
Automatic Parallel Pattern Detection in the Algorithm Structure Design Space

Zia Ul Huda∗, Rohit Atre†, Ali Jannesari∗†, and Felix Wolf∗
∗Laboratory for Parallel Programming

Technische Universität Darmstadt
Darmstadt, Germany

{huda, jannesari, wolf}@cs.tu-darmstadt.de
†RWTH Aachen University

Aachen, Germany
atre@aices.rwth-aachen.de

Abstract—Parallel design patterns have been developed to
help programmers efficiently design and implement parallel
applications. However, identifying a suitable parallel pattern
for a specific code region in a sequential application is a
difficult task. Transforming an application according to support
structures applicable to these parallel patterns is also very
challenging. In this paper, we present a novel approach to
automatically find parallel patterns in the algorithm structure
design space of sequential applications. In our approach, we
classify code blocks in a region according to the appropriate
support structure of the detected pattern. This classification
eases the transformation of a sequential application into its
parallel version. We evaluated our approach on 17 applications
from four different benchmark suites. Our method identified
suitable algorithm structure patterns in the sequential appli-
cations. We confirmed our results by comparing them with
the existing parallel versions of these applications. We also
implemented the patterns we detected in cases in which parallel
implementations were not available and achieved speedups of
up to 14×.

Keywords-parallelism; parallel patterns; task parallelism

I. INTRODUCTION

In recent years, the compiler community has responded

to the need for automatic parallelization; for example, state-

of-the-art compilers such as the Intel compiler [1] can

automatically detect parallel loops. However, compilers may

miss coarse-grained parallelism due to their dependence on

conservative static analysis.

To ease the burden of parallel programming, software

engineers have introduced parallel design patterns [2]. These

patterns provide solutions for recurring problems in parallel

software development. Although parallel patterns are helpful

for programmers, much effort is still needed to find ap-

propriate places to apply them in the software architecture.

This problem is exacerbated if one’s job is to parallelize

an existing sequential program. A programmer or software

architect needs to have deep knowledge of not only parallel

patterns but also the software under study to correctly

parallelize it.

Researchers have developed tools that detect parallelism

in sequential applications [3]. In this paper, we discuss an

approach to automatically detect four patterns: multi-loop

pipeline, task parallelism, geometric decomposition, and

reduction. We detected the multi-loop pipeline pattern using

linear regression analysis. To the best of our knowledge,

there is no previous work detecting a multi-loop pipeline

pattern. In contrast to previous approaches that detect task

parallelism [4], [5], our technique classifies the detected

tasks into categories such as workers and barriers. This clas-

sification helps implement task parallelism using supporting

structures like master/worker. Our approach improved the

detection rate of reduction and geometric decomposition, as

compared to previous approaches [1], [6].

Our work is an extension of our parallelism discovery

tool DiscoPoP (Discovery of Potential Parallelism) [7], [8].

Using this approach, we not only detected parallel patterns in

sequential applications, we also classified related code sec-

tions according to the structures of the parallel patterns we

detected. This simplifies the transformation of a sequential

application into a parallel one.

We evaluated our approach on 17 sequential applica-

tions from four different benchmark suites: Starbench [9],

BOTS [10], Polybench [11], and Parsec [12]. We success-

fully detected multi-loop pipelines, task parallelism, geomet-

ric decomposition, fusion, and reduction. We compared the

detected patterns with the existing parallel versions of the

benchmarks. For some benchmarks, a parallel version does

not exist. We manually implemented the patterns we detected

in these cases to validate our approach. We achieved 14×
speedup running 32 threads in the best case of our hand-

implemented parallel version.

The remainder of the paper is organized as follows. In

Section II, we introduce DiscoPoP. Section III explains our

pattern detection techniques in detail. In Section IV, we

share our evaluation results. We discuss related works in

Section V. Section VI concludes the paper and discusses

future work.

II. BACKGROUND

In this section we introduce our tool, DiscoPoP. It is built

on top of LLVM [13] and conduct three types of analyses.

The first analysis divides an input code into Computational

2016 IEEE International Parallel and Distributed Processing Symposium

1530-2075/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPS.2016.60

43

1 x = 3
2 y = 4
3 a = x + rand() / x
4 b = x - rand() / x
5 x = a + b
6 a = y + rand() / y
7 b = y - rand() / y
8 y = a + b

x = 3

a = x + rand() / x

b = x - rand() / x

CUx

x = a + b

y = 4

a = y + rand() / y

b = y - rand() / y

y = a + b

CUy

Figure 1. An example showing division of code into CUs.

Units (CUs). CUs follow the read-compute-write pattern [4].

It means that a program state is first read from memory, a

new state is computed, and finally the new state is written

back. This makes CUs logical units for the formation of

larger tasks. CUs are detected at a code-granularity level

that is independent of language and can be used for both

program analysis and the expression of parallelism. These

units of code can be assigned to a thread while running in

parallel to other CUs or tasks formed by merging these CUs.

CUs are building blocks for various patterns such as tasks

in a task pool or stages in a pipeline.

Figure 1 shows an example of building CUs in a code

section. DiscoPoP identifies two CUs. Line 1 of the code

reads a value into variable x. Lines 3, 4 and 5 compute some

results from the value of x. Additionally, line 5 writes the

final result to x. The local variables a and b are ignored;

they are only used as temporary variables for computation.

Therefore, lines 1 (read); 3, 4, 5 (compute); and 5 (write)

constitute one CU (called CUx in the figure). Similarly, CUy

consists of lines 2 (read); 6, 7, 8 (compute); and 8 (write).

The construction of CUy shows that a CU may consist of

code lines that are not contiguous in the actual source code.

DiscoPoP’s second analysis uses a dynamic approach

to obtain data dependence and control region (loops and

functions) information of an input source code [14]. The

dynamic nature of this analysis makes its output sensitive

to the input of the profiled application. To overcome this

limitation, we run the profiled application with different rep-

resentative inputs whenever possible and merge the outputs

of the profiled runs.

The outputs of the two phases of DiscoPoP can be used

for different kinds of analyses such as race detection [15],

threads communication patterns [16] or parallelism discov-

ery. Parallelism discovery varies from simple task and loop

parallelism [4], [17] to complex parallel patterns - the subject

of this paper.

III. APPROACH

Researchers have described patterns that exploit the con-

currencies available in the structures of algorithms [2], [18].

They have also provided supporting structure patterns for the

implementation of algorithm structure patterns. In Table I,

Table I
MAPPING OF ALGORITHM STRUCTURE PATTERNS TO SUPPORTING

STRUCTURES

Type Task Data Flow of data
Algorithm
structure

Task
parallelism

Geometric decomp.,
Reduction

Multi-loop
pipeline

Supporting
structure Master/worker SPMD SPMD

we show patterns in the algorithm structure space supported

by our approach and the best supporting structures according

to related works. Our approach classifies CUs in a region

according to the design of the related supporting structures.

Thus the parallel version of the input application can be

easily implemented.

Our approach uses Program Execution Trees (PETs) [8]

generated using the outputs of the CU and dependence

analyses of DiscoPoP. An example PET is shown in Figure 2.

The nodes of the tree are control regions of the program. In

our analysis, we use functions and loops as control regions

(as reported by DiscoPoP). When a new loop starts or a

function is called, a new child node is created in the tree. It-

erations of a loop are merged together into a single tree node

and the total number of iterations of the loop is recorded.

Recursive calls of a function are merged together into a

single node. This node is explicitly marked as recursive

in the PET. All nodes in the PET contain the number of

instructions in the LLVM’s intermediate representation (IR)

of corresponding regions. Loops and functions with a high

percentage of instruction counts are identified as hotspots.

The PET preserves the sequential execution order of the

child nodes.

Each node in a PET contains CUs that are lexically

located in these regions and represented by these nodes.

Data dependences are mapped onto a pair of CUs. This

mapping creates a CU graph with CUs as vertices and data

dependences between them as edges.

A. Multi-loop Pipeline

Multi-loop pipelines are special cases of pipelines which

are hidden because they stretch across more than one loop. In

this scenario, one iteration of a loop depends on one or more

iterations of a preceding loop in a sequential application.

This can be easily transformed into a pipeline by mapping

iterations of different loops onto different stages of the

pipeline. In Listing 1, we show an example code where a

multi-loop pipeline exists. Every ith iteration of the later

loop depends on the ith iteration of the first loop. An

important problem in the detection of multi-loop pipelines

is the detection of iteration numbers of different loops that

depend on each other.

We developed a mechanism that automatically detects

multi-loop pipelines. All pairs of hotspot loops (in which one

loop is data dependent on the other) are gathered from the

44

Table II
EFFECTS OF THE VALUES OF COEFFICIENTS a AND b IN EQUATION 1 ON MULTI-LOOP PIPELINES

Coefficient Value Description
a 1 one iteration of the loop y depends exactly on one iteration of the loop x.
a < 1 1 iteration of loop y depends on 1/a iterations of loop x.
a > 1 a iterations of loop y’s depend on 1 iteration of x. So a iterations of loop y can be executed after 1 iteration of loop x.
b 0 All iterations of loop y depend on all iterations of loop x.
b < 0 no iteration of loop y depend on first b iterations of loop x.
b > 0 First b iterations of loop y do not depend on any iteration of loop x.

Program
1 - 377

Loop
11 - 19

Function
22 - 70

Tree node

CU

Data
Dependency

Loop
29 - 45

Figure 2. An example execution tree with control regions and a CU graph
mapped onto them.

PET of a serial program. An LLVM-pass instruments only

the load and store instructions that create these dependences.

The pass records the iteration numbers of the loops for these

instructions.

1 for (. . .)// Loop x
2 a[i] = foo(i);
3
4 for (. . .)// Loop y
5 b[i] = bar(a[i]);

Listing 1. Example of multi-loop pipeline.

The instrumented program is then executed with represen-

tative inputs; all the recorded information about the iteration

numbers and memory addresses are dumped into an output

file. Suppose, there is a dependence between loop x and

loop y (as in Listing 1) where loop x writes to and loop

y reads from the same memory locations. A post-analysis

filters out the last iteration number ix of loop x that wrote

to a memory location m and the first iteration number iy
of loop y that reads from the same memory location m.

These filtered iteration numbers are stored in pairs (ix, iy)
for each loop pair detected in the previous step. Each pair

denotes that iteration iy of loop y is dependent on iteration

ix of loop x.

To estimate the relationship between pairs of iterations,

we used linear regression analysis [19]. Linear regression

estimates the relationship between a dependent variable Y
and an independent variable X . Linear regression helps in

finding coefficients a and b of the linear equation:

Y = aX + b (1)

Once we have these coefficients, we can estimate the poten-

tial existence of a multi-loop pipeline between two loops.

It is a perfect multi-loop pipeline when each ith iteration

of loop y depends exactly on the ith iteration of loop x.

The values of coefficients a and b for this line are 1 and 0,

respectively.

We denote the area under the line of a perfect pipeline

as
∫
perfect

. Similarly, linear regression gives us a regression

line for the relationship between the iterations of loops x and

y. The area below the generated regression line is denoted

by
∫
current

. To estimate the efficiency of multi-loop pipeline

between the iterations of loops x and y, we calculate the

multi-loop efficiency factor e with formula:

e =

∫
current∫
perfect

(2)

The value of e represents how efficient the multi-loop

pipeline will be. If the value of e is equal to 1.0, then we

have a perfect multi-loop pipeline. If the value of e is close

to or equal to 0, the multi-loop pipeline will be inefficient;

the second loop y will have to wait for almost all iterations

of the first loop x to finish before any iteration of loop y
can start. If e is much higher than 1, there is a possibility

of running both loops almost in parallel to each other with

minimal synchronization needed between their iterations. In

addition to the efficiency factor e, the coefficients a and b
of Equation 1 give some insights into the implementation

of a multi-loop pipeline. The effects of the values of a and

b on a multi-loop pipeline are shown in Table II. With the

help of all three values (e, a, and b), programmers can easily

predict the practicality of multi-loop pipelines.

If there is a chain of more than two loops depending

on each other (e.g. loop y depends on loop x and loop

z depends on loop y), our tool separately outputs the

relationships between loops x and y as well as loops y
and z. If there is a chain dependence of n loops, it gives

n pairs of relationships. A pipeline of n stages can be

easily implemented by merging the information provided by

45

the tool. Moreover the loops in each stage of a multi-loop

pipeline may be parallelized using other parallel patterns e.g.

do-all, reduction or pipeline etc.

Loop Fusion: In some cases, a detected multi-loop

pipeline can be optimized using fusion. Loop fusion is a

loop optimization technique used by compilers to merge

two loops into a single one if they iterate over the same

range [20]. This is done to reduce loop overhead and

increase granularity. However, fusion done by compilers is

limited by static analysis and only effective if the loops are

next to each other. Our approach suggests the fusion of loops

based on dynamic analysis and the suggested loops may be

lexically apart from each other in the actual source code.

We use the data gathered during our analysis of multi-

loop pipelines to detect a fusion. A fusion of loops x and y
can occur if:

• both loops x and y are do-all loops.

• the values of coefficients a and b of Equation 1 are

exactly 1 and 0, respectively. As a result, the efficiency

factor e from multi-loop analysis will be 1.

Both conditions ensure that the fused loop will not contain

any loop-carried dependences and can be parallelized using

do-all. If these conditions are met, we suggest fusing them

together as a single loop and parallelizing it with do-all.

This reduces the synchronization overhead for each loop and

makes the parallelization more coarse-grained.

Another advantage of employing fusion is that it improves

locality of reference [20]. DiscoPoP currently does not

report the amount of data being handled by a single loop

iteration. Therefore, our approach does not consider locality

of reference when suggesting loop fusion. We will address

this feature in our future work.

B. Task Parallelism

Task parallelism pattern is a collection of concurrent inde-

pendent tasks. The most straightforward method of finding

task parallelism is to look for totally independent CUs in

the CU graph of a region and consider them independent

tasks. However, most cases include dependences between

CUs. Previous task parallelism detection techniques like [4],

[5] were limited; they did not report the appropriate syn-

chronization between the detected parallel tasks. We use

Breadth First Search (BFS) to detect task parallelism in

the CU graph of a region and classify them in a way that

helps programmers to easily synchronize them in parallel

execution.

Algorithm 1 illustrates our task parallelism detection

approach. We start with the first unmarked CU in the CU

graph of a hotspot in serial order of execution and mark it

as a fork CU. All unmarked CUs dependent on the current

CU are marked as worker CUs. A dependent CU is marked

as a barrier CU if it was already marked. A barrier CU

depends on more than one CU. A worker or barrier CU may

behave as a fork CU for all of its dependent CUs. Once all

0

1 2 3

5

Tree node

Fork task

Data
Dependency

4
Worker task

Barrier task6

7

Figure 3. CU graph of function cilksort() from sort benchmark.

Algorithm 1: Detection of task parallelism.

Function detectTP(CUGraph)
while !AllCUsMarked(CUGraph) do

S = getF irstUnmarkedCU(CUGraph)
S.mark = “Fork”
Queue.push(S)
while !Queue.empty() do

N = Queue.pop()
foreach D in N.dependents do

if D.mark is NULL then
D.mark = “Worker”

end
else

D.mark = “Barrier”
end
Queue.push(D)

end
end

end
checkParallelBarriers(CUGraph)

CUs traversable by a current fork CU have been successfully

marked, the algorithm searches for any unmarked CUs in

the CU graph. If one is found, this CU is marked as a fork

point and the entire process described above is repeated for

its dependent nodes.

The output of our task parallelism detection algorithm is

a classification of CUs into fork, worker, and barrier CUs. It

contains precise details about which CUs fork which worker

CUs and which CUs are barrier CUs for these workers. In

Figure 3, we show the CU graph of function cilksort()
of the sort application and the classification of CUs by our

algorithm. The output of our algorithm for this CU graph

shows that CU0 forks four workers: CU1, CU2, CU3 and

CU4. CU5 is a barrier for workers CU1 and CU2. CU6 is a

barrier for workers CU3 and CU4. Finally, CU7 is a barrier

for CU5 and CU6. To see if two barriers can run parallel to

each other, we check for a directed path from one barrier to

the other in the CU graph (or vice versa). The absence of a

46

path denotes that two barriers can run in parallel; otherwise,

they cannot. For example, there is no directed path between

CU5 and CU6. Hence, they can run in parallel. On the other

hand, there are paths from CU7 to CU5 and CU6. So, CU7

cannot run in parallel with either of these two barrier CUs.

We calculate estimated speedup metric for the task paral-

lelism we detected. This is calculated by dividing the total

number of LLVM-IR instructions in the hotspot by the total

number of LLVM-IR instructions on the critical path of that

hotspot. This metric gives an indication of the effectiveness

of the task parallelism detected in that hotspot.

Our output format for task parallelism detection algorithm

helps programmers to easily transform code using supporting

structures like master/worker or fork/join. The implemen-

tation of these supporting structures requires correct syn-

chronization between parallel tasks. Our approach identifies

these synchronization points in the form of fork, worker, and

barrier CUs.

C. Geometric Decomposition

We often need to run the same program code over a huge

amount of data, motivating the term Single Program Multiple
Data. Such a paradigm can be easily parallelized if the data

can be divided into chunks and processed independently

by separate threads. This kind of data parallelism is called

geometric decomposition pattern [2].

Do-all is a case of geometric decomposition in which

the iterations of a loop run independently of each other

on separate data. However, do-all pattern is restricted to

loops. Programmers may overlook geometric-decomposition

opportunities on the function level. In our approach to

geometric decomposition detection, we gather all immediate

child nodes of a hotspot function node from the PET. We

analyze all the loops in the current function and all the loops

in the functions called directly from the current function. If

all the analyzed loop nodes are either do-all or reduction

loops, then we suggest this function as a candidate for

geometric decomposition. Algorithm 2 shows the pseudo-

code of geometric decomposition pattern detection.

DiscoPoP cannot determine the amounts and types of data

being supplied to a function. Currently, the programmer must

decide how the data entered into the function can be split into

separate chunks so that the same function can be called sepa-

rately for each chunk of data in separate threads. This often

facilitates speedup; geometric decomposition coarsens the

granularity of parallelization and reduces synchronization

overhead as compared to the implementation of a separate

do-all or reduction pattern for each individual loop in the

function.

D. Reduction

Reduction pattern enables programmers to parallelize

loops with a specific type of inter-iteration dependence. It

can only be used when a loop uses an associative binary

Algorithm 2: Detection of geometric decomposition.

Function detectGD(PET, FuncNode)
Nodes =
getImmediateChildren(PET, FuncNode)
for each child in Nodes do

if child is Loop then
if !doallLoop(child) OR
!reductionLoop(child) then

return false
end

end
else if child is Function then

if !AllLoopsDoallOrReduction(child)
then

return false
end

end
end
return true

operator to reduce all elements of a container to a single

scalar value, e.g., a loop summing all the elements of an

array. State-of-the-art compilers generally recognize reduc-

tion, though pointer aliasing and array referencing may make

them miss some reduction opportunities [1]. Our dynamic

approach overcomes these limitations.

Algorithm 3: Reduction detection.

Input: loopID

V ars = getAllWrittenV ars()
for each V ar in V ars do

writeLines = getWriteLines(V ar)
if |writeLines| ! = 1 then

next
end
readLines = getReadLines(V ar) if
|readLines| ! = 1 || readLines ! = writeLines
then

next
end
Result[loopID]+ = Reduction candidate at

writeLines.
end
return Result

We detect reduction during the same LLVM-pass we use

for multi-loop pipelines. The pass instruments all LLVM-

IR instructions creating inter-iteration dependences in a

loop. However, there are two differences between reduction

and multi-loop pipeline analysis: 1) dependence analysis

between the iterations is done for iterations of the same loop

47

instead of two separate loops; and 2) source line numbers

are also recorded for each write and read operation for each

variable involved.

Currently, we can detect only the simplest case of reduc-

tion. In Algorithm 3, we show the steps for the detecting

a reduction pattern. All variables accessed by instructions,

instrumented during the instrumentation phase, are checked

for reduction. If a memory address is written only on a

single source line of a loop and read only at the same

source line, the loop is reported as a possible candidate for a

reduction pattern. The detection results also contain source

line numbers where reduction may occur.

Our approach does not automatically identify the operator

used at the source line number reported for a possible reduc-

tion. Currently, this burden is still left to the programmer,

who must decide whether the operation in the reported

source line number can be parallelized using reduction.

IV. EVALUATION

We evaluated our approach with four different benchmark

suites. Starbench consists of C/C++ benchmarks from di-

verse fields such as image processing, hashing, compres-

sion and so on [9]. The Barcelona OpenMP Task Suite

(BOTS) [10] has been designed to study task parallelism in

OpenMP. The Polyhedral Benchmark suite (Polybench) [11]

consists of benchmarks with kernels from areas such as

data mining and linear algebra etc. We also used another

benchmark named fluidanimate from the Parsec benchmark

suite [12] to test multi-loop pipeline detection. Starbench,

BOTS, and Parsec include sequential as well as parallel

versions of these benchmarks, allowing us to compare our

detection results with the available parallel versions in

these suites. We only implemented those detected patterns

ourselves that were not found in the parallel versions of the

respective benchmarks. Polybench does not have any parallel

version available, so we implemented all the detected pat-

terns in polybench by manually transforming the sequential

versions. We explicitly mention whenever we implemented

a detected pattern on our own.

We conducted our evaluation on a machine with 2×8-core

Intel Xeon E5-2650 2 GHz processors with hyper-threading

and 32 GB memory, running Ubuntu 12.04 (64-bit server

edition). We compiled all the benchmarks with Clang 3.3

using -g -O2 flags. We report the overall detection results

of all these benchmarks in Table III. We tested all these

benchmarks with a maximum of 32 threads and we report

the number of threads where the benchmarks achieved their

highest speedup. Whenever possible, we used the multiple

inputs provided in benchmark suites to mitigate the limita-

tions of dynamic analysis. In the following subsections, we

will discuss the results of each detection approach in detail.

A. Multi-loop Pipeline

Our tool detected multi-loop pipelines in six bench-

marks. ludcmp, reg detect, and fluidanimate had multi-loop

pipelines. We further classified the other three i.e. rot-cc,

correlation, and 2mm as fusion.

Table IV shows the values for the coefficients a and b
as well as the efficiency factor e for the detected multi-

loop pipelines. In ludcmp, we found a multi-loop pipeline

between the two loops in function kernel_ludcmp().

The first loop was a do-all loop; the second loop had inter-

iteration dependences. We found a one-to-one dependence

between iterations of the two loops so it was reported as

a perfect multi-loop pipeline. We implemented the detected

multi-loop pipeline and achieved a maximum speedup of

14.06 with 32 threads. The first stage of the pipeline was

implemented additionally as a parallel do-all loop.

In reg detect, we found a multi-loop pipeline between

the two loops in the function kernel_reg_detect().

Again, the first loop was a do-all loop and the second loop

had inter-iteration dependences. Interestingly, the value of

the coefficient b was −1; no iteration of the second loop

had any dependence on the first iteration of the first loop.

We manually analyzed the code and confirmed this was

indeed the case. Listing 2 shows the skeleton of the two

loops from reg detect. The value of e was slightly affected

by the value of coefficient b. We implemented a multi-loop

pipeline for reg detect by peeling the first iteration of the

first loop. The remaining iterations of both loops had a one-

to-one dependence. Our parallel version achieved a speedup

of 2.26 with 16 threads.

1 void kernel_reg_detect(){
2 ...
3 for (i=0; i<PB_MAXGRID-1; i++) {
4 ...
5 mean[i][j] =
6 }
7 for (i=1; i<PB_MAXGRID-1; i++) {
8 ...
9 path[i][j] = path[i-1][j-1] +

mean[i][j]
10 }
11 }

Listing 2. Two dependent hotspot loops of reg detect.

In ComputeForces() of fluidanimate, we found two

hotspot loops with multi-loop pipeline between them. The

pseudo code of these two loops is shown in Listing 3.

Neither of these two loops were do-all loops. The values

for e, a, and b were recorded as 0.97, 0.05, and −3.50,

respectively. Based on our description of coefficients in

Table II, one iteration of the second loop depends on 20
iterations of the first loop (i.e. 1/a = 1/0.05 = 20). We

manually analyzed the loops and found that each iteration

of the first loop updated the densities of the current cell

and neighboring cells. The second loop reads and (again)

48

Table III
OVERALL PATTERN DETECTION RESULTS FOR DIFFERENT APPLICATIONS FROM STARBENCH, BOTS, POLYBENCH AND PARSEC.

Application Benchmark Suite LOC Exec Inst %
in Hotspot Speedup Threads Detected Pattern

ludcmp Polybench 135 88.64% 14.06 32 Multi-loop pipeline
reg detect Polybench 137 99.50% 2.26 16 Multi-loop pipeline
fluidanimate Parsec 3987 99.54% 1.5 3 Multi-loop pipeline
rot-cc Starbench 578 94.53% 16.18 32 Fusion
Correlation Polybench 137 99.27% 10.74 32 Fusion
2mm Polybench 153 99.19% 13.50 32 Fusion
fib BOTS 32 100.00% 13.25 32 Task parallelism
sort BOTS 305 94.89% 3.67 32 Task parallelism
strassen BOTS 399 90.27% 8.93 32 Task parallelism
3mm Polybench 166 99.44% 12.93 16 Task parallelism + Do-all
mvt Polybench 114 91.24% 11.39 32 Task parallelism + Do-all
fdtd-2d Polybench 142 76.51% 5.19 8 Task parallelism
kmeans Starbench 347 2.04% 3.97 8 Geometric decomposition + Reduction
streamcluster Starbench 551 49.99% 6.38 32 Geometric decomposition
nqueens BOTS 118 100.00% 8.38 32 Reduction
bicg Polybench 191 74.58% 5.64 8 Reduction
gesummv Polybench 188 65.33% 5.06 8 Reduction

Table IV
SUMMARY OF MULTI-LOOP PIPELINE DETECTION.

Application a b e
ludcmp 1 0 1
reg detect 1 −1 0.99
fluidanimate 0.05 −3.50 0.97

updates the densities of these cells, confirming the results

of our technique.

We implemented a multi-loop pipeline for fluidanimate

according to our detection results. Due to the complex

dependences between the loops, we achieved a maximum

speedup of only 1.5 with 3 threads. The parallel version

of fluidanimate in Parsec was implemented using grid of

parallel tasks with locks (stencil) to handle the complex

dependences between loops.

1 for(i=o;i<num; ++i)
2 neigs[i] = get_neigs(cells[i]);
3 for{i=0; i<num; ++i}
4 ComputeDensities(cells[i],

neigs[i]);
5 for{i=0; i<num; ++i}
6 ComputeForces(cells[i], neigs[i]);

Listing 3. Two dependent hotspot loops of fluidanimate benchmark.

We found three cases of fusion in the benchmarks rot-cc,
Correlation, and 2mm. All of these benchmarks had depen-

dent do-all hotspot loops that could be fused. Since Correla-
tion and 2mm are from Polybench, they are not shipped with

parallel versions. We implemented the parallel versions of

these two benchmarks via fusion and the speedups achieved

are shown in Table III. Rot-cc from Starbench has a parallel

version available, which was implemented by fusing the

same two hotspot loops that our tool had detected.

B. Task Parallelism

We detected task parallelism in 6 benchmarks in total. A

summary of detected task parallelism is given in Table V.

Three of these were from BOTS and three from Polybench.

Although BOTS is developed for studying OpenMP task

parallelism, we discovered that most of BOTS applications

have do-all parallelism; this is implemented in the parallel

version of BOTS using OpenMP tasks.

1 long long fib (int n){
2 long long x, y; //sync
3 if (n < 2) return n; //sync
4 x = fib(n - 1); //worker
5 y = fib(n - 2); //worker
6 return x + y;} //sync

Listing 4. Hotspot function of fib benchmark.

We detected task parallelism in the benchmarks fib, sort,
and strassen from BOTS. All of these applications have

multiple independent recursive calls that were identified as

separate tasks. Fib, as we show in Listing 4, calls itself

twice. DiscoPoP detected both of these function calls as

independent tasks. The parallel version of fib has been

implemented using task parallelism at the same locations.

Our estimated speedup was 3.25; however, the parallel

implementation of fib included in BOTS achieved a speedup

of 13.25. There is such a big difference between these two

because DiscoPoP does not record a function’s number of

recursive invocations. Our calculation is based on only one

recursive step; the actual application may achieve a better

speedup with the parallelism available in several recursive

calls.

In Section III, we discussed the CU graph of sort in detail.

Figure 3 shows the CU graph of function cilksort()
in sort. Here CU1, CU2, CU3, and CU4 represent recursive

calls to the function itself. CU5, CU6, and CU7 are the calls

49

Table V
SUMMARY OF TASK PARALLELISM PATTERN DETECTION.

Application Total
Instructions

Instructions on
Critical Path

Estimated
Speedup

fib 52 16 3.25
sort 2478 1172 2.11
strassen 11722739 3349354 3.5
3mm 3293952 2195968 1.5
mvt 9600 4896 1.96
fdtd-2d 137560 63309 2.17

to function cilkmerge().

Another task parallelism opportunity is detected in sort
in function cilkmerge() with a similar CU graph as in

fib. Task parallelism patterns detected in both cilksort()
and cilkmerge() have been implemented in the par-

allel version of sort in BOTS. By exploiting both task-

parallelism opportunities, the parallel implementation of sort
from BOTS achieves a maximum speedup of 3.67 on 32
threads.

In strassen, there are seven independent recursive calls in

function OptimizedStrassenMultiply(). We clas-

sified all of these as worker tasks. A loop after these seven

recursive calls uses their computed results, thus becoming

a barrier task. Exactly the same task parallelism pattern as

the one we detected has been implemented in the parallel

version of strassen for the same seven recursive function

calls in BOTS.

1 void kernel_3mm(){
2 for (i = 0; i < _PB_NI; i++)//worker
3 E[i] = A[i]+B[i];
4 for (i = 0; i < _PB_NI; i++)//worker
5 F[i] = C[i]+D[i];
6 for (i = 0; i < _PB_NI; i++)//sync
7 G[i] = E[i]+F[i];}

Listing 5. Hotspot function of 3mm benchmark.

In 3mm, we detected three loops in function

kernel_3mm() (as shown in Listing 5) as tasks.

The first two loops were classified as independent worker

tasks and the third loop as their barrier task, because

it depends on the first two loops. Similarly, in mvt two

independent loops in function kernel_mvt() were

categorized as worker tasks. All the loops that were

detected as tasks in both 3mm and mvt were also classified

as do-all loops. We implemented combined task and do-all

parallelism for both of these benchmarks and achieved

speedups of 12.93 and 11.39 for 3mm and mvt, respectively.

We detected task parallelism in the only hotspot loop in

the function kernel_fdtd_2d() from fdtd-2d. This loop

consists of four CUs. The first three CUs are independent

and the last CU depends on the other three. DiscoPoP

classified the first three as worker CUs and the last as their

barrier. After implementing the task parallelism for fdtd-2d,

we achieved a speedup of 5.19.

C. Geometric Decomposition
We detected geometric decomposition in streamcluster

and kmeans from Starbench. The main loop in function

streamCluster() of streamcluster is shown in Listing

6. It creates new clusters in each iteration and can not be

parallelized with do-all or pipeline because it uses the new

clusters formed at the end of the last iteration as an input to

the next iteration. Therefore, we detected no parallel pattern

in streamCluster(). The next hotspot was function

localSearch() being called within the biggest hotspot

loop.

1 void streamCluster(){
2 while(1){
3 ...
4 localSearch(points);
5 ...
6 if (eof)
7 break;
8 }}

Listing 6. Hotspot loop of streamcluster benchmark.

All the loops in localSearch() and the loops in the

functions called by localSearch() were detected as do-

all or reduction loops. We did not report the loops we de-

tected as reduction in Table III because they are not hotspots.

Our tool recommended localSearch() as a possible

candidate for geometric decomposition. We analyzed the

parallel version of streamcluster from Starbench and found

that it was parallelized via the geometric decomposition of

function localSearch(). The pseudo code of the parallel

streamcluster implementation is shown in Listing 7. Simi-

larly, we reported the function cluster() of kmeans as

a possible geometric decomposition candidate; this finding

was confirmed by the existing parallel version of kmeans.

1 void streamCluster(){
2 while(1){
3 ...
4 for(i=0; i<num_chuncks; i++)
5 new_thread(localSearch(

points[i*chunk_size],
chunk_size));

6 ...
7 if (eof)
8 break;
9 }}

Listing 7. Parallel implementation of streamcluster benchmark.

D. Reduction
We detected a reduction pattern in four benchmarks:

nqueens, kmeans, bicg, and gesummv. In nqueens, we de-

tected a reduction pattern in the main loop in function

nqueens(). The existing parallel version of this bench-

mark in BOTS is implemented with reduction. The reduction

loop detected in kmeans was inside a function suitable for

geometric decomposition that has already been discussed.

50

Table VI
COMPARISON OF REDUCTION DETECTION RESULTS.

Tool nqueens kmeans bicg gesu-
mmv

sum
local

sum
module

Sambamba NA NA � � � �
icc � � � � � �
DiscoPoP � � � � � �

The reduction loop of gesummv had two reduction variables

and our tool reported both of them. Both bicg and gesummv
are from Polybench; therefore, we implemented their parallel

versions manually via reduction. We achieved peak speedups

of 5.64 for bicg and 5.06 for gesummv using 8 threads.

As we pointed out earlier, state of the art compilers

use static analysis to detect reduction pattern in loops.

To demonstrate the advantage of our approach, we im-

plemented two synthetic benchmarks we call sum local
and sum module. We show the code of these synthetic

benchmarks in Listings 8 and 9, respectively. The reduction

operation is done in the lexical extent of the loop in

sum local; in sum module, the reduction operation is done

in another function called from within the loop.

1 int sum_local(int* arr, int size){
2 int sum=0;
3 for (i = 0; i < size; i++)
4 sum += arr[i];
5 }

Listing 8. Code of sum local reduction.

1 int sum_module(int &sum, int val){
2 int x = ...//do some heavy work on

val
3 d += x;
4 return x;
5 }
6 int sum_module(int* arr, int size){
7 int sum=0;
8 for (i = 0; i < size; i++){
9 x = sum_module(sum, arr[i]);

10 foo(x);
11 }
12 return sum;
13 }

Listing 9. Code of sum module reduction.

We compared our results for these two synthetic bench-

marks with Intel’s icc compiler [1] and Sambamba [6],

another tool that statically detects reductions. The results

are shown in Table VI. The limitations of static analysis

prevented both icc and Sambamba from detecting the re-

duction in sum module. In contrast, our approach detected

the reduction patterns in both benchmarks.

V. RELATED WORK

The detection of sequential design patterns is an active

research topic in software engineering, especially in object-

oriented programming. Previous studies [21], [22], [23]

look for sequential design patterns in UML diagrams of

an existing application. In the field of parallel computing,

Poovey et al. [24] detect parallel design patterns in an

already parallelized application. They use different metrics

such as thread count, memory sharing, and unique instruc-

tions etc. to recognize a pattern. Their propose appropriate

parallel patterns to optimize the parallelized application. The

MINIME [25] tool leverages the same technique to search

for parallel patterns in parallel applications. However, its

ultimate objective is to produce a synthetic benchmark with

the same parallel patterns and parallelization behavior. These

benchmarks can then be used for testing architectures under

development. Both of these approaches detect patterns in

already parallelized programs; conversely, we detect parallel

patterns in sequential programs.

Molitorisz [3] propose a tool that detects parallel design

patterns and applies automatic transformations to create a

parallel version of a serial input application; it is able to

detect master/worker and pipeline patterns. Parceive [26] is

another automatic parallelization tool based on the dynamic

analysis of a sequential application. It dumps trace data

into a database and uses queries to detect parallelism. The

corresponding evaluation reports the successful detection of

a pipeline. All of these tools are limited to pipeline and

master/worker patterns; our tool detects a broader range

of patterns, including multi-loop pipeline, task parallelism,

geometric decomposition, and reduction.

Cordes et al. [27] detect task parallelism in hierarchical

task graphs for heterogeneous architectures. These tasks can

be at the instruction level, the loop level, or the function

level depending on the available architecture. Li et al. [5]

search for task parallelism, data parallelism, and pipelines

in program dependence graphs by identifying strongly con-

nected components and coarsening their granularity with

typed fusion. However, their approach supports only scalar

dependences. They miss parallelization opportunities when

dependences involve pointers or arrays. The Tareador tool

detects task parallelism [28]. Its unit of parallelization is a

function or a loop; we use CUs, which are more fine grained.

Wang et al. [29] automatically derive pipeline and do-all

parallelism from a program dependence graph of a sequen-

tial application. Decoupled software pipelining converts a

repeating region’s dependence graph into a pipeline using

strongly connected components [30]. This conversion also

creates more opportunities for parallelism in different stages

of the pipeline. To the best of our knowledge, there is

no previous work on the detection of a pipeline covering

multiple loops. Fusion is a well studied and reported op-

timization in the compilers community. Modern compilers

such as Intel icc [1] use static analysis to fuse loops; it is

usually conservative. Our approach uses dynamic analysis to

detect possible fusion candidates that may reside in different

parts of an application.

51

Streit et al. [6] developed a tool called Sambamba for

the automatic detection of parallel patterns and subsequent

parallelization. It covers a wide range of patterns: do-

all, do-across, reduction, task parallelism, privatization, and

speculation. These patterns are detected using static analysis.

We use hybrid analysis to detect patterns more accurately,

as shown in the case of reduction detection in Section IV.

VI. CONCLUSION & FUTURE WORKS

We have extended DiscoPoP by adding functionality to

detect four parallel patterns in the algorithm structure space.

Our tool detects patterns in hotspot regions of applications

and maps individual tasks found in these regions onto the

pattern’s support structure. This helps programmers imple-

ment the suggested pattern during parallelization.

We plan to support more parallel patterns and loop opti-

mizations such peeling and fission in the future. Moreover,

we want to improve our reduction detection so we can

automatically infer the type of reduction operator and cover

more complex reduction scenarios. We aim to define metrics

that help choose the best pattern among multiple detected

parallel patterns. Such metrics may also quantify the human

effort needed for code transformation. Our future work also

includes semi-automatic code transformation of a sequential

application into a parallel one.

ACKNOWLEDGMENT

We appreciate our graduate student Sergei Krestianskov

for his programming support and also the support provided

by the Klaus Tschira foundation.

REFERENCES

[1] Intel. (2015) Intel C++ compiler XE 13.1 user and reference guide. [On-
line]. Available: https://software.intel.com/sites/products/documentation/doclib
/iss/2013/compiler/cpp-lin/

[2] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Programming,
1st ed. Addison-Wesley Professional, 2004.

[3] K. Molitorisz, “Pattern-based refactoring process of sequential source code,”
in Proc. of the 17th European Conference on Software Maintenance and
Reengineering, ser. CSMR ’13. Washington, DC, USA: IEEE Computer
Society, 2013, pp. 357–360.

[4] R. Atre, A. Jannesari, and F. Wolf, “The basic building blocks of parallel
tasks,” in Proc. of the International Workshop on Code Optimisation for Multi
and Many Cores, ser. COSMIC ’15. New York, NY, USA: ACM, 2015, pp.
3:1–3:11.

[5] F. Li, A. Pop, and A. Cohen, “Automatic extraction of coarse-grained data-flow
threads from imperative programs,” IEEE Micro, vol. 32, no. 4, pp. 19–31, Jul.
2012.

[6] K. Streit, J. Doerfert, C. Hammacher, A. Zeller, and S. Hack, “Generalized
task parallelism,” ACM TACO, vol. 12, no. 1, pp. 8:1–8:25, Apr. 2015.

[7] Z. Li, R. Atre, Z. Ul-Huda, A. Jannesari, and F. Wolf, “DiscoPoP: A profiling
tool to identify parallelization opportunities,” in Tools for High Performance
Computing 2014. Springer International Publishing, Aug. 2015, ch. 3, pp.
37–54.

[8] Z. U. Huda, A. Jannesari, and F. Wolf, “Using template matching to infer
parallel design patterns,” ACM TACO, vol. 11, no. 4, pp. 64:1–64:21, Jan.
2015.

[9] M. Andersch, B. Juurlink, and C. C. Chi, “A benchmark suite for evaluating
parallel programming models,” in Proc. of 24th Workshop on Parallel Systems
and Algorithms, 2011.

[10] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
OpenMP tasks suite: A set of benchmarks targeting the exploitation of task
parallelism in openmp,” in Proc. of International Conference on Parallel
Processing, ser. ICPP’09. IEEE, 2009, pp. 124–131.

[11] L.-N. Pouchet. PolyBench/C the polyhedral benchmark suite. [Online].
Available: http://www.cs.ucla.edu/ pouchet/software/polybench/

[12] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation, Prince-
ton University, January 2011.

[13] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong program
analysis & transformation,” in Proc. of the International Symposium on Code
Generation and Optimization, ser. CGO ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 75–.

[14] Z. Li, A. Jannesari, and F. Wolf, “An efficient data-dependence profiler for
sequential and parallel programs,” in Proc. of the 29th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Hyderabad, India.
IEEE Computer Society, May 2015, pp. 484–493.

[15] A. Jannesari, M. Westphal-Furuya, and W. F. Tichy, “Dynamic data race
detection for correlated variables,” in Proc. of the 11th international conference
on Algorithms and architectures for parallel processing - Volume Part I, ser.
ICA3PP’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 14–26.

[16] A. Mazaheri, A. Jannesari, A. Mirzaei, and F. Wolf, “Characterizing loop-level
communication patterns in shared memory applications,” in Proc. of the 44th
International Conference on Parallel Processing, Beijing, China, ser. ICPP’15,
Sep. 2015.

[17] Z. Li, A. Jannesari, and F. Wolf, “Discovery of potential parallelism in
sequential programs,” in Proc. of the Workshop on Parallel Software Tools and
Tool Infrastructures, Lyon, France, ser. PSTI’13, Oct. 2013, pp. 1004–1013.

[18] K. Keutzer and T. Mattson, “Our pattern language (opl): A design pattern
language for engineering (parallel) software,” in ParaPLoP Workshop on
Parallel Programming Patterns, vol. 14, 2009.

[19] D. Freedman, Statistical Models: Theory and Practice. Cambridge University
Press, Aug. 2005.

[20] K. Kennedy and J. R. Allen, Optimizing Compilers for Modern Architectures:
A Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2002.

[21] M. Qiu, Q. Jiang, A. Gao, E. Chen, D. Qiu, and S. Chai, “Detecting design
pattern using subgraph discovery,” in Proc. of the 2nd International Conference
on Intelligent Information and Database Systems: Part I, ser. ACIIDS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 350–359.

[22] M. Gupta, A. Pande, and A. K. Tripathi, “Design patterns detection using SOP
expressions for graphs,” SIGSOFT Softw. Eng. Notes, vol. 36, no. 1, pp. 1–5,
Jan. 2011.

[23] J. Dong, Y. Sun, and Y. Zhao, “Design pattern detection by template matching,”
in Proc. of the ACM Symposium on Applied Computing, ser. SAC ’08. New
York, NY, USA: ACM, 2008, pp. 765–769.

[24] J. A. Poovey, B. P. Railing, and T. M. Conte, “Parallel pattern detection
for architectural improvements,” in Proc. of the 3rd USENIX Conference on
Hot Topic in Parallelism, ser. HotPar’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 12–12.

[25] E. Deniz, A. Sen, B. Kahne, and J. Holt, “MINIME: pattern-aware multicore
benchmark synthesizer,” IEEE Transactions on Computers, vol. 64, pp. 2239
– 2252, 2014.

[26] A. Wilhelm, B. Sharma, R. Malakar, T. Schle, and M. Gerndt, “Parceive:
Interactive parallelization based on dynamic analysis,” in Proc. of PCODA.
IEEE, 2015, pp. 1–6.

[27] D. Cordes, O. Neugebauer, M. Engel, and P. Marwedel, “Automatic extraction
of task-level parallelism for heterogeneous MPSoCs,” in Proc. of the 42Nd
International Conference on Parallel Processing, ser. ICPP ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 950–959.

[28] V. Subotic, E. Ayguad, J. Labarta, and M. Valero, “Automatic exploration
of potential parallelism in sequential applications,” in Supercomputing, ser.
Lecture Notes in Computer Science, J. Kunkel, T. Ludwig, and H. Meuer,
Eds. Springer International Publishing, 2014, vol. 8488, pp. 156–171.

[29] Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’boyle, “Integrating
profile-driven parallelism detection and machine-learning-based mapping,”
ACM TACO, vol. 11, no. 1, pp. 2:1–2:26, Feb. 2014.

[30] J. Huang, A. Raman, T. B. Jablin, Y. Zhang, T.-H. Hung, and D. I. August,
“Decoupled software pipelining creates parallelization opportunities,” in Proc.
of the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’10. New York, NY, USA: ACM, 2010, pp.
121–130.

52

