
A Metaprogramming and Autotuning Framework
for Deploying Deep Learning Applications

Matthew W. Moskewicz Ali Jannesari Kurt Keutzer
University of California, Berkeley

{moskewcz,jannesari,keutzer}@eecs.berkeley.edu

Abstract
In recent years, deep neural networks (DNNs), have yielded strong
results on a wide range of applications. Graphics Processing Units
(GPUs) have been one key enabling factor leading to the current
popularity of DNNs. However, despite increasing hardware flexibil-
ity and software programming toolchain maturity, high efficiency
GPU programming remains difficult: it suffers from high complex-
ity, low productivity, and low portability. GPU vendors such as
NVIDIA have spent enormous effort to write special-purpose DNN
libraries. However, on other hardware targets, especially mobile
GPUs, such vendor libraries are not generally available. Thus, the
development of portable, open, high-performance, energy-efficient
GPU code for DNN operations would enable broader deployment
of DNN-based algorithms. Toward this end, this work presents a
framework to enable productive, high-efficiency GPU programming
for DNN computations across hardware platforms and programming
models. In particular, the framework provides specific support for
metaprogramming, autotuning, and DNN-tailored data types. Using
our framework, we explore implementing DNN operations on three
different hardware targets: NVIDIA, AMD, and Qualcomm GPUs.
On NVIDIA GPUs, we show both portability between OpenCL
and CUDA as well competitive performance compared to the ven-
dor library. On Qualcomm GPUs, we show that our framework
enables productive development of target-specific optimizations,
and achieves reasonable absolute performance. Finally, On AMD
GPUs, we show initial results that indicate our framework can yield
reasonable performance on a new platform with minimal effort.

Keywords computer vision; code generation; neural networks;
mobile computing; convolution

1. Introduction
Modern Graphics Processing Units (GPUs) offer a tantalizing combi-
nation of general programmability, high peak operation throughput,
and high energy efficiency. However, despite increasing hardware
flexibility and software programming toolchain maturity, high effi-
ciency GPU programming remains difficult. Only a small number
of programmers can efficiently map new applications to GPUs, and
even then the process often suffers from high complexity and low
productivity. Thus, in practice, the bulk of high-performance, high-
efficiency GPU code resides inside highly tuned libraries for a few
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specific tasks. Further, such libraries are generally tuned for only a
small subset of GPUs – typically only those from a single vendor.
Recently, interest in machine learning (ML) in general, and neural
networks (NNs) in particular, has increased greatly. Deep neural net-
works (DNNs) are emerging as the primary approach for challenging
applications in computer vision, natural language processing (NLP),
and human action recognition [1].

As GPUs are well suited to (or perhaps more to the point, have
enabled) current DNN approaches [2],[3], much attention has been
given to pushing the envelope of efficient GPU implementations
for DNN computations. Originally, GPU-based DNN computations
leveraged existing dense linear algebra libraries (BLAS [4],[5]).
However, over several years, it became clear that more efficient
special-purpose libraries were possible. But, even given the high
level of interest in the domain, and the significant speedups that were
possible, the general availability of such libraries took years: The
landmark BLAS-based implementation from Krizhevsky [2] was
released in 2012-12. However, the first official release of NVIDIA’s
cuDNN [6] library was not until 2014-09. Over time, important
improvements and new features have continued to appear, with
cuDNN v5 released 2016-04. These improvements and new features
generally track new developments in the ML community, but with a
significant real-time lag of many months. Anecdotally, the reason
for this long latency is simple: developing cuDNN requires a large
amount of engineering effort by a team of specialized programmers,
perhaps more than 15 staff-years to date.

In this work, we propose a framework for NN computations
and aim to improve on the current state of high-efficiency special-
purpose GPU programming in several ways. First, we aim to shorten
the time taken to prototype and tune high-efficiency GPU imple-
mentations of new algorithms and applications. Second, we aim to
improve the portability of such efforts across types of GPU hard-
ware and programming models. We achieve this with the careful
application of both metaprogramming and autotuning in our pro-
posed framework. We demonstrate the approach via a case study of
mapping DNN computations, particularly convolutions, to NVIDIA,
Qualcomm, and AMD GPUs. We show that we can target the same
NVIDIA GPU hardware using either OpenCL or CUDA and achieve
similar, high-efficiency results. This portability is possible due to
the metaprogramming support provided by the framework, which
allows syntactic compatibility between the core languages of the
programming models (i.e. OpenCL and CUDA). Additionally, the
framework abstracts away details related to compilation, alloca-
tion, scheduling, and execution that differ between OpenCL and
CUDA. Also, we show that our approach eases the cumulative bur-
den of targeting NVIDIA, Qualcomm, and AMD GPUs. Using the
NVIDIA-tuned code as a starting point, we were able to achieve
reasonable performance on a Qualcomm mobile GPU with only
a few weeks of part-time effort by a programmer unfamiliar with
the target. Then, using all the code developed for the NVIDIA and
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Qualcomm platforms, we show the initial results of applying auto-
tuning to target another new hardware platform, AMD GPUs. With
no manual effort, we achieve a modest level of performance on
AMD hardware, and argue that the profiling and tuning capabilities
of the framework provide a great starting point for platform-specific
optimizations.

The rest of the paper is organized as follows. In Section 2, we
review the key background concepts needed related to DNN compu-
tations, focusing particularly on convolution and ND-Arrays. Then,
in Section 3 we introduce our framework, the main contribution,
with its different layers and structures. We discuss DNN compu-
tations using Boda and describe the metaprogramming flow and
autotuning methods. In Section 4, we demonstrate our framework
via case study and present the results. Then, we discuss shortly the
related works in Section 5 considering the general topic of GPU
programming and portability. Finally, in Section 6 we conclude the
paper.

2. Background
Deep neural networks (DNNs) have recently enhanced predictive
power in many different machine learning applications. Convolu-
tional neural networks (CNNs) are DNNs which make heavy use of
2D convolutions over multi-channel 2D images. CNNs have been
quite successful in many computer vision applications such as object
detection [7] and video classification [8]. The high-level idea behind
CNNs is that they can learn a large set of image filters, organized
into layers, where each layer feeds forward into the next. Figure 1
depicts a neural network that includes convolution layers. Based on
the intuition that useful features for vision should be spatially invari-
ant, the learned filters are applied uniformly at many points to their
input images, using a sliding window approach. Each filter in each
layer thus defines a feature which is itself a single-channel image.
The outputs of all the filters from each layer are then stacked to form
the multi-channel image output for that layer. As layers proceed
from input to output, the features are increasingly-high-level ab-
stractions of the input image content. For example, the initial layers
of a CNN might learn features indicating corners, edges, and tex-
tures. Intermediate layers might combine these to form higher-level
features such as “fabric-ness”, “cat-eyes”, and so forth. Lastly, the
final layer produces task-specified features such as “cat-in-image”,
“person-in-image”, and so forth.

Figure 1. A neural network (NN) including convolution layers.

In addition to convolutions, CNNs commonly contain other
operations such as pooling and nonlinear activation functions.
However, for CNNs, convolution operations typically dominate the
computation. Typically, convolutions require many operations (100s
to 1000s or more) to produce a single output pixel, as each output
pixel depends on all input pixels across all input channels within a
convolution kernel-sized window of the input. In contrast, activation
functions typically are applied element-wise, and require only one or
a few operations per output pixel. Similarly, the most common type
of pooling, spatial max-pooling, typically has a small window (often
3×3) and operates per-channel, thus only requiring few (∼ 9 for the
3×3 case) operations per output pixel. Note that, while activation

Input
3-channel (RGB)
(227x227)

Output
96-channel
(55x55)

96 Filters, each:
3-channel (11x11)

Figure 2. A single convolution – dot-product: a filter as sliding
window function applied to a matrix.

functions and pooling may require little computation, they still may
incur significant memory access overhead and/or require some care
to implement efficiently.

ND-Arrays, or collections of numbers with N indexes (sometimes
also called N-D Matrices or tensors), are the main data type used
for CNN computations. In particular, the input image, the filtered
images produced by each layer (and fed as input to the next layer),
and the filters themselves are all ND-Arrays. That is, each layer
of convolutions in a CNN can be defined as the function output
= conv (input, filters), where output, input and filters are all ND-
Arrays. Figure 2 shows an example of a single convolutional layer
with 96 filters applied to an input of a single multi-channel (RGB)
image with size 227×227×3 − channel. Each filter has size
11×11×3− channel, and is slid over the input with a spatial stride
of 4. Thus, output has size 55×55×96 − channel. Each output
value of the convolution is the result of a dot-product between a
filter’s weights and an 11×11 region of the input image. In the
remainder of this work, we will predominantly focus on the efficient
implementation of such convolution operations.

3. Approach
We are motivated by the desire to efficiently deploy computationally
intensive NN-based applications across various hardware platforms.
Thus, our main task is simply expressed: given a NN and its inputs,
efficiently compute its outputs. At a high level, a NN is simply a
(stateless) function from its inputs to its outputs. We can define a NN
as a directed acyclic graph of primitive operations and ND-Arrays.
Figure 3 demonstrates the compute graph of the single convolution
function shown in Figure 2. We refer to this type of graph as a
compute graph.

So, we can restate our task more generally as: Given a NN’s
compute graph and values for its input (source) ND-Arrays, compute
all of its output (sink) ND-Arrays. But, our task is simplified by a
few key properties of NN compute graphs:

• The set of operations we must support is relatively small (∼10
unique operations), with only one (Convolution) being computa-
tionally critical.

• The size of the graphs are generally small (∼10-100 nodes), and
generally each operation node represents a significant amount of
work. Thus, node evaluation order (i.e. scheduling) is typically
not critical.

• There are only a few important graph-level (cross-operation)
optimizations, and these are both local and simple (typically
pair-wise fusions).
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Data
3x227x227

Conv1_filters
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Figure 3. The compute graph of the convolution function in Fig-
ure 2.

In practice, NNs are typically either:

• Explicitly specified using some concrete graph syntax (e.g. a list
of nodes and edges such as the Caffe [9] .prototxt format)

• The output of a graph-generator program (itself typically written
in a high-level language such as Python or Lua [10]).

We view both of these methods as Domain Specific Languages
(DSLs) for NN specification. We term the conversion from DSL to
compute graph as the NN front-end.

3.1 Front-end Layer
In this work, we are NN front-end neutral; as long as a suitable
compute graph can be produced, any NN front-end can be used with
our approach. Currently, our framework provides only a reader
for the Caffe .prototxt format, but this is sufficient for all our
experiments. However, adding support for additional NN front-ends
is a straightforward task (using the existing reader as a model).

Once we have a compute graph, we turn our attention to the op-
erations that are used inside it. Typically, the individual operations
inside the compute graph are specified by name (e.g. “Convolution”
or “Pooling”). Additionally, each operation may have various con-
figuration parameters (e.g. “stride=2”) which alter its semantics. It
is very typical that a given NN will use mostly common operations
plus one or a few uncommon or unique operations. For example, the
“Deconvnets” work [11] introduced the Deconvolution operation.
Similarly, work on object detection [12] used dilated convolution,
which generalized the existing convolution operation by adding a
dilation parameter. In both works, all other NN operations used
were common ones. Thus, regardless of what NN front-end(s) are
supported, it is the support (or lack thereof) for individual opera-
tions and parameter settings that limits what applications can be
supported at the compute graph layer. As mentioned above, in this
work we mainly focus on support for the Convolution operations
which dominate the computation, and then only on commonly used
parameter settings. However, we additionally provide enough sup-
port for ancillary functions to handle a sampling of common full
networks. Still, we recognize that the ability to add support for new
operations is also an important issue. Based on our overall expe-
rience adding support for the various needed ancillary operations,
we claim that adding additional operations to our framework is
generally straightforward. Often, such new operations are neither
particularly complex nor do they require significant computation.
So, the challenge with such operations becomes that of either:

• Producing reasonable quality (but not necessarily highly-tuned)
framework-native implementations, or

• Providing suitable wrappers and/or glue to integrate existing
implementations.

3.2 Boda Overview – Branching Stovepipe
Our framework is inspired by the SEJITS [13] methodology. How-
ever, since our chosen top-level domain-specific language (DSL) is a
simple compute graph (or a program that generates a compute graph)

of known operations, we avoid much of the front-end complexity
typically present in SEJITS flows [14]. The intent of our framework
is to provide a direct, complete path from NN DSLs to execution. In
particular, we trade-off front-end generality for having only a small,
known set of computationally-critical operations we must handle.
We began our exploration of this idea, focused on a single target
and programming model, in our prior work [15]. Here, we extend
that work to fully explore multiple hardware targets and program-
ming models. We embrace the idea of the “stovepipe”: providing a
special-purpose flow that maps a single DSL to a hardware target as
shown in Figure 4.

app3

Clouds

sp1

GPUs CPUs

app3 app3

Dense LA Struct. 
Grid

Dynamic 
Prog.

app4

sp2 sp4sp3

Specializers

Figure 4. Specializers as stovepipes (one stovepipe per target).

Such an approach is a middle ground between the traditional
library and compiler approaches to the mapping problem:

• Compared to a traditional library, our approach is more complex
but much more flexible.

• Compared to general-purpose compilation, our approach is more
limited but much simpler.

In particular, compared to a full compiler, we avoid all mandatory,
pre-existing, already-specified intermediary layers present in typical
compilation flows. But, being somewhat compiler-like compared
to the traditional library approach, our approach is well suited to
exploit metaprogramming techniques. Overall, using this approach,
we can achieve high efficiency for a limited set of operations with
manageable complexity. One key to reduced complexity is that, at
runtime, we need only handle the specific operations present in the
input. Thus, we need not attempt to create or compile code for all
possible cases as a library would. Further, unlike a library, we are
free to use all input-specific information to aid in optimization. In
particular, for each operation, we need only handle the specific input
sizes used. As the number of possible input sizes is very large, such
specialization is cumbersome and/or limited in the traditional library
approach. Traditionally, the stovepipe approach targets only a single
hardware platform for execution. With its focus on a single, specific
mapping task, the stovepipe approach offers a good combination
of freedom, flexibility, and simplicity. However, as we desire a
limited degree of portability to multiple similar hardware targets,
we compromise somewhat and extend the approach. We term our
extended approach branching stovepipes: rather than one stovepipe
per target, we can share much effort across related targets, at the
expense of some added complexity. Figure 5 depicts the overall
idea. Thus, a careful balance between portability, complexity, and
efficiency is a key design goal of our framework.
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Nvidia GPUs
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Figure 5. Boda framework as branching stovepipes (specializers)
providing maximum efficiency and portability.

3.3 Framework Structure
The exact layering and structure of our approach is shown in Figure 6.
The structure is extensible and flexible to evolve to meet changing
needs. Bearing this in mind, we now give an outline of the current
layers/stages in our framework for mapping NN computations to
GPU hardware.

NN 
Front-end

Target 
back-end

Boda 

Compute graph
(e.g. Caffe input: 

MyCnn.proto)

Variant 
selection Autotuning

Graph-level 
optimizations

Scheduling

Code 
Generation

Allocation
Compilation
Execution

Template 
substitution

Figure 6. The layering and structure of Boda framework.

We have already discussed first layer of our framework, the
NN front-end layer, which converts NN DSLs to compute graphs.
Now, we will discuss the target back-end layer where we hand off
responsibility to pre-existing target-specific programming/develop-
ment platforms. Generally, as with the front-end, our framework is
back-end neutral. We require only that the target platform provide
mechanisms for:

• Memory allocation,
• Compilation and execution of code, and
• Per-function-invocation execution timing.

We make no attempt to achieve portability beyond our target set
of back-ends. Thus, we need not support arbitrary languages or
programming models throughout our framework, but only what is
necessary for the back-ends we wish to target. Conveniently, all mod-
ern GPUs support similar programming models and input languages.
NVidia hardware supports both CUDA [16] and OpenCL [17]. Other
hardware vendors, such as AMD and Qualcomm, support only
OpenCL. Both OpenCL and CUDA offer comparable interfaces
for memory allocation, compilation, and execution of code. Further,
the core language for describing computation supported by both
OpenCL and CUDA has C-like syntax and semantics.

Programming model portability with CUCL. While there are
syntactic differences and various language (or hardware) specific
features, the core semantics and programming models of OpenCL
and CUDA are fairly compatible. Thus, across the two platforms, we
can share varying amounts of our framework’s metaprogramming
support, per-operation metacode, and per operation code templates.
We term CUCL as the intersection language formed from the cross-
compatible subset of CUDA and OpenCL. We use a small amount

of text substitution to bridge syntactic differences (e.g. CUDA’s
threadIdx versus OpenCL’s get_local_id). When necessary
or desired, though, our framework fully allows the use of back-
end specific languages or features. As one would expect, use of
such back-end specific features limits portability. Yet, a far more
limiting and important issue is that of performance portability.
While it is convenient to share a common syntax and semantics
for computation (i.e. C) across targets, this ensures only functional
equivalence. In particular, this functional equivalence is very helpful
for development, testing, and debugging. However, it does not
address our goal of achieving high efficiency across all back-ends.
We make no attempt to create or rely upon a general-purpose
compiler to achieve performance portability. Instead, we aim to
minimize the effort needed in order to specialize our few operations
of interest across our limited set of target back-ends.

Performance portability with metaprogramming. Together, the
NN front-end layer and per-hardware-target back-end layers define
the interface and scope of our framework. The remaining layers form
the branching stovepipe which connects the front-end to the back-
ends. That is, these layers form a self-contained metaprogramming-
based flow designed to execute NN compute graphs. As discussed
earlier, the high peak compute rates of GPUs make them attrac-
tive targets for NN convolutions. Further, it is clear that reasonably
high efficiency has been achieved in many instances, albeit with
significant programmer effort. In particular, evidence suggests that
such efforts generally involve both low level programming and a
significant degree of metaprogramming [18] [6]. Similarly, even if
using existing BLAS libraries as building blocks, evidence suggests
that usage of metaprogramming in libraries such as cuBLAS [4],
MAGMA [19], and clBLAS [5] is also commonplace. Thus, the
novelty of our approach is not merely the usage of metaprogram-
ming, but in the specific design choices made to balance efficiency,
portability, complexity, and usability. We base our design decisions
on the specific goals, constraints, and challenges of the mapping to
be performed.

ND-Arrays. Our first guiding observation is that ND-Arrays are
central to NN operations, as the majority of operation inputs and
outputs are ND-Arrays. Hence, ND-Array specific support for
metaprogramming forms a cornerstone of our approach. ND-Arrays
are quite simple data structures. Typically, they follow the format of
standard C-style multidimensional arrays: A single contiguous block
of memory filled with a single flat array of elements. Importantly,
in our application, the sizes of all such arrays are known and fixed
at the compute graph level. Thus, we may statically specialize all
operations based on the sizes of their input and output ND-Arrays.
All indexing and bounding operations on such ND-Arrays may
be reduced to chains of constant multiplies, divides, and modulo
operations. The resultant expressions are then amenable to both
metaprogramming-level and low-level optimizations. Further, in
user-written templates, we require that all dimensions of each
ND-Array must be named. This use of mnemonic, semantically-
significant names for array dimensions helps clarify code using
ND-Arrays. By analogy, imagine code that used C structures where
each field was simply referred to by index rather than name. Not
only do named ND-Array dimensions improve readability, but they
are used to implement a form of type checking for all ND-Array
arguments. All ND-Array arguments passed to a function must have
the same number of dimensions with the same names as given in
their argument declarations. For example, a function expecting a
4D-Array with dimension names in_chan:out_chan:y:x (i.e. a set
of filters) could not be passed a 4D-array with dimension names
img:chan:y:x (i.e. a batch of images).
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3.4 Overall Metaprogramming Flow
Now, we discuss our overall meta-programming flow, which in-
cludes the framework layers shown in Figure 7. As discussed earlier,

Annotated
 CG

Compute 
Graph (CG)

Refined 
CG

Variant selection per-operation & 
setting tuning parameters 

Graph-level 
optimizations 

Performance portability 

Code generation with metadata 
& template substitution 

Pre-allocation 
& scheduling

Compilation
& execution

Programming 
model portability

Generated
function 

CUCL
function 

Figure 7. Boda flow: from compute graph to code.

metaprogramming is, by necessity, commonly used to create high
efficiency GPU implementations of NN operations. Thus, the chal-
lenge of our framework is how best to support and guide the usage
of metaprogramming. We start with allowing the user to write only
mildly restricted native GPU code in our CUDA/OpenCL subset
language, CUCL. Compared to directly using CUDA or OpenCL,
CUCL:

• provides language-neutral idioms to replace those from CUDA
and OpenCL, and

• requires all ND-Array function arguments to be decorated with
their dimension names, and

• requires access to ND-Array metadata (sizes, strides) to use a
special template syntax: %(myarray_mydim_size).

Many simpler operations can be directly written as a single CUCL
function template. To produce OpenCL or CUDA functions from a
CUCL function template, the framework: (1) replaces CUCL idioms
with OpenCL or CUDA ones, and (2) replaces references to ND-
Array sizes and strides with either (at the user’s explicit choice) (2a)
constants for the specific input ND-Array sizes, or (2b) references
to dynamically-passed ND-Array metadata. Typically, we care most
about the case where the sizes are replaced with constants, as this
gives the most possibility for optimizations and therefor efficiency.
However, this does require instantiation of the given CUCL template
for every unique set of called argument sizes. Sometimes, for a given
operation, this is unnecessary for performance, and perhaps even
creates prohibitive overhead. Thus, our framework also allows for
the “normal” approach of simply passing the sizes and strides of
ND-Arrays dynamically as function arguments.

Metaprogramming for NN Convolutions. NN convolution can
be viewed as generalized matrix-matrix multiplication. In fact,
in the early era of NN computation, NN convolution was often
implemented using BLAS (Basic Linear Algebra Subroutines)
library SGEMM (Single-precision General Matrix-Matrix multiply)
calls for the bulk of the computation. But, as discussed in Section 5,
the use of special-purpose code for NN convolutions is currently
the dominant approach. However, writing efficient NN Convolution
code is difficult, as it requires:

• many large blocks consisting of many moves or multiplies, and
• supporting many regimes of input sizes and convolution parame-

ters, and
• having a high degree of control over data movement and execu-

tion.

All of these issues share a common solution: metaprogramming.
With metaprogramming, one can easily write loops at the metacode
level to generate long sequences of moves or multiplies. Further,
one can write multiple code generators to handle different input
regimes, and select between them with metacode level case-splits.

Finally, one can generate memory and register indexing code and
patterns without repetitive, error-prone manual effort. Prior efforts
have indeed uniformly used metaprogramming to varying degrees to
address these issues; see Section 5 for more discussion and a detailed
comparison with this work. At a high level, we choose to take a
very general and flexible approach to metaprogramming. Rather that
use some language-level metaprogramming facility, we choose to
directly write code generators in our framework’s host language
of C++. We use our framework’s native support for ND-Arrays
at the metacode layer to (when desired) allow code generation to
exploit fixed, exact sizes for all inputs and outputs. For example,
when cooperatively loading data across threads on a GPU, one
must typically employ a loop with a conditional load. If there are
N threads loading W words, the loop must iterate dW/Ne times.
For each iteration, the load must be guarded on the condition that
i ∗N + thread_id < W . In CUCL, OpenCL, or CUDA, here is a
simplified version of how such a loop might appear:

for(int i = 0; i < ((W-1)/N)+1; ++i) {
int const ix = i*N + thread_id;
if(ix < W){ filts_buf[ix] = filts[ix];}

}

However, if N and W are fixed, we know we need exactly dW/Ne
individual loads. Further, only the last load need be conditional,
and then only if (W mod N) is non-zero. In some cases, just
making W and N constant may allow the platform-specific compiler
to unroll the loop and eliminate unneeded conditionals without
additional effort. We show our framework’s support for this simple
metaprogramming approach here, where we have replaced the W
and N variables with template variables that will be expanded to
integer string constants:

#pragma unroll
for(int i = 0; i < ((%(W) -1)/%(N))+1; ++i) {

int const ix = i*N + thread_id;
if(ix <%(W)){ filts_buf[ix] = filts[ix];}

}

Although simpler metaprogramming approaches (such as C++
templates) might be sufficient to handle this case, we have observed
that the platform-specific compiler often does not successfully unroll
the loop and remove unneeded conditionals. In such cases, our
framework allows us to smoothly and easily shift more complexity
to the metacode level and directly emit the sequence of desired loads.
To do this, we move the loop to the metacode level, and replace it
entirely with a template variable in the CUCL code:

%( filts_buf_loads );

Then, at the metacode level, we write code to generate the needed
sequence of loads, which is similar in structure to the original loop:

string ix_str , load_str;
for(int i = 0; i < ((W-1)/N)+1; ++i) {

int const max_ix = i*N + (N-1);
ix_str = str(i*N)+"+thread_id";
load_str = "filts_buf["+ix_str+"]";
load_str += "=␣filts["+ix_str+"];";
if(max_ix >= W){ // need bound check

load_str = "if("+ix_str+"<"+str(W)
+ "){"+load_str+"}";

}
emit( "filts_buf_loads", load_str );

}

When this metacode is run for a specific case, (here we show
N=96,W=256) and the CUCL template is instantiated, the result is
exactly the desired sequence of loads:

filts_buf [0+ thread_id] = filts[thread_id ];
filts_buf [96+ thread_id] = filts [96+ thread_id ];
if(192+ thread_id <256){

filts_buf [192+ thread_id] = filts [192+ thread_id ];
}
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In an observed, important case (with N=64,W=256), this meta-
code approach emitted code that resulted in 4 binary-level load
instructions. In contrast, all the loop-based versions emitted dozens
of instructions including several conditionals, and more importantly,
were much slower to execute in practice. Similar issues arise in the
generation of other memory accesses and also the generation of
the fused multiply-adds that are the core computations needed for
convolution. Although it is not necessarily easy to find or determine
what sequences of C-level code will execute well on a given plat-
form, our framework aims to make the process easier. In general,
making as much as possible in the code constant, while reducing
the usage of loops and conditionals, increases the chance that the
platform-specific compiler can generate efficient binary code. Fur-
ther, the ability to easily profile different compute and memory
access patterns by making changes at the metacode level, without
needing to manually rewrite large sections of target-specific code,
provides a large productivity boost.

3.5 Variant Selection and Autotuning
As mentioned, NN Convolutions have a wide range of possible
input sizes and parameters. It is generally difficult, even with
metaprogramming, to write code that runs well over more than
a limited range of input sizes. Furthermore, many algorithms require
target-dependant approaches that maybe be difficult or unfavorable
to unify into a single function. Thus, depending on which cases are
important, we expect the user will create multiple variants of each
operation. Further, each variant may have various tuning parameters
that affect code generation. Such tuning parameters might control
thread blocking, memory access patterns, or load/store/compute
vector widths. Consider a typical set of tuning parameters and
their values: MNt=4:4,MNb=16:16,Kb=4,vw=4. These parameters
specify 4×4 register blocking, 16×16 thread blocking, an inner-
loop-unroll-factor of 4, and a vector/SIMD width of 4. Given an
input size and target platform, it may be tractable to manually or
heuristically choose a variant and its tuning parameters – particularly
when variants are written with specific targets and input size ranges
in mind. However, when considering many operations across many
input sizes across many target platforms, this task becomes at best
onerous and at worst intractable. Thus, an important complimentary
technique is autotuning, where such parameters can be selected
automatically by the framework. By performing a brute-force,
guided, or sampled exploration of the space of variants and tuning
parameters, we can both: (1) find the best parameters for a given
operation, as well as (2) learn much about a new target platform.

Figure 8 demonstrates the key features of autotuning: automatic
per-platform variant selection and automated sweeps over tuning
parameters. Currently, we apply a simple brute-force search over a
fixed set of configurations.

Convolution
3x227x227
96x55x55
stride=4

Platform Info
BW=1 TB/s

PC=9 TFLOPS Autotuner:
pick variant
& set tuning 

params

variant=tconv
vector_width=4

blocking=8:8:4:16

Figure 8. Boda autotuning.

3.6 Graph-level Optimizations
Next, we discuss graph-level optimizations: a critical but relatively
simple part of our flow. In particular, there are two important graph-
level optimizations for NN compute graphs:

• Fusing of adjacent convolution and activation operations, and

• Inserting any needed data-format-conversion operations.

The fusion optimization is straight-forward. Convolution operations
are commonly followed by the application of some element-wise
activation functions. In some cases, the overhead to read and re-write
the output ND-Array to apply the activation function is significant.
In these cases, one may inline the code for the activation function
in the convolution operation to avoid a read-modify-write of the
output. While this may significantly increase the code size of the
output-writing part of the convolution operation, it is generally still
favorable to do this. So, our framework simply always performs
this fusion when possible, using string substitution to insert an
application of the activation function for all output-value writes. The
insertion of data-format-conversion operations is necessary due to
the fact that some variants may use different layouts or padding
of their input or output ND-Arrays. That is, since we are able to
freely choose the format of most internal ND-Arrays, we can exploit
this to achieve higher efficiency within each variant. However, after
variant selection is complete, we must ensure that all ND-Arrays
are transformed into the proper formats prior to each operation, and
thus the potential need to insert data-format-conversion operations.

3.7 Code Generation, Scheduling, and Execution
As previously described, the final CUCL templates needed to cover
all operation nodes in the compute graph are instantiated into
OpenCL or CUDA and then compiled. Then, once we have gener-
ated and compiled callable functions for each operation, we exe-
cute the compute graph. For this, we must first consider operation
scheduling and ND-Array allocation. For our current target appli-
cation, scheduling is not difficult. The bulk of execution time is
spent on operations that can each individually saturate the target
hardware’s compute capacity by themselves. So, we need not at-
tempt to run multiple operations in parallel; any topological sort
of the compute graph yields a reasonable execution order. Further,
for our current use cases, we are generally not limited by GPU
memory. Hence, we can employ a naive allocation strategy and
simply pre-allocate all ND-Arrays in the compute graph. However,
with some additional work, our framework should be easily capable
of supporting more complex scheduling and allocation policies if
needed or desired. After allocation and scheduling, we issue the
resultant sequence of function calls to the target back-end, which in
turn performs all the desired computations. The output ND-Arrays
are then resident in GPU memory, ready to be read back to the CPU
or processed further as desired.

4. Results
We now report per-convolution-operation runtime results across
hardware targets and programming models, organized to illustrate
the key contributions of our work.

Experimental Setup. The benchmark set of convolution opera-
tions was chosen by extracting the unique convolutions from three
common DNNs: “AlexNet” [2], “Network-in-Network” [20], and
the first version of Google’s “Inception” network [21]. For reporting
results here, we choose a relatively small, but representative, set of
operations1. In particular, we include only operations with:

• a batch size of 5, which models a streaming deployment scenario
with some latency tolerance, and

• have more than 1e8 FLOPS (as we focused our optimization
effort more toward these sizes).

1 The full set of operations with all parameters and results is available online
at https://github.com/moskewcz/boda – along with our framework and all
needed tools to replicate these results and figures.
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We organize the operations by sorting them by FLOP count, which is
a reasonable proxy for the difficulty of a given operation. However,
depending on the exact convolution parameters, two operations with
similar FLOP counts may substantially differ in both:

• their theoretical maximum efficiency for a given hardware
platform (based on Roofline analysis), as well as

• the empirical performance of any given convolution algorithm.

So, while one expects a general trend that operations with larger
FLOP counts will take longer to execute, there is no expectation of
smoothness. Of particular note, the two operations with large spikes
in runtime in most graphs are Fully Connected layers, where the
convolution is computed only once per image, with filters that are
the size of the full input image. Compared to other convolutions
with similar FLOP counts, such operations offer less opportunity
for parallelism and data reuse, and thus tend to be slower to execute.
However, these fully connected layers can be handled with a faster,
less general version of convolution. This special case is not fully
implemented in Boda yet, and it appears cuDNN does not properly
invoke its specialized version for these cases, perhaps since they are
not explicitly marked as fully connected (though this can be easily
deduced). Thus, while the comparison for these points is (in some
sense) fair, they should be considered somewhat as outliers in this
analysis, and not given too much weight, pending further analysis
and experimentation. For the convenience of reviewers, we have
also provided the list of operations as a table in Appendix A.

The NVIDIA GPU used is a Titan-X(Maxwell). The AMD GPU
used is an R9-Nano. The Qualcomm GPU used is the Adreno 530
GPU portion of the Snapdragon 820 System-on-Chip (abbreviated
“SD820” hereafter). For the CUDA platform, we use the NVIDIA-
provided nvrtc library to allow run-time compilation for CUDA.
All timings are performed using CUDA and OpenCL level timing
functions, and thus should include only time spent on the GPU, and
should not depend on the host CPU or other machine configuration
details. The input data given to the convolutions is all-non-zero
pseudo-random noise. Note that runtimes should not (in general)
depend on the input data, as long as it has proper range and
sparsity. All outputs are cross-checked for numerical correctness
using relative tolerances ranging from 0.001% to 0.1% depending
on the operation.

Programming model portability – OpenCL vs. CUDA. On NVIDIA
hardware, we show that we can achieve almost identical per-
operation runtime, using the same CUCL code, regardless of which
programming interface we use (programming model portability).
This is (to the best of the author’s knowledge) a novel illustration
of the lack of importance of using CUDA versus OpenCL for a
high-efficiency, difficult-to-implement GPU programming task. Of
course, this portability is only possible due to our framework level
metaprogramming support. Clearly, the framework support is criti-
cal because it allows for syntactic compatibility between the core
languages of the two programming platforms. Also, it abstracts
away various higher-level issues in terms of compilation, allocation,
scheduling, and execution that differ between the two platforms. But
more importantly, the framework shifts much of the implementation
complexity into the metacode layer, which is relatively program-
ming platform neutral. Thus, the resulting OpenCL and CUDA code
is quite simple and portable, using little beyond basic C constructs
and the (common to OpenCL and CUDA) GPU threading model.
A comparison of CUDA vs. OpenCL efficiency on our benchmark
set of operations is given in Figure 9. In the figure, all runtimes
are for running each operation using the best function generated by
Boda for that operation, selected by autotuning. The two plotted
cases differ only in the choice of backend (OpenCL or CUDA) for
compilation and execution; the generated CUCL code for both cases

is identical. In both the the OpenCL and CUDA backends, it is
possible to output the compiled “binary” code (in this case, NVIDIA
PTX portable assembly code). It can be noted that, for several cases
that were inspected, the same CUCL source code yields the nearly
the same PTX when compiled using either OpenCL or CUDA. How-
ever, there are some minor differences: the addressing modes and
internal LLVM compiler versions appear to slightly differ between
NVIDIA’s internal OpenCL and CUDA compilation flows. These
issues, combined with normal runtime variation/noise, can easily
explain the remaining small differences in runtime between the
OpenCL and CUDA cases.

As a gauge of the overall absolute quality of our results, in
Figure 10, we show the performance of Boda relative to the highly-
tuned vendor CNN library cuDNN version 5. Note that Boda is
particularly slower in cases with 3x3 kernel sizes, where cuDNN
is using Winograd convolution [22], which is not yet implemented
in Boda. A case study to determine the effort/speed tradeoff of
implementing Winograd convolution in Boda is a key topic of future
work. However, overall, we are reasonably competitive, and even
faster than the reference library in a few cases.

Tuning for Qualcomm Mobile GPUs . In Figure 11, the boda-
initial values show the initial (poor) performance when running the
general-case fallback convolution variant on the SD820 platform.
When starting work on this platform, the general-case fallback
variant was the only variant that could be run, since bugs in
the Qualcomm OpenCL implementation and portability issues
(primarily related to usage of shared memory and high register
usage) prevented any of the existing optimized-for-NVIDIA variants
from running at all. The few missing bars in the boda-initial series
denote cases where even the simple fallback variant failed to compile
or run. However, with a few weeks of effort, we were able to
create a new convolution variant that both worked around bugs
in the Qualcomm platform as well as using some platform-tailored
optimizations for memory access. Additionally, based on analysis
and experimentation, we added new points in the space of tuning
parameters (specific thread and register blocking constants) to be
searched over. The final results of using the combination of the new
variant and expanded tuning space are shown in the figure as boda-
autotuned, with the same meaning as in other figures: the values
show the runtimes of the best variant and tuning parameters for each
operation.

Improving efficiency by autotuning. We now move to some ini-
tial results on AMD hardware that demonstrate the value of autotun-
ing. Using the expanded library of variants and tuning space from
targeting NVIDIA and Qualcomm hardware, we perform an experi-
ment to isolate the effect of autotuning. In Figure 12, we compare
two cases. First, we consider the runtimes one might achieve with-
out autotuning. In this case, it is too time consuming to select the
best variant and tuning parameters for each operation individually.
Instead, the boda-manual-tune values show the runtimes that result
from:

• using a simple “choose-most-specialized-possible” heuristic to
select the per-operation variant, and

• choosing the single overall best setting for tuning parameters,
judged by the sum of runtime over all cases.

The second step in this process, while automatic, is designed to
mimic the actual process and results of previous efforts at manual
tuning that we performed prior to having autotuning support in our
framework. Thus, in addition to giving better results, autotuning
requires much less manual effort than manual tuning. Additionally,
the overall result of exploring the tuning space provides significant
insight into this new platform. By seeing which variants and tuning
parameter settings work well, and which do not, and comparing
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results across platforms, we can more quickly determine where to
focus future optimization efforts. As with all new platforms, it is
difficult to predict how much speed improvement is possible with
a given amount of optimization effort. However, we are now well
positioned to explore this question for the AMD platform as future
work.

Performance portability on different targets. In Figure 13, we
show the overall portability of our benchmark convolution opera-
tions across three different platforms. Using a single framework and
library of variants and tuning parameters, we achieve reasonable per-
formance across three different hardware platforms (AMD, NVidia,
and Qualcomm) and different two programming platforms (OpenCL
and CUDA). Note that the generated code has no dependencies on
any platform-specific libraries (or any libraries at all), and all code
is generated and compiled at run-time specific to each operation
instance. In particular, for testing, the framework can run the same
operation on all platforms supported within a single process and
compare full results across platforms on the fly. Currently, the results
for the AMD platform are significantly slower than those on the
NVIDIA platform, especially for the smaller (lower FLOP count)
operations. However, bear in mind that these are initial results, and
at most show that OpenCL lacks performance portability even across
relatively similar platforms with comparable peak computational
and memory performance. Similarly, while the SD820 results are
much slower than the NVIDIA results (by perhaps 2 orders of mag-
nitude), it must be remembered that the SD820 GPU is (by design) a
much smaller device with much lower power usage and correspond-
ingly lower peak performance. At this time, we present these results
mainly to show our portability, and not to directly compare these
platforms. However, with modest additional optimization efforts on
the AMD and Qualcomm platforms, one may be able to draw fairer
comparisons between these disparate platforms.

5. Related Works
Early NN frameworks such cuda-convnet [2] and Caffe [9] per-
formed CNN convolutions by leveraging Nvidia’s cuBLAS [4] ma-
trix math (BLAS) library. However, there are various limitations to
the BLAS-based approach to NN convolution. In particular, it:

• does not reuse data between spatially overlapping input win-
dows,

• sometimes requires expensive input and output transformations
to convert 4D-Arrays into 2D matrices,

• and does not allow fusion of an activation function with the
convolution operation.

Additionally, the underlying matrix-matrix multiply function may
not be well optimized for the problem sizes required. Finally, other
higher-level optimizations, such as Winograd convolution [22],
cannot leverage existing BLAS kernels.

In any event, various purpose-built libraries to perform NN
convolution have improved speed and efficiency over BLAS-based
approaches. NVIDIA’s cuDNN [6] library is the most common and
popular of such libraries. The library exposes an API for directly
performing convolutions using a variety of algorithms. While this
achieves much higher efficiency than BLAS-based approaches [23],
the library is closed-source and limited to NVIDIA hardware. Thus,
it may not be extended by the community to support less-common
or new operations or to target new hardware platforms.

In parallel with the closed development of cuDNN, a more open
family of libraries based on an assembly-language-level metapro-
gramming flow [18] [24] was developed. The performance of this
approach, as embodied in Nervana System’s “neon” framework,
generally was similar or better than that of cuDNN at any given
point in time. However, as with cuDNN, this approach is limited to

NVIDIA hardware. Further, the use of perl-based metaprogramming
to generate low-level GPU assembly code creates significant hurdles
to extending this approach for new operations or targeting multi-
ple platforms. We operate instead at the higher abstraction level of
CUCL, and use a C++-hosted string-template based metaprogram-
ming approach. We argue that our approach of writing C++ code that
generates C code is relatively easier to work with and extend than
writing perl to generate assembly. In particular, many constructs
look roughly the same at the metacode and code levels. As shown
in the example in Section 3, to statically unroll a loop, one simply
moves the loop from the code to the metacode, and “escapes” the
body of the loop to print the code it previously contained. In essence,
we claim the similarity and compatibility between the metacode
and code languages eases the burden on the programmer to operate
across both levels. Further, rather than simply creating a convolution
library, we span the entire flow from compute graph to execution,
which allows for additional freedom and optimizations.

One common approach to metaprogramming is to use built-
in language level metaprogramming facilities. In particular, C++
templates are commonly used for high performance GPU metapro-
gramming with CUDA. However, C++ templates have the following
disadvantages as compared with this work:

• C++ template support for OpenCL is only starting to become
available.

• Like perl, C++ templates are a significantly different language
compared to C, and are generally considered difficult to use.

• C++ templates do not offer the practical ability to perform com-
plex, significant meta-level functions (such as running compile-
time search algorithms, using complex nested conditionals, or
easily reusing generator sub-functions), which can be an impor-
tant “escape-hatch” when needing full control over generated
code sequences.

• C++ templates do not allow the ability to inspect the generated
C level code for a given instantiation for debugging and analysis.

More closely related to this work are two projects that derive
from early efforts to add OpenCL support to the Caffe frame-
work: Greentea LibDNN [25] and cltorch [26]. Both projects origi-
nally used BLAS-based approaches, but both have moved toward
metaprogramming-based special-purpose code generation for DNN
operations. However, based on published results [26] [23], cltorch
and Greentea do not appear to be currently competitive with cuDNN
on NVIDIA platforms (unlike this work). While these results are
likely out of date, the limited documentation make independent
benchmarking of the current state of the projects problematic. Fi-
nally, it appears that neither project currently supports Qualcomm
GPUs.

On the topic of programming model portability, any comparison
must consider both performance portability and programming model
portability at the same time, which requires a common benchmark-
ing methodology. The OpenCL-based cltorch project also provides
a comparison with a similar CUDA based approach (CUDA torch).
However, being separate projects, this comparison does not imply
programming model portability for cltorch – nor is the speed of
cltorch and CUDA torch particularly close [26].

Overall, direct per-operation speed comparison between Green-
tea, cltorch, and this work seems currently difficult to achieve, but is
a good topic for future work and/or collaboration to create a unified
benchmarking environment to help clarify these issues [27].

6. Conclusions
Boda is a new framework for rapid prototyping and productive de-
velopment of efficient GPU code for DNN operations. In particular,
it supports metaprogramming and autotuning with key features that
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Figure 13. Autotuned runtime on NVIDIA Titan-X, AMD R9-Nano, and Qualcomm Snapdragon 820

enable both programming model portability and performance porta-
bility. Experimental results show that Boda’s variant selection and
autotuning support eases the path to portable, efficient implementa-
tions. On NVIDIA hardware, we achieve performance competitive
with the vendor library, and we can achieve that performance using
either the OpenCL or CUDA programming model. On Qualcomm
hardware, we show that we can quickly develop new variants and oth-
erwise tune our generated code to achieve reasonable performance
on a mobile GPU. On AMD hardware, we show that autotuning
and profiling pre-existing code on a new platform provides a good
foundation for platform-specific optimization efforts as future work.
Further, as an open, vendor-neutral framework, we avoid depen-
dencies on any specific hardware platforms or unextensible vendor
libraries. Thus, our framework provides a productive method for
implementing existing and new DNN operations while targeting
various hardware platforms.
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Appendix A
Benchmark Operations List (to be omitted for publication; will be available online)
Column meanings:

• KSZ: kernel size; all kernels are square, so the value given is the kernel size in both X and Y
• Stride: uniform in spatial dimensions, so the value given is the stride in both X and Y
• OC: number of output channels, redundant with chan dimension of output
• in and out: 4D-Array sizes of input and output as y×x×chan
• FLOPs: per-operation FLOP count

Note: the two operations with 4096 output channels are the fully-connected-layer convolutions mentioned as outliers in the results section.

KSZ S OC B in out FLOPs
5 1 32 5 28×28×16 28×28×32 1.00352e+08
5 1 64 5 14×14×32 14×14×64 1.00352e+08
1 1 256 5 7×7×832 7×7×256 1.04366e+08
1 1 112 5 14×14×512 14×14×112 1.12394e+08
1 1 128 5 14×14×512 14×14×128 1.28451e+08
1 1 64 5 28×28×256 28×28×64 1.28451e+08
1 1 64 5 56×56×64 56×56×64 1.28451e+08
1 1 128 5 14×14×528 14×14×128 1.32465e+08
1 1 144 5 14×14×512 14×14×144 1.44507e+08
1 1 96 5 28×28×192 28×28×96 1.44507e+08
1 1 384 5 7×7×832 7×7×384 1.56549e+08
1 1 160 5 14×14×512 14×14×160 1.60563e+08
1 1 160 5 14×14×528 14×14×160 1.65581e+08
1 1 4096 5 1×1×4096 1×1×4096 1.67772e+08
1 1 192 5 14×14×480 14×14×192 1.80634e+08
5 1 128 5 14×14×32 14×14×128 2.00704e+08
3 1 320 5 7×7×160 7×7×320 2.25792e+08
1 1 384 5 13×13×384 13×13×384 2.49201e+08
1 1 128 5 28×28×256 28×28×128 2.56901e+08
1 1 256 5 14×14×528 14×14×256 2.64929e+08
1 1 96 5 54×54×96 54×54×96 2.68739e+08
3 1 384 5 7×7×192 7×7×384 3.2514e+08
3 1 208 5 14×14×96 14×14×208 3.52236e+08
1 1 1000 5 6×6×1024 6×6×1000 3.6864e+08
1 1 1024 5 6×6×1024 6×6×1024 3.77487e+08
6 1 4096 5 6×6×256 1×1×4096 3.77487e+08
3 1 224 5 14×14×112 14×14×224 4.42552e+08
1 1 256 5 27×27×256 27×27×256 4.77757e+08
3 1 256 5 14×14×128 14×14×256 5.78028e+08
5 1 96 5 28×28×32 28×28×96 6.02112e+08
3 1 288 5 14×14×144 14×14×288 7.31566e+08
3 1 128 5 28×28×96 28×28×128 8.67041e+08
3 1 320 5 14×14×160 14×14×320 9.03168e+08
11 4 96 5 224×224×3 54×54×96 1.01617e+09
11 4 96 5 227×227×3 55×55×96 1.05415e+09
7 2 64 5 224×224×3 112×112×64 1.18014e+09
3 1 1024 5 6×6×384 6×6×1024 1.27402e+09
3 1 256 5 13×13×384 13×13×256 1.4952e+09
3 1 384 5 13×13×256 13×13×384 1.4952e+09
3 1 192 5 28×28×128 28×28×192 1.73408e+09
3 1 384 5 13×13×384 13×13×384 2.24281e+09
3 1 192 5 56×56×64 56×56×192 3.46817e+09
5 1 256 5 27×27×96 27×27×256 4.47898e+09
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