
Improving Performance of Transactional Applications through Adaptive
Transactional Memory

Thireshan Jeyakumaran, Ehsan Atoofian, Yang Xiao
Lakehead University
Thunder Bay, Canada

{tjeyakum, atoofian, yxiao4}@lakeheadu.ca

Zhen Li, Ali Jannesari
Technical University of Darmstadt

Darmstadt, Germany
{li, jannesari}@cs.tu-darmstadt.de

Abstract—Transactional memory (TM) has become
progressively widespread especially with hardware
transactional memory implementation becoming increasingly
available. In this paper, we focus on Restricted Transactional
Memory (RTM) in Intel’s Haswell processor and show that
performance of RTM varies across applications. While RTM
enhances performance of some applications relative to
software transactional memory (STM), in some others, it
degrades performance. We exploit this variability and present
an adaptive system which is a static approach that switches
between HTM and STM in transaction granularity. By
incorporating a decision tree prediction module, we are able to
predict the optimum TM system for a given transaction based
on its characteristics. Our adaptive system supports both HTM
and STM with the aim of increasing an application’s
performance. We show that our adaptive system has an
average overall speedup of 20.82% over both TM systems.

Keywords- Restricted Transactional Memory; Software
Transactional Memory; Decision Tree; Performance

I. INTRODUCTION
Transactional Memory (TM) is becoming increasingly

popular for developing parallel applications for multi-core
processors. TM provides programmers with an atomic
construct (transaction), which can be used to guarantee
atomicity of accesses to the shared variables. This is much
simpler than conventional lock-based programming, which
requires significant programming effort to avoid
synchronization bugs such as deadlock, livelock, and priority
inversion. In a TM program, the complexity of enforcing
atomicity of shared variables is delegated to the underlying
system, instead of any hand crafted synchronization schemes
defined by the programmer. Transactional memory comes in
two variants: Software Transactional Memory (STM) and
Hardware Transactional Memory (HTM).

STM is the simplest approach of transactional
programming in which all transactions are implemented
entirely in software. There has been intensive research done
on practical implementations of STM which has lead to the
development of many systems such as TL2 [1], TinySTM
[2], and CTL [3]. All of these systems execute transactions
using software-based resources. This includes conflict
detection, consistency of transactional reads, preservation of

atomicity, preservations of isolation, etc. This results in poor
performance in some applications due to the overhead
associated with initiating and overseeing the system.

To mitigate the overhead of STM, hardware
manufacturers such as Intel [5] and IBM [7, 8] have
incorporated hardware support for transactional memory in
their respective chip multiprocessors. In HTM, speculative
transactions are executed using hardware resources (such as
internal buffers, caches, etc.). In 2013, Intel released the
Haswell processor which incorporates hardware support for
TM, called Restricted Transactional Memory (RTM) [5].
RTM exploits cache-coherence protocol [6] in order to track
transactional conflicts. Yet, RTM is no magic solution as an
alternative to STM due to its own set of limitations and
constraints. RTM and other similar HTM systems such as
IBM’s BlueGene/Q [7] and Power8 [8] follow the ‘best-
effort’ protocol, meaning it does not provide forward
progress. In other words, there is no guarantee that a
transaction will successfully commit in RTM; essentially
requiring a fallback path to successfully execute an
application in the event of an abort. Generally, a fallback
path is an alternative software policy to guarantee successful
execution. This software policy can be as simple as acquiring
a lock and executing it non-transactionally. Another vital
limitation of RTM is cache capacity where the success rate
of a transaction depends on whether the data set (read/write)
fits inside the cache. There are also other architectural
constraints that limit performance in RTM such as context
switching, interrupts, I/O instructions, etc. Thus, RTM is not
a polished product as of yet, but there is potential for
performance gain.

In this paper, the focus is on implementing an adaptive
system that exploits both HTM and STM at transaction
granularity. The goal is to achieve performance gain by
incorporating the benefits of both systems. Typically, in
parallel applications, the number of transactions can vary
anywhere from a single transaction to a large number of
transactions. It is important to note that not all transactions
are identical. Each transaction has its own characteristics in
terms of transaction size, read-set size and write-set size.
Depending on these characteristics of a transaction, either
HTM or STM can be a better choice for implementation. We
exploit the decision tree [9] to predict whether HTM or STM
is faster for a given transaction. The decision tree receives

2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

978-1-4673-8776-7/16 $31.00 © 2016 IEEE

DOI 10.1109/PDP.2016.85

192

input parameters (such as transaction size, transactional write
ratio, etc.) and predicts the optimum TM system for a
transaction. Then, a programmer or a compiler modifies the
source code of the application based on predictions made by
the decision tree. Our adaptive system supports both HTM
and STM with the aim of reducing execution time of
transactions with different characteristics. In this work, we
use RTM [5] for hardware transactions and TinySTM [2] for
software transactions. It is important to note that while we
use RTM and TinySTM in this work, our adaptive system is
general, and can be implemented using any HTM or STM
system.

In summary, we make the following contributions:
• We show that there is no single TM system that

works well across all applications. Depending on
applications’ characteristics, one system might be
better than the other.

• We propose an adaptive system, which predicts the
optimum TM system for a given transaction,
statically. The adaptive system relies on the
prediction of the decision tree to select either HTM
or STM.

• Our evaluations using STAMP [10], NAS [11], and
DiscoPoP [12] benchmark suites reveal that on
average, the adaptive system is able to improve
speed of transactional applications by 20.82%.

 The rest of the paper is organized as follows. Section II
provides background information on Intel’s RTM [5],
TinySTM [2], and the decision tree prediction model [9] and
also motivation behind this work. Section III describes
details of the adaptive system. Section IV analyzes the
results of the experimental evaluations. Section V presents
the related work. Finally, section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Intel’s Restricted Transactional Memory
Along with the release of the Haswell processor, Intel

introduced Transaction Synchronization Extensions (TSX) to
provide programming support for hardware transactional
memory. Intel’s TSX has two variants: Hardware Lock
Elision (HLE) and Restricted Transaction Memory (RTM).
HLE is a legacy compatible instruction set that uses lock
acquisitions strictly in hardware. In this paper, the main
focus is on RTM.

The programming model of Intel’s RTM allows
programmers to mark regions of a code to be executed
transactionally. In order to access RTM’s functionality,
there are 3 new instructions: XBEGIN, XEND and
XABORT. A transaction is initiated with the instruction
XBEGIN. Inside of the transaction, RTM uses the
processor’s cache to track read and write sets of transactions.
These read and write sets are monitored in the granularity of
cache blocks. To state the end of a transaction, the
instruction XEND is used. The XEND instruction commits
any changes done to the shared memory. To explicitly abort
a transaction, XABORT is used inside of the transactional
code.

In RTM, the conflict detection is handled through the
cache coherency protocol. If two transactions access a shared
memory location and if at least one of them writes into the
location, the cache coherency protocol detects the conflict. In
the event of conflict, only one transaction can proceed while
the rest should abort. RTM follows the eager policy to
resolve conflicts. In eager policy, as soon as a transactional
write operation results in conflict, RTM will then abort the
conflicting transactions and allows only one transaction
proceed. Eager policy improves utilization of processor
resources as a conflicting transaction is aborted immediately
and is not postponed to the commit time.

There are numerous reasons for transactional aborts. The
primary causes of a transactional abort in RTM are conflicts
over shared memory locations and limited capacity in
hardware resources. For example, the size of data accessed
in a transaction may exceed cache capacity that triggers a
transactional abort. Other aborts in RTM are caused by
software/system operations such as page faults, context
switching, I/O operations, etc. In RTM, transactional aborts
are identified in the EAX register [5]. The EAX register
carries an 8-bit code that specifies the cause of the
transactional abort. When a transaction is aborted, all the
changes made to the memory are discarded and an abort
code is sent from the EAX register, stating the cause of the
abort. RTM does not guarantee forward progress which
means a transaction may not eventually commit if it solely
relies on RTM. Thus, a transaction requires software based
fallback policy to provide forward progress guarantees.

B. TinySTM
In this paper, we incorporate an already established state-

of-the-art STM system, called TinySTM [3]. This system is
a word-based STM implementation that uses conventional
lock-based mechanisms to protect shared memory locations.
It also uses a time-based design to guarantee that all
transactions access consistent memory states. TinySTM uses
encounter-time locking which is beneficial for detecting
conflicts earlier (increasing transaction throughput). When
compared to commit-time locking, TinySTM improves
utilization of processor resources as a doomed transaction is
aborted immediately. Also, encounter-time locking
efficiently manages the read and write operations without
requiring complex mechanisms. TinySTM was chosen as the
STM counterpart for the adaptive system due to having
better performance compared to other STM systems (such as
TL2 [1]).

C. Motivation
Both STM and RTM have benefits and limitations that

either improves or penalizes performance in certain
applications. One of the most important differences between
RTM and STM is transactional overhead. In RTM, the
processor is responsible for transactional execution and
conflict detection, which incurs much less overhead and
exhibits better overall performance. On the other side, in
STM, there is extra overhead for software based conflict
detection and data versioning (such as initiating a
transaction, validating transactional data, transactional

193

commits, etc. [3]). This greatly hampers the overall
performance in STM systems. Another important aspect of
the two systems is flexibility. In RTM, the processor
oversees all memory accesses, which in-hand provides
strong isolation but relies solely on hardware resources. This
results in complexity issues (fallback policy is needed) that
lead to a higher probability of transactional aborts and in
certain cases a performance slowdown when compared to
STM. On the other hand, STM delivers a flexible system in
which there is no resource limitation and the underlying
system deals with majority of the complex synchronization
issues, leading to less transactional aborts and a better overall
performance in some applications when compared to RTM.

Figure 1 represents a normalized comparison graph
between RTM and STM using 12 benchmarks taken from
STAMP [10], NAS [11], and DiscoPop [12] benchmark
suites. In each benchmark, the number of threads varies

between two and eight (for detail of experimental
framework, refer to Section IV). In Figure 1, measurement
reading less than one favors RTM, while greater than one
favors TinySTM. There is a vast discrepancy between both
systems, primarily due to the transaction characteristics
within a given benchmark such as transaction size, write-set
size and read-set size. In small benchmarks where working
set of the benchmark fits in the L1 cache, i.e. Montecarlo,
RTM outperforms TinySTM. On the other hand, TinySTM
outperforms RTM in benchmarks consisting of larger
transaction sizes, i.e. Labyrinth. The number of transactions
within a benchmark varies and the characteristics from one
transaction to another transaction also vary. By introducing
our adaptive system, we will be able to switch between RTM
and TinySTM within a benchmark and achieve better
performance.

Figure 1. Normalized Transactional Execution time of RTM relative to TinySTM.

III. ADAPTIVE SYSTEM DESIGN
In this section, we describe our proposed Adaptive

system which supports both hardware and software
transactions within an application, while guaranteeing
forward progress. Our adaptive system uses Haswell’s RTM
[5] and a modified version of TinySTM [2]. Both of these
systems work in conjunction with each other in order to
achieve dynamic switching. One of the features of the
adaptive system is that it switches between HTM and STM
in transaction granularity. In parallel computing, the term
granularity is defined as the amount of real work done in a

parallel task. With transaction granularity, the focus is on
the basis of individual transactions rather than an entire
application. This fine-grained granularity system increases
performance gains, while a coarse-grained granularity
system misses many opportunities for speedup. However, to
avoid overhead, adaptive system does not execute HTM and
STM simultaneously. Simultaneous execution of HTM and
STM requires communication between in-flight hardware
and software transactions. A metadata should record
transactional data and each transaction should check the
metadata when it accesses a transactional variable. Doing so
significantly increases execution time and hurts performance,

194

especially in applications with low conflict rate. To avoid
this performance penalty, we allow a transaction executes
either in hardware or software, but not both.

The implementation of RTM programs was based on the
programmability references from Intel’s TSX manual [5].
The key factors in the RTM programs is retry count, fallback
policy, and abort status. The retry count is the number of
times an aborted transaction retries execution. This is
important because in RTM, transactions have an abundant
reasons to abort (refer to section II. A). By retrying an
aborted transaction ‘x’ number of times, there is a possibility
that the transaction can eventually commit in hardware.
Once the retry threshold is reached, the fallback policy is
applied. The fallback policy that is used is a global lock
mechanism. In our adaptive system, the retry count is set to
4. Based on our experimental simulations, the retry count of
4 is the best option that produces optimal performance. It is
possible to have a higher retry count, but it can hurt
performance as retrying a transaction that aborts over and
over increases execution time. Also, having a low retry count
can cause the fallback policy to be executed too early.
RTM’s EAX status register was utilized to track the types of
transactional aborts.

A. Synchronization of RTM and STM
This section explains how RTM and STM are

synchronized. We need to guarantee that in-flight hardware
and software transactions do not execute simultaneously.
This is very crucial because if there are any issues it can stall
an application from executing correctly or crash entirely. It
can also lead to incorrect updates to the shared variables by
either one of the systems. To enable mutual-exclusion of
RTM and STM, we exploit conditional variable. The pseudo
code in Figures 2 and 3 show how synchronization is
handled between the two systems.

Figure 2. Pseudo code for synchronization of RTM and STM in
tx_start().

The synchronization occurs inside the functions tx_start()
and tx_commit() which depict the start and end of a

transaction, respectively. These functions have other code
sequences but are taken out in order to only focus on the
synchronization part. The input arguments of the two
functions show whether the corresponding transaction is
executed in hardware or software. A hardware transaction
first checks if there is any in-flight software transaction (line
7). If a software transaction is executing, then the hardware
transaction waits (line 8). Then, the hardware transaction
increments num_in_flight_rtm which is a counter and shows
the number of in-flight hardware transactions (line 9). A
global lock (rtm_stm_sync_mutex) is used to guarantee
atomicity of accesses to the shared variables in tx_start() and
tx_commit(). It is important to note that the overhead of the
global lock is very low as it is held by transactions for a short
period of time. The code for software transactions (lines 14-
22) is similar. When a hardware transaction commits, (lines
28-35), it decrements num_in_flight_rtm counter (line 31). If
the counter is zero, then it broadcasts a signal to all software
transactions waiting for in-flight hardware transactions to
finish (line 33). The same procedure is followed for software
transactions (lines 37-44).

Figure 3. Pseudo code for synchronization of RTM and STM in
tx_commit().

B. Implementation of Decision Tree Prediction Module
Decision tree is an effective method of supervised

machine learning that exhibits an accurate prediction based
on a group of datasets [9]. Our Adaptive system exploits a
decision tree prediction module (C4.5 algorithm [4]) to be
able to predict which TM system is the better choice for a
given transaction. The basic functionality of C4.5 is to build
a tree from a set of training datasets and the resulting tree is
used to predict the optimum TM system. This process can
be broken down into two phases: training phase and testing
phase.

1) Training Phase
The training phase is conducted to attain a prediction

model based on decision tree. The input datasets are based
on the following transaction parameters: transaction size,
read-set size, write-set size, and write-ratio (ratio of shared
writes and total number of shared accesses in a transaction).

1: tx_start(int rtm_n_stm)
2: {
3: ...
4: if(rtm_n_stm == 1)
5: {
6: pthread_mutex_lock(&rtm_stm_sync_mutex);
7: while (num_in_flight_stm > 0)
8: pthread_cond_wait(&sync_cond_rtm, &rtm_stm_sync_mutex);
9: num_in_flight_rtm++;
10:
11: pthread_mutex_unlock(&rtm_stm_sync_mutex);
12: }
13:
14: if(rtm_n_stm == 0)
15: {
16: pthread_mutex_lock(&rtm_stm_sync_mutex);
17: while (num_in_flight_rtm > 0)
18: pthread_cond_wait(&sync_cond_stm, &rtm_stm_sync_mutex);
19: num_in_flight_stm++;
20:
21: pthread_mutex_unlock(&rtm_stm_sync_mutex);
22: }
23: ...
24: }

25: tx_commit(int rtm_n_stm)
26: {
27: ...
28: if(rtm_n_stm == 1)
29: {
30: pthread_mutex_lock(&rtm_stm_sync_mutex);
31: num_in_flight_rtm--;
32: if(num_in_flight_rtm == 0)
33: pthread_cond_broadcast(&sync_cond_stm);
34: pthread_mutex_unlock(&rtm_stm_sync_mutex);
35: }
36:
37: if(rtm_n_stm == 0)
38: {
39: pthread_mutex_lock(&rtm_stm_sync_mutex);
40: num_in_flight_stm--;
41: if(num_in_flight_stm == 0)
42: pthread_cond_broadcast(&sync_cond_rtm);
43: pthread_mutex_unlock(&rtm_stm_sync_mutex);
44: }
45: ...
46: }

195

The output of the decision tree is a binary bit that indicates
whether RTM or STM is better for a given transaction. These
parameters are important in terms of the behaviors of both
RTM and TinySTM. In RTM, it favors small sized
transactions as well as small working set size (number of
distinct memory locations accessed). While in STM, there is
much more flexibility and offers better performance than
RTM for large transaction size and large working set size.
The training phase consists of a set of benchmarks that are
chosen based on small, medium and large transaction sizes
and working set sizes from all the 3 benchmark suites
(STAMP, NAS and DiscoPoP). The following are the
benchmarks used for the training phase: GENOME,
LABYRINTH, YADA, Embarrassingly Parallel,
Montercarlo_Pie and Light_Propogation. Benchmarks are
executed twice: once using RTM and the other time using
TinySTM. Decision tree is trained based on statistics
generated by RTM and TinySTM. This procedure was done
separately for 2, 4, and 8 number of threads because the
characteristics of a transaction can vary as the thread count
increases.

Table I shows an example of benchmark YADA and the
parameters associated with its transactions. These parameters
were used for training due to specific behaviors of each
system. Benchmark YADA contains 5 transactions in which
each transaction has its own unique set of characteristics.

One way to measure transaction size (the 6th column in
Table I) is to count the number of C code lines in
transactions. However, execution time of C programs
changes from one line to the other by a large margin. We
need a fine granularity metric for transaction size. Since all C
codes are compiled to assembly instructions, we use number
of assembly instructions to measure transaction size

In large transactions, STM performs better than RTM
primarily due to capacity overload of hardware resources.
Another critical behavior of a transaction is working set size
(read/write accesses). RTM performs well for transactions
that consist of low to medium working set size, while STM
performs well for large working set size. This is due to the
hardware constraints associated with RTM which caps the
threshold for performance gain in transactions with large
working set sizes. In YADA, there are 4 transactions with a
transaction size that ranges from 95-115. For these
transactions, RTM executes faster than STM. The remaining
transaction has a size of 626 and contains a very large
working set size in which STM greatly outperforms RTM.
By training the decision tree using all parameters of the
training benchmarks, it is possible to achieve accurate
predictions.

TABLE I. CHARACTERISTICS OF BENCHMARK YADA CONSISTING OF
FIVE TRANSACTIONS

TX # STM
Time(ms)

RTM
Time(ms)

Read-set
Size

Write-set
Size

TX
Size

Write
Ratio

_TX1 291 113 2525298 1219387 101 0.3256
 TX2 523 48 580197 0 115 0
 TX3 39833 51061 10396152 24145158 626 0.1884
 TX4 52 24 0 464996 95 1
 TX5 144 66 1127133 505601 109 0.3096

2) Testing Phase
The testing phase is conducted to predict whether RTM

or STM is better for a given transaction. This testing phase
consists of 6 different benchmarks, which are: Conjugate-
Gradient, Multi-Grid, KMEANS, SSCA2, Ann_Training and
Mandelbrot. The C4.5 algorithm of the decision tree applies
pruning to increase the accuracy of the prediction. Pruning
is the basis of increasing the accuracy of unseen data. The
decision tree is designed to give an accurate prediction,
which means that there is no guarantee that the prediction is
correct all the time. This is due to the parameters that impact
execution time of transactions. These parameters vary from
one benchmark to another. Table II is an example of the
prediction of the decision tree for benchmark CG
(Conjugate-Gradient). D. T prediction in the table stands for
decision tree prediction. The decision tree prediction is based
on the dataset of the training phase. The optimum system
represents the system that executes the fastest.

TABLE II. CONJUGATE-GRADIENT BENCHMARK COMPARING
DECISION TREE PREDICTION WITH OPTIMUM SYSTEM

TX # STM
Time(ms)

RTM
Time(ms)

D.T
prediction

Optimum
prediction

TX1 4 21 RTM STM
TX2 83391 9664 RTM RTM
TX3 97 809 STM STM
TX4 14 2 STM RTM
TX5 4 20 RTM STM
TX6 172 1873 STM STM

This table indicates that the decision tree predicted the

best system at a rate of 50% (3/6 transactions). Even though
50% accuracy seems poor, it is actually very accurate in
terms of transaction execution time greater than 100ms.
Approximately, 3 out of the 6 transactions have an execution
time greater than 100ms (for both RTM and STM), in which
the decision tree accurately predicted the correct system to
use. The miss-predictions for the transactions with an
execution time less than 100ms are not important as small
transactions have insignificant impact on performance. Our
adaptive system works alongside the predictions resulted by
the decision tree. Based on the prediction, either a
programmer or a compiler will statically change the source
code for the adaptive system. The adaptive system will then
run the benchmark, which consists of both hardware and
software transactions to achieve a performance gain.

IV. EXPERIMENTAL RESULTS
For our adaptive system, it is important to simulate both

STM and RTM on the same commodity processor. The
experimental setup consisted of 4th generation Intel Core i7
processor comprising of four physical cores that can run up
to eight threads simultaneously (hyper-threading). Each core
consists of two 8-way 32KB L1 cache, 256 KB L2 cache,
and 8 MB of L3 cache. We compile all benchmarks using
gcc 4.8.1. We use the –mrtm flag to access the Intel’s TSX
intrinsic. For evaluation, the benchmarks from the testing
phase are used. This includes benchmarks Conjugate-
Gradient, Multi-Grid, KMEANS, SSCA2, Ann_Training and
Mandelbrot. We did not include the training benchmarks for

196

our evaluation because we wanted to have discrete analysis
based on the decision tree prediction. Therefore, the focus
was on attaining a prediction based on the training
benchmarks then applying the prediction to another set of
benchmarks (testing benchmarks). Figure 4 represents
normalized speedup comparison between the adaptive
system and TinySTM. A benchmark that consists of a value
less than 1 shows speed-up for the adaptive system. The
benchmarks Conjugate-Gradient, Kmeans, and SSCA2 have
a significant speedup over STM. The rest of the benchmarks,
Multi-Grid, Ann_Training and Mandelbrot have a
normalized speedup value of 1, which indicates that the
prediction used for the adaptive system heavily favored
TinySTM. On average, speed-up is 34.31%, 34.44%, and
34.35% for 2, 4 and 8 threads, respectively.

Figure 4. Normalized Speedup comparison between adaptive system and
TinySTM.

Figure 5. Normalized Speedup comparison between sdaptive system and
RTM.

Figure 5 represents Normalized Speedup comparison
between the Adaptive system and RTM. On average,
speedup is 5.88%, 5.16% and 11.79% for 2, 4 and 8 threads,
respectively. The benchmarks that have a normalized
speedup less than one, indicate that the adaptive system
achieves speedup. At 4 and 8 threads, benchmark Multi-
Grid indicates a slowdown when compared to the baseline
RTM. This is due to the decision tree prediction that
incorrectly predicted the wrong system to execute for that
specific benchmark. Table III shows transaction parameters
of Multi-Grid when the number of threads is 4. Multi-Grid
benchmark consists of two transactions in which the decision
tree predicts correctly for only one of the two transactions.

The other transaction (TX2) is incorrectly predicted and this
results in slowdown of the adaptive system compared to the
baseline RTM. There are a few reasons why RTM executes
better than STM even though the transaction and working set
sizes are very large. The primary reason is the abort ratio of
this benchmark. In RTM, capacity induced aborts
dramatically hamper the performance of transactional
executions. Yet, for benchmark Multi-Grid there is a total
abort ratio of 11.46% and out of that, only 9.54% consists of
capacity aborts. This means that there is a low abort rate as
this benchmark has a higher percentage of successfully
committing transactions. Also, since the capacity abort rate is
very low, this benchmark executes efficiently in RTM thus
achieving a better performance.

TABLE III. TRANSACTION PARAMETERS AND EXECUTION TIME FOR
MULTI-GRID BENCHMARK WHEN NUMBER OF THREADS IS 4.

TX # STM
Time(ms)

RTM
Time(ms)

Read-
set Size

Write-
set Size

TX
Size

Write
Ratio

D. T.
Pred.

Opt.
Sys.

TX1 120 60 64 64 130 0.5 RTM RTM
TX2 18818 16990 8008 8008 276 0.5 STM RTM

A. Energy Expenditure Analysis
An important aspect of a computational platform is

energy efficiency. With modern technology (laptops, cell
phones, tablets, ext.) relying heavily on battery power, it is
essential to expend an efficient amount of energy as possible.
We used Intel’s runtime average power limit monitor
(RAPL) to measure energy expenditure of the benchmarks
[13]. RAPL relies on a set of hardware counters inside the
processor which provides energy and power consumption
information.

The energy readings are measured on the entire
application for our adaptive system and then compared the
statistics to the baseline RTM and TinySTM. First, energy
measurements are taken for each system and an analysis is
made. RTM is more energy efficient than TinySTM as RTM
exploits hardware resources and does not incur the software
overhead of TinySTM. By implementing our adaptive
system, there is a possibility that by switching to RTM
(when possible), it may be more energy efficient than STM.
Furthermore, the adaptive system will also incorporate STM,
meaning the energy efficiency readings compared to RTM
does not result in efficiency. To take into account the impact
of both energy and performance, we use energy-delay to
compare adaptive system with RTM and TinySTM.

Figure 6 depicts normalized energy-delay of our adaptive
system compared to TinySTM. For this evaluation, only the
benchmarks in the testing phase are used in order to have a
realistic evaluation based on the decision tree predictions.
Since this is a normalized graph, values less than 1 depict
energy efficiency for the adaptive system. In all the testing
benchmarks, our adaptive system is 42.11% more energy
efficient than TinySTM. This is because for certain
benchmarks that consist of low-medium transaction and
working set sizes, by implementing these transactions in
RTM, we are able to save energy. If all the transactions are
implemented in STM, then there will be additional overhead
for each transaction initiated. Figure 7 depicts normalized

197

energy-delay graph comparison between RTM and our
Adaptive system. Our adaptive system is not energy
efficient when compared to RTM. This is simply due to the
overhead associated with switching into STM. There is extra
overhead, when initiating and overseeing a transaction in
STM, which expends extra energy. Thus, since our adaptive
system incorporates both systems, the energy efficiency
drops when compared to RTM.

Figure 6. Normalized Energy-delay comparison between adaptive system
andTinySTM.

Figure 7. Normalized Energy-delay comparison between adaptive system
and RTM.

V. RELATED WORK
Research in Transactional Memory has progressed

positively in the past decade with majority of studies focused
on STM systems. Recently, Intel [5] and IBM [7, 8] released
chip multiprocessors that include hardware support for
transactional memory. This has sparked a new interest on
successfully coupling the new hardware support with
software approaches. An intensive evaluation of Intel’s TSX
was presented by Yoo et al. [14], in which they used STAMP
benchmarks to compare RTM and TL2. They investigated
significant performance differences between both systems as
well as identifying potential pitfalls with hardware resources
that can lead to performance loss. A continuation of this
study was presented by Wang et al. [15] where they focused
on the relationships between transaction size, write-ratio,
retry count and abort ratio. They conducted these tests using
micro-benchmarks and compared performance to lock based
mechanisms. Our work is different as we offer a design
technique that incorporates both RTM and TinySTM to
boost performance of TM applications.

Calciu et al. [16] presented Invyswell, a hybrid
transactional memory system that incorporates RTM and
InvalSTM. They investigate RTM’s limitations and provide

InvalSTM as a fallback policy instead of using lock
mechanisms. For Invyswell, each transaction is first tried in
hardware. If the hardware abort status (EAX register)
suggests that a transaction is unlikely to succeed in hardware,
then it is retried in InvalSTM. They also incorporate fail-fast
optimization technique. This technique is used for an
application with high contention, which results in a higher
probability of hardware resources reaching capacity limit. It
is used to identify certain cases when RTM is wasting work
with too many retries which eventually calls the fallback
policy once the retry threshold has been met. In this study,
energy expenditure was not included and this is primarily
due to being a dynamic approach (runtime overhead is high)
as well as having InvalSTM as a fallback policy, which
incurs extra overhead. In our study, the adaptive system is
static and its runtime overhead is low. Also, we do not use
STM as a fallback policy for RTM. Instead we implement
independent switching between RTM (lock mechanism for
fallback policy) and STM. Energy delay measurements
shows that our adaptive system is much more efficient than
baseline STM.

Pereira et al. [17] presented an extensive evaluation of
Haswell’s Transactional Memory performance. They focus
on RTM’s forward-progress polices since Intel’s TSX does
not guarantee that a transactional execution will commit.
This technique is to retry the execution of a transaction with
or without a time delay to attempt to complete the transaction
execution speculatively. They introduced an optimized
policy called SerControl where the focus is on the type of
transactional abort in RTM by using the EAX register status
bit. If the transaction is aborted due to conflict or capacity
consecutively, SerControl will serialize the transaction by
using a lock. If the cause of abort is not conflict or capacity,
then the Max retry policy is applied. In our study we
incorporated the concepts of forward progress policies and
applied it to the RTM system. Although, the notion of
having an efficient forward progress policy is important, the
actual performance gains are negligible. Pereira et al. [17]
do not show the comparisons between the proposed RTM
forward progress policy and another STM system. On the
other side, we investigated the behaviors of a transaction that
best suit each TM system. If a transaction consists of a very
large transaction size as well as a very large working set size,
having an optimized forward progress policy will not change
the fact that RTM will perform poorly. In this case, our
adaptive system will automatically execute the optimal
system based on the characteristics of a transaction.

Castro et al. [18] presented a dynamic approach to
do efficient thread mapping using machine learning which
relies on matching the behavior of an application with the
system characteristics. The basis of thread mapping assigns
threads dynamically to the processing cores in order to
reduce the latency associated with memory hierarchy. This
is accomplished by monitoring the status of a transaction as
well as the STM system at specific intervals. Following
each interval, the thread mapping strategy is applied based
on the decision tree prediction model using ID3 algorithm
[19]. In our study, we incorporated the decision tree to

198

predict the optimum system for a given transaction. This
paper proves that by incorporating a decision tree, we are
able to classify a transaction’s parameters in order to predict
the optimum system that achieves the best performance.
The decision tree algorithm used in the paper is ID3 while
our study focused on the C4.5 algorithm. C4.5 is an
enhanced version of ID3, as it also supports continuous
attributes that result in better performance. This paper also
follows a procedure of attaining a training set of
benchmarks and a testing set of benchmarks. By separating
the training and testing, it is possible to achieve results
based on the prediction of the decision tree itself. For our
study, a training set of benchmarks consisted in the basis of
low, medium, large transaction sizes as well as low,
medium, large working set sizes.

VI. CONCLUSION
In this paper, we proposed an adaptive system that

exploits both STM and HTM at transaction granularity. We
developed a synchronization technique to seamlessly switch
between RTM and TinySTM based on the characteristics of
a transaction. We exploit the decision tree to predict the
optimum system for each transaction in a given application.
The decision tree is a form of supervised machine learning to
classify the input transaction parameters (such as transaction
size, transactional write ratio, etc.). This leads to an accurate
prediction to execute the optimum TM system. The
evaluation consisted of three parallel benchmark suites
separated into the training phase and the testing phase. The
decision tree attains all transactional parameters from the
benchmarks in the training phase and predictions are created
for varying number of threads. These predictions are then
evaluated on the testing phase which reveals that the
adaptive system is able to improve transactional execution
time and energy-delay.

ACKNOWLEDGMENT
This work was supported by the Natural Sciences and

Engineering Research Council of Canada.

REFERENCES

[1] David Dice, Ori Shalev, and Nir Shavit, Transactional Locking II, In
Proceedings of the 20th International Symposium on Distributed
Computing , pages 194-208, September 2006.

[2] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning of
Word-Based Software Transactional Memory. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Salt Lake City, UT, Feb. 2008.

[3] Cunha, G., J. Lourenço, and R. J. Dias, "Consistent State Software
Transactional Memory", IV Jornadas de Engenharia de Electrónica e
Telecomunicações e de Computadores (JETC'08), Lisboa, Portugal,
ISEL - Instituto Superior de Engenharia de Lisboa, pp. 251–256,
2008.

[4] J. R. Quinlan, C4.5: Programs for Machine Learning", Morgan
Kaufmann Publishers, ISBN- 0080500587, 1993.

[5] Intel Corporation, “Chapter 12: Intel’s Transactional Synchronization
Extensions (TSX),” Jul. 2013. Website link:
http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-optimization-manual.html

[6] D.E. Culler, J. Singh, A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufman Publishers, San
Francisco, CA, 1999.

[7] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silvera, and M. Michael. Evaluation of blue gene/q hardware
support for transactional memories. In Proceedings of the 21st
international conference on Parallel architectures and compilation
techniques, PACT ’12, pages 127–136, New York, NY, USA, 2012.
ACM.

[8] C. Jacobi, T. Slegel, and D. Greiner. Transactional memory
architecture and implementation for ibm system z. International
Symposium on Microarchitecture, MICRO ’12, pages 25–36,
Washington, DC, USA, 2012. IEEE Computer Society.

[9] Quinlan, J. R. Induction of Decision Tree. Machine learning, 1986,
1(1): 81-106.

[10] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” in The
IEEE International Symposium on Workload Characterization
(IISWC), Seat- tle, WA, USA, Sep. 2008, pp. 35–46.

[11] D. Bailey, E.Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, S. Fineberg, P. Frederickson, T.Lasinski, R. Schreiber,
H. Simon, V.Venkatakrishnan and S. Weeratunga. The NAS parallel
Benchmarks. RNR Technical Report RNR-94-007, March 1994.

[12] Zhen Li, Ali Jannesari, Felix Wolf. Discovery of Potential Parallelism
in Sequential Programs. In Proceedings of the 42nd International
Conference on Parallel Processing Workshops (ICPPW), Workshop
on Parallel Software Tools and Tool Infrastructures (PSTI), Lyon,
France, pages 1004-1013, October 2013.

[13] Intel Architecture Software Developer’s Manual: System
Programming Guide, June. 2013.

[14] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel® transactional synchronization extensions for
high-performance computing,” in Proceedings of the International
Con- ference on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’13, New York, NY, USA, 2013, pp. 19:1–
19:11.

[15] M. D. Wang, M. Burcea, L. Li, S. Sharifymoghaddam, G. Steffan,
and C. Amza, “Exploring the performance and programmability
design space of hardware transactional memory,” in The ACM
SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Trans- actional Computing (TRANSACT), Raleigh, NC,
USA, Mar. 2014.

[16] Irina Calciu , Justin Gottschlich , Tatiana Shpeisman , Gilles Pokam ,
Maurice Herlihy, Invyswell: a hybrid transactional memory for
haswell's restricted transactional memory, Proceedings of the 23rd
international conference on Parallel architectures and compilation,
August 24-27, 2014.

[17] Marcio Machado Pereira, Matthew Gaudet, José Nelson Amaral, and
Guido Araújo. 2014. Multi-dimensional Evaluation of Haswell's
Transactional Memory Performance. In Proceedings of the 2014
IEEE 26th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD '14).

[18] Márcio B. Castro, Luís F. Góes, Luiz Gustavo Fernandes, Jean-
François Méhaut: Dynamic Thread Mapping Based on Machine
Learning for Transactional Memory Applications. Euro-Par 2012:
465-476

[19] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

199

