeting NVIDIA and Qualcomm hardware, we perform an
experiment to isolate the effect of autotuning. In Figure 8, we com-
pare two cases. First, we consider the runtimes one might achieve
without autotuning. In this case, it is too time consuming to select

Secs

[boda-autotuned-TITAN-OpenCL
[0 boda-autotuned-TITAN-CUDA
10_3 ——— -
10_4— -]]] - w | wmw
1.28 x 108 1.66 x 108 2.69 x 108 5.78 x 108 1.27x 109 FLOPS
Figure 5. OpenCL vs CUDA. Runtime on NVIDIA Titan-X (Maxwell)
()]
o]
@
N [boda-autotuned-TITAN
[0 NVIDIA-cuDNNv5-library
103
10_4 1 | | - -] = mm .
1.28 x 108 1.66 x 108 2.69 x 108 5.78 x 108 1.27x 109 FLOPS
Figure 6. Comparison of Boda with cuDNNv5 on NVIDIA Titan-X
)]
(&)
@ _
16/6 | [boda-autotuned-SD820 ol
O boda-intial-SD820 ==c=c====
10~1 — == ———=—===——====4-
1072 4 5 5 11 5
1.28 x 108 1.66 x 10% 2.69 x 108 5.78 x 108 1.27 x 109 FLOPS

Figure 7. Initial vs. optimized results on Qualcomm Snapdragon 820

the best variant and tuning parameters for each operation individu-
ally. Instead, the boda-manual-tune values show the runtimes that
result from:

e using a simple “choose-most-specialized-possible” heuristic
to select the per-operation variant, and

o choosing the single overall best setting for tuning parame-
ters, judged by the sum of runtime over all cases.

The second step in this process, while automatic, is designed to
mimic the actual process and results of previous efforts at manual
tuning that we performed prior to having autotuning support in our
framework. Thus, in addition to giving better results, autotuning

requires much less effort than manual tuning. Additionally, the
overall result of exploring the tuning space provides significant
insight into this new platform. By seeing which variants and tuning
parameter settings work well, and which do not, and comparing
results across platforms, we can more quickly determine where to
focus future optimization efforts. As with all new platforms, it is
difficult to predict how much speed improvement is possible with
a given amount of optimization effort. However, we are now well
positioned to explore this question for the AMD platform as future
work.

0

[&]

(]

n [E boda-manual-tune-R9
102 [0 boda-autotuned-R9
1073

1.66 x 108

1.28 x 108

2.69 x 108

FLOPS

5.78 x 108 1.27 x 109

Figure 8. Manually-tuned and autotuned runtime on AMD R9-Nano (Fiji)

Performance portability on different targets. In Figure 9, we
show the overall portability of our benchmark convolution oper-
ations across three different platforms. Using a single framework
and library of variants and tuning parameters, we achieve reason-
able performance across three different hardware platforms (AMD,
NVidia, and Qualcomm) and different two programming platforms
(OpenCL and CUDA). Note that the generated code has no depen-
dencies on any platform-specific libraries (or any libraries at all),
and all code is generated and compiled at run-time specific to each
operation instance. In particular, for testing, the framework can run
the same operation on all platforms supported within a single pro-
cess and compare full results across platforms on the fly. Currently,
the results for the AMD platform are significantly slower than those
on the NVIDIA platform, especially for the smaller (lower FLOP
count) operations. OpenCL is presented as a standard for portable
parallel computing across many types of hardware. This leads to
a common perception that OpenCL provides general (both func-
tional and performance) portability. However, these results clearly
demonstrate that, for these operations, OpenCL does not provide
performance portability even between two relatively similar plat-
forms (AMD and NVIDIA) with comparable peak computational
and memory performance. Of course, the intent of Boda is to al-
low programmers to close this portability gap, and proving that
this can be done for the AMD platform is an important topic for
future work. Similarly, while the SD820 results are much slower
than the NVIDIA results (by perhaps 2 orders of magnitude), it
must be remembered that the SD820 GPU is (by design) a much
smaller device with much lower power usage and correspondingly
lower peak performance. At this time, we present these results
mainly to show the functional portability of our entire framework,
including testing and profiling, and not to directly compare these
platforms. However, with modest additional optimization efforts
on the AMD and Qualcomm platforms, one may be able to draw
fairer comparisons between these disparate platforms.

5 Related Works

Early NN frameworks such cuda-convnet [7] and Caffe [5] per-
formed CNN convolutions by leveraging Nvidia’s cuBLAS [11]
matrix math (BLAS) library. However, this BLAS-based approach
is limited in that it: (1) does not reuse data between spatially over-
lapping input windows, (2) sometimes requires expensive input
and output transformations to convert 4D-Arrays into 2D matrices,
and (3) does not allow fusion of an activation function with the
convolution operation. Additionally, the underlying matrix-matrix

multiply function may not be well optimized for the problem sizes
required.

Various purpose-built libraries to perform NN convolution have
improved speed and efficiency over BLAS-based approaches. NVIDIA’s
popular cuDNN [2] library achieves much higher efficiency than
BLAS-based approaches [3], but is closed-source and limited to
NVIDIA hardware. Thus, it is not extensible to support new opera-
tions or to target other hardware platforms.

With similar performance to cuDNN, a more open family of
libraries based on an assembly-language-level metaprogramming
flow is embodied in Nervana System’s “neon” framework [9] [15].
However, as with cuDNN,; this approach is limited to NVIDIA hard-
ware. Further, the use of perl-based metaprogramming to generate
low-level GPU assembly code creates significant hurdles to extend-
ing this approach for new operations or platforms. We operate
instead at the higher abstraction level of CUCL, and use a C++-
hosted string-template based metaprogramming approach. We
argue that our approach of writing C++ code that generates C code
is relatively easier to work with and extend than writing perl to
generate assembly. In particular, using C, many constructs look
roughly the same at the metacode and code levels. As shown in the
example in Section 3, to statically unroll a loop, one simply moves
the loop from the code to the metacode, and “escapes” the body
of the loop to print the code it previously contained. In essence,
we claim the similarity and compatibility between the metacode
and code languages eases the burden on the programmer to op-
erate across both levels. Further, rather than simply creating a
convolution library, we span the entire flow from compute graph to
execution, which allows for additional freedom and optimizations.

One common approach to metaprogramming is to use built-
in language level metaprogramming facilities. In particular, C++
templates are commonly used for high performance GPU metapro-
gramming with CUDA. However, C++ templates have the following
disadvantages as compared with this work:

o C++ template support for OpenCL is only starting to become
available.

e All C++ template programs must run at compile time, and
thus cannot use run-time information.

e Like perl, C++ templates are a different language than C,
and are generally considered difficult to use.

o C++ templates do not offer the practical ability to implement
complex, significant operations tasks at the meta level.

e C++ templates do not allow the ability to inspect the gen-
erated C level code for a given instantiation for debugging
and analysis.

[E boda-autotuned-TITAN
10_1] D boda—-autotuned-R9

. boda—-autotuned-SD820

103

10_4“‘|‘|1‘|1—.1‘l‘|‘|‘l‘|—1‘| ‘I‘I‘I‘I

sl lat et RN

|
1.28 x 108 1.66 x 108 2.69 x 108 5.78 x 108 1.27 x 109 FLOPS
Figure 9. Autotuned runtime on NVIDIA Titan-X, AMD R9-Nano, and Qualcomm Snapdragon 820

In general, there is a lack of mature related work with which to
compare our work against, especially for targeting mobile GPUs.
In particular, Greentea LibDNN [18] and cltorch [13] do not have
published results for mobile GPUs, and it is not clear that they
even support such platforms. Further, the lack of maturity of the
codebases makes them difficult to independently benchmark. Again,
we do admit that such comparisons are important and are a good
subject for future work and collaboration if available. Also, based
on published results [13] [3], cltorch and Greentea do not appear to
be currently competitive with cuDNN on NVIDIA platforms (unlike
this work).

On the topic of programming model portability, any compar-
ison must consider both performance portability and program-
ming model portability at the same time, which requires a common
benchmarking methodology. The OpenCL-based cltorch project
also provides a comparison with a similar CUDA based approach
(CUDA torch). However, being separate projects, this comparison
does not imply programming model portability for cltorch — nor is
the speed of cltorch and CUDA torch particularly close [13].

One compiler-style approach, Latte [17], focuses more on front-
end generality and the ability to support arbitrary NN code. How-
ever, since it targets Intel CPUs and accelerators, as opposed to
popular GPUs, direct comparison is difficult.

6 Conclusions

Boda is a new approach for productive development of efficient
GPU code for NN operations. In particular, it supports metapro-
gramming and autotuning to enable programming model and per-
formance portability. Experimental results show that Boda eases
the path to portable, efficient implementations. On NVIDIA hard-
ware, we achieve performance competitive with the vendor library
using either OpenCL or CUDA. On Qualcomm hardware, we show
that we can quickly develop new variants and otherwise tune our
generated code to achieve reasonable performance on a mobile
GPU. On AMD hardware, we show that autotuning and profiling
pre-existing code on a new platform provides a good foundation for
platform-specific optimization efforts as future work. Further, as
an open, vendor-neutral framework, we avoid dependencies on any
specific hardware platforms or inextensible vendor libraries. Thus,
our framework provides a productive method for implementing
existing and new NN operations while targeting various hardware
platforms.

Acknowledgments

Research partially funded by DARPA Award Number HR0011-12-2-
0016, the Berkeley Deep Drive (BDD) Industry Consortium, ASPIRE

industrial sponsors and affiliates Intel, Google, Hewlett-Packard,
Huawei, LGE, Nvidia, Nokia, Oracle, Samsung and German Aca-
demic Exchange Service (DAAD).

References

[1] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. ACM, 303-316.

[2] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient Primitives
for Deep Learning. arXiv:1410.0759 (2014).

[3] Soumith Chintala. 2016. convnet-benchmarks. https://github.com/soumith/
convnet-benchmarks. (2016). [Online; accessed 4-April-2016].

[4] Ross Girshick, Forrest Iandola, Trevor Darrell, and Jitendra Malik. 2015. De-
formable part models are convolutional neural networks. In Computer Vision
and Pattern Recognition.

[5] Yangging Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional Architecture for Fast Feature Embedding. arXiv:1408.5093 (2014).

[6] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. 2014. Large-scale video classification with convolutional
neural networks. In Computer Vision and Pattern Recognition.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In NIPS.

[8] Andrew Lavin. 2015. Fast algorithms for convolutional neural networks. arXiv
preprint arXiv:1509.09308 (2015).

[9] Andrew Lavin. 2015. maxDNN: An Efficient Convolution Kernel for Deep
Learning with Maxwell GPUs. arXiv:1501.06633 (2015).

[10] Min Lin, Qiang Chen, and Shuicheng Yan. 2013. Network In Network.
arXiv:1312.4400 (2013).

[11] NVIDIA. 2016. cuBLAS. https://developer.nvidia.com/cublas. (2016). [Online;
accessed 27-May-2016].

[12] NVIDIA. 2016. CUDA. https://developer.nvidia.com/cuda-zone. (2016). [Online;
accessed 01-Oct-2016].

[13] Hugh Perkins. 2016. cltorch: a Hardware-Agnostic Backend for the Torch Deep
Neural Network Library, Based on OpenCL. arXiv preprint arXiv:1606.04884
(2016).

[14] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel pro-

gramming standard for heterogeneous computing systems. Computing in Science

& Engineering (2010).

Nervana Systems. 2016. Fast, scalable, easy-to-use Python based Deep Learning

Framework by Nervana™. https://github.com/NervanaSystems/neon. (2016).

[Online; accessed 4-April-2016].

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014.

Going Deeper with Convolutions. arXiv:1409.4842 (2014).

[17] Leonard Truong, Rajkishore Barik, Ehsan Totoni, Hai Liu, Chick Markley, Ar-

mando Fox, and Tatiana Shpeisman. 2016. Latte: a language, compiler, and

runtime for elegant and efficient deep neural networks. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation.

ACM, 209-223.

Fabian Tschopp. 2015. Efficient convolutional neural networks for pixelwise clas-

sification on heterogeneous hardware systems. arXiv preprint arXiv:1509.03371

(2015).

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an

insightful visual performance model for multicore architectures. Commun. ACM

(2009).

[15

[16

[18

[19

https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cuda-zone
https://github.com/NervanaSystems/neon

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Problem Statement
	2.2 Key Problems of Efficient GPU Convolutions
	2.3 Why portability?

	3 Approach
	3.1 Framework Structure
	3.2 Metaprogramming
	3.3 Variant Selection and Autotuning
	3.4 Graph-level Optimizations
	3.5 Code Generation, Scheduling, and Execution

	4 Results
	5 Related Works
	6 Conclusions
	References

