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Abstract—Transactional memory (TM) has become 
progressively widespread especially with hardware 
transactional memory implementation becoming increasingly 
available. In this paper, we focus on Restricted Transactional 
Memory (RTM) in Intel’s Haswell processor and show that 
performance of RTM varies across applications. While RTM 
enhances performance of some applications relative to 
software transactional memory (STM), in some others, it 
degrades performance. We exploit this variability and present 
an adaptive system which is a static approach that switches 
between HTM and STM in transaction granularity. By 
incorporating a decision tree prediction module, we are able to 
predict the optimum TM system for a given transaction based 
on its characteristics. Our adaptive system supports both HTM 
and STM with the aim of increasing an application’s 
performance.  We show that our adaptive system has an 
average overall speedup of 20.82% over both TM systems. 

Keywords- Restricted Transactional Memory; Software 
Transactional Memory; Decision Tree; Performance 

I.  INTRODUCTION 
Transactional Memory (TM) is becoming increasingly 

popular for developing parallel applications for multi-core 
processors. TM provides programmers with an atomic 
construct (transaction), which can be used to guarantee 
atomicity of accesses to the shared variables. This is much 
simpler than conventional lock-based programming, which 
requires significant programming effort to avoid 
synchronization bugs such as deadlock, livelock, and priority 
inversion. In a TM program, the complexity of enforcing 
atomicity of shared variables is delegated to the underlying 
system, instead of any hand crafted synchronization schemes 
defined by the programmer. Transactional memory comes in 
two variants: Software Transactional Memory (STM) and 
Hardware Transactional Memory (HTM).   

STM is the simplest approach of transactional 
programming in which all transactions are implemented 
entirely in software. There has been intensive research done 
on practical implementations of STM which has lead to the 
development of many systems such as TL2 [1], TinySTM 
[2], and CTL [3].  All of these systems execute transactions 
using software-based resources.  This includes conflict 
detection, consistency of transactional reads, preservation of 

atomicity, preservations of isolation, etc. This results in poor 
performance in some applications due to the overhead 
associated with initiating and overseeing the system. 

To mitigate the overhead of STM, hardware 
manufacturers such as Intel [5] and IBM [7, 8] have 
incorporated hardware support for transactional memory in 
their respective chip multiprocessors.  In HTM, speculative 
transactions are executed using hardware resources (such as 
internal buffers, caches, etc.). In 2013, Intel released the 
Haswell processor which incorporates hardware support for 
TM, called Restricted Transactional Memory (RTM) [5].  
RTM exploits cache-coherence protocol [6] in order to track 
transactional conflicts. Yet, RTM is no magic solution as an 
alternative to STM due to its own set of limitations and 
constraints.  RTM and other similar HTM systems such as 
IBM’s BlueGene/Q [7] and Power8 [8] follow the ‘best-
effort’ protocol, meaning it does not provide forward 
progress. In other words, there is no guarantee that a 
transaction will successfully commit in RTM; essentially 
requiring a fallback path to successfully execute an 
application in the event of an abort. Generally, a fallback 
path is an alternative software policy to guarantee successful 
execution. This software policy can be as simple as acquiring 
a lock and executing it non-transactionally. Another vital 
limitation of RTM is cache capacity where the success rate 
of a transaction depends on whether the data set (read/write) 
fits inside the cache. There are also other architectural 
constraints that limit performance in RTM such as context 
switching, interrupts, I/O instructions, etc.  Thus, RTM is not 
a polished product as of yet, but there is potential for 
performance gain.  

In this paper, the focus is on implementing an adaptive 
system that exploits both HTM and STM at transaction 
granularity. The goal is to achieve performance gain by 
incorporating the benefits of both systems. Typically, in 
parallel applications, the number of transactions can vary 
anywhere from a single transaction to a large number of 
transactions. It is important to note that not all transactions 
are identical.  Each transaction has its own characteristics in 
terms of transaction size, read-set size and write-set size.  
Depending on these characteristics of a transaction, either 
HTM or STM can be a better choice for implementation. We 
exploit the decision tree [9] to predict whether HTM or STM 
is faster for a given transaction. The decision tree receives 
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input parameters (such as transaction size, transactional write 
ratio, etc.) and predicts the optimum TM system for a 
transaction. Then, a programmer or a compiler modifies the 
source code of the application based on predictions made by 
the decision tree. Our adaptive system supports both HTM 
and STM with the aim of reducing execution time of 
transactions with different characteristics. In this work, we 
use RTM [5] for hardware transactions and TinySTM [2] for 
software transactions. It is important to note that while we 
use RTM and TinySTM in this work, our adaptive system is 
general, and can be implemented using any HTM or STM 
system.   

In summary, we make the following contributions: 
• We show that there is no single TM system that 

works well across all applications. Depending on 
applications’ characteristics, one system might be 
better than the other. 

• We propose an adaptive system, which predicts the 
optimum TM system for a given transaction, 
statically. The adaptive system relies on the 
prediction of the decision tree to select either HTM 
or STM. 

• Our evaluations using STAMP [10], NAS [11], and 
DiscoPoP [12] benchmark suites reveal that on 
average, the adaptive system is able to improve 
speed of transactional applications by 20.82%. 

 The rest of the paper is organized as follows. Section II 
provides background information on Intel’s RTM [5], 
TinySTM [2], and the decision tree prediction model [9] and 
also motivation behind this work. Section III describes 
details of the adaptive system. Section IV analyzes the 
results of the experimental evaluations. Section V presents 
the related work. Finally, section VI concludes the paper. 

II. BACKGROUND AND MOTIVATION  

A. Intel’s Restricted Transactional Memory 
Along with the release of the Haswell processor, Intel 

introduced Transaction Synchronization Extensions (TSX) to 
provide programming support for hardware transactional 
memory.  Intel’s TSX has two variants: Hardware Lock 
Elision (HLE) and Restricted Transaction Memory (RTM).  
HLE is a legacy compatible instruction set that uses lock 
acquisitions strictly in hardware.  In this paper, the main 
focus is on RTM.   

The programming model of Intel’s RTM allows 
programmers to mark regions of a code to be executed 
transactionally.  In order to access RTM’s functionality, 
there are 3 new instructions: XBEGIN, XEND and 
XABORT. A transaction is initiated with the instruction 
XBEGIN. Inside of the transaction, RTM uses the 
processor’s cache to track read and write sets of transactions.  
These read and write sets are monitored in the granularity of 
cache blocks.  To state the end of a transaction, the 
instruction XEND is used.  The XEND instruction commits 
any changes done to the shared memory.  To explicitly abort 
a transaction, XABORT is used inside of the transactional 
code.   

In RTM, the conflict detection is handled through the 
cache coherency protocol. If two transactions access a shared 
memory location and if at least one of them writes into the 
location, the cache coherency protocol detects the conflict. In 
the event of conflict, only one transaction can proceed while 
the rest should abort. RTM follows the eager policy to 
resolve conflicts. In eager policy, as soon as a transactional 
write operation results in conflict, RTM will then abort the 
conflicting transactions and allows only one transaction 
proceed. Eager policy improves utilization of processor 
resources as a conflicting transaction is aborted immediately 
and is not postponed to the commit time. 

There are numerous reasons for transactional aborts. The 
primary causes of a transactional abort in RTM are conflicts 
over shared memory locations and limited capacity in 
hardware resources.  For example, the size of data accessed 
in a transaction may exceed cache capacity that triggers a 
transactional abort.  Other aborts in RTM are caused by 
software/system operations such as page faults, context 
switching, I/O operations, etc. In RTM, transactional aborts 
are identified in the EAX register [5]. The EAX register 
carries an 8-bit code that specifies the cause of the 
transactional abort.  When a transaction is aborted, all the 
changes made to the memory are discarded and an abort 
code is sent from the EAX register, stating the cause of the 
abort.  RTM does not guarantee forward progress which 
means a transaction may not eventually commit if it solely 
relies on RTM.  Thus, a transaction requires software based 
fallback policy to provide forward progress guarantees.   

B. TinySTM 
In this paper, we incorporate an already established state-

of-the-art STM system, called TinySTM [3].  This system is 
a word-based STM implementation that uses conventional 
lock-based mechanisms to protect shared memory locations.  
It also uses a time-based design to guarantee that all 
transactions access consistent memory states.  TinySTM uses 
encounter-time locking which is beneficial for detecting 
conflicts earlier (increasing transaction throughput).  When 
compared to commit-time locking, TinySTM improves 
utilization of processor resources as a doomed transaction is 
aborted immediately. Also, encounter-time locking 
efficiently manages the read and write operations without 
requiring complex mechanisms. TinySTM was chosen as the 
STM counterpart for the adaptive system due to having 
better performance compared to other STM systems (such as 
TL2 [1]).   

C. Motivation 
Both STM and RTM have benefits and limitations that 

either improves or penalizes performance in certain 
applications.  One of the most important differences between 
RTM and STM is transactional overhead.  In RTM, the 
processor is responsible for transactional execution and 
conflict detection, which incurs much less overhead and 
exhibits better overall performance.  On the other side, in 
STM, there is extra overhead for software based conflict 
detection and data versioning (such as initiating a 
transaction, validating transactional data, transactional 
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commits, etc. [3]).  This greatly hampers the overall 
performance in STM systems.   Another important aspect of 
the two systems is flexibility.  In RTM, the processor 
oversees all memory accesses, which in-hand provides 
strong isolation but relies solely on hardware resources. This 
results in complexity issues (fallback policy is needed) that 
lead to a higher probability of transactional aborts and in 
certain cases a performance slowdown when compared to 
STM.  On the other hand, STM delivers a flexible system in 
which there is no resource limitation and the underlying 
system deals with majority of the complex synchronization 
issues, leading to less transactional aborts and a better overall 
performance in some applications when compared to RTM.   

Figure 1 represents a normalized comparison graph 
between RTM and STM using 12 benchmarks taken from 
STAMP [10], NAS [11], and DiscoPop [12] benchmark 
suites. In each benchmark, the number of threads varies 

between two and eight (for detail of experimental 
framework, refer to Section IV). In Figure 1, measurement 
reading less than one favors RTM, while greater than one 
favors TinySTM.  There is a vast discrepancy between both 
systems, primarily due to the transaction characteristics 
within a given benchmark such as transaction size, write-set 
size and read-set size.  In small benchmarks where working 
set of the benchmark fits in the L1 cache, i.e. Montecarlo, 
RTM outperforms TinySTM.  On the other hand, TinySTM 
outperforms RTM in benchmarks consisting of larger 
transaction sizes, i.e. Labyrinth.  The number of transactions 
within a benchmark varies and the characteristics from one 
transaction to another transaction also vary.  By introducing 
our adaptive system, we will be able to switch between RTM 
and TinySTM within a benchmark and achieve better 
performance.   

 

Figure 1.  Normalized Transactional Execution time of RTM relative to TinySTM. 

III. ADAPTIVE SYSTEM DESIGN 
In this section, we describe our proposed Adaptive 

system which supports both hardware and software 
transactions within an application, while guaranteeing 
forward progress.  Our adaptive system uses Haswell’s RTM 
[5] and a modified version of TinySTM [2].  Both of these 
systems work in conjunction with each other in order to 
achieve dynamic switching.  One of the features of the 
adaptive system is that it switches between HTM and STM 
in transaction granularity.  In parallel computing, the term 
granularity is defined as the amount of real work done in a 

parallel task.  With transaction granularity, the focus is on 
the basis of individual transactions rather than an entire 
application. This fine-grained granularity system increases 
performance gains, while a coarse-grained granularity 
system misses many opportunities for speedup. However, to 
avoid overhead, adaptive system does not execute HTM and 
STM simultaneously. Simultaneous execution of HTM and 
STM requires communication between in-flight hardware 
and software transactions. A metadata should record 
transactional data and each transaction should check the 
metadata when it accesses a transactional variable. Doing so 
significantly increases execution time and hurts performance, 
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especially in applications with low conflict rate. To avoid 
this performance penalty, we allow a transaction executes 
either in hardware or software, but not both. 

The implementation of RTM programs was based on the 
programmability references from Intel’s TSX manual [5].  
The key factors in the RTM programs is retry count, fallback 
policy, and abort status.  The retry count is the number of 
times an aborted transaction retries execution. This is 
important because in RTM, transactions have an abundant 
reasons to abort (refer to section II. A). By retrying an 
aborted transaction ‘x’ number of times, there is a possibility 
that the transaction can eventually commit in hardware.  
Once the retry threshold is reached, the fallback policy is 
applied.  The fallback policy that is used is a global lock 
mechanism.  In our adaptive system, the retry count is set to 
4.  Based on our experimental simulations, the retry count of 
4 is the best option that produces optimal performance.  It is 
possible to have a higher retry count, but it can hurt 
performance as retrying a transaction that aborts over and 
over increases execution time. Also, having a low retry count 
can cause the fallback policy to be executed too early.  
RTM’s EAX status register was utilized to track the types of 
transactional aborts. 

A. Synchronization of RTM and STM 
This section explains how RTM and STM are 

synchronized. We need to guarantee that in-flight hardware 
and software transactions do not execute simultaneously. 
This is very crucial because if there are any issues it can stall 
an application from executing correctly or crash entirely. It 
can also lead to incorrect updates to the shared variables by 
either one of the systems.  To enable mutual-exclusion of 
RTM and STM, we exploit conditional variable. The pseudo 
code in Figures 2 and 3 show how synchronization is 
handled between the two systems. 

 

Figure 2.  Pseudo code for synchronization of RTM and STM in  
tx_start(). 

The synchronization occurs inside the functions tx_start() 
and tx_commit() which depict the start and end of a 

transaction, respectively. These functions have other code 
sequences but are taken out in order to only focus on the 
synchronization part. The input arguments of the two 
functions show whether the corresponding transaction is 
executed in hardware or software. A hardware transaction 
first checks if there is any in-flight software transaction (line 
7). If a software transaction is executing, then the hardware 
transaction waits (line 8). Then, the hardware transaction 
increments num_in_flight_rtm which is a counter and shows 
the number of in-flight hardware transactions (line 9). A 
global lock (rtm_stm_sync_mutex) is used to guarantee 
atomicity of accesses to the shared variables in tx_start() and 
tx_commit(). It is important to note that the overhead of the 
global lock is very low as it is held by transactions for a short 
period of time. The code for software transactions (lines 14-
22) is similar. When a hardware transaction commits, (lines 
28-35), it decrements num_in_flight_rtm counter (line 31). If 
the counter is zero, then it broadcasts a signal to all software 
transactions waiting for in-flight hardware transactions to 
finish (line 33). The same procedure is followed for software 
transactions (lines 37-44). 

Figure 3.  Pseudo code for synchronization of RTM and STM in 
tx_commit(). 

B. Implementation of Decision Tree Prediction Module 
Decision tree is an effective method of supervised 

machine learning that exhibits an accurate prediction based 
on a group of datasets [9]. Our Adaptive system exploits a 
decision tree prediction module (C4.5 algorithm [4]) to be 
able to predict which TM system is the better choice for a 
given transaction.  The basic functionality of C4.5 is to build 
a tree from a set of training datasets and the resulting tree is 
used to predict the optimum TM system.  This process can 
be broken down into two phases: training phase and testing 
phase.   

1) Training Phase 
The training phase is conducted to attain a prediction 

model based on decision tree.  The input datasets are based 
on the following transaction parameters: transaction size, 
read-set size, write-set size, and write-ratio (ratio of shared 
writes and total number of shared accesses in a transaction). 

1:   tx_start(int rtm_n_stm) 
2:   { 
3:     ... 
4:    if(rtm_n_stm == 1) 
5:      { 
6:        pthread_mutex_lock(&rtm_stm_sync_mutex); 
7:        while (num_in_flight_stm > 0)  
8:             pthread_cond_wait(&sync_cond_rtm, &rtm_stm_sync_mutex); 
9:        num_in_flight_rtm++; 
10: 
11:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
12:     } 
13: 
14:   if(rtm_n_stm == 0) 
15:     { 
16:       pthread_mutex_lock(&rtm_stm_sync_mutex); 
17:       while (num_in_flight_rtm > 0)  
18:     pthread_cond_wait(&sync_cond_stm, &rtm_stm_sync_mutex); 
19:       num_in_flight_stm++; 
20: 
21:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
22:     } 
23:   ... 
24: } 

25: tx_commit(int rtm_n_stm) 
26: { 
27:   ... 
28:   if(rtm_n_stm == 1) 
29:     { 
30:       pthread_mutex_lock(&rtm_stm_sync_mutex); 
31:       num_in_flight_rtm--;  
32:       if(num_in_flight_rtm == 0) 
33: pthread_cond_broadcast(&sync_cond_stm);  
34:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
35:     } 
36: 
37:   if(rtm_n_stm == 0) 
38:     { 
39:       pthread_mutex_lock(&rtm_stm_sync_mutex); 
40:       num_in_flight_stm--;  
41:       if(num_in_flight_stm == 0) 
42: pthread_cond_broadcast(&sync_cond_rtm);  
43:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
44:     } 
45:   ... 
46: }
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The output of the decision tree is a binary bit that indicates 
whether RTM or STM is better for a given transaction. These 
parameters are important in terms of the behaviors of both 
RTM and TinySTM. In RTM, it favors small sized 
transactions as well as small working set size (number of 
distinct memory locations accessed).  While in STM, there is 
much more flexibility and offers better performance than 
RTM for large transaction size and large working set size.  
The training phase consists of a set of benchmarks that are 
chosen based on small, medium and large transaction sizes 
and working set sizes from all the 3 benchmark suites 
(STAMP, NAS and DiscoPoP). The following are the 
benchmarks used for the training phase: GENOME, 
LABYRINTH, YADA, Embarrassingly Parallel, 
Montercarlo_Pie and Light_Propogation. Benchmarks are 
executed twice: once using RTM and the other time using 
TinySTM. Decision tree is trained based on statistics 
generated by RTM and TinySTM. This procedure was done 
separately for 2, 4, and 8 number of threads because the 
characteristics of a transaction can vary as the thread count 
increases.   

Table I shows an example of benchmark YADA and the 
parameters associated with its transactions. These parameters 
were used for training due to specific behaviors of each 
system.  Benchmark YADA contains 5 transactions in which 
each transaction has its own unique set of characteristics.  

One way to measure transaction size (the 6th column in 
Table I) is to count the number of C code lines in 
transactions. However, execution time of C programs 
changes from one line to the other by a large margin. We 
need a fine granularity metric for transaction size. Since all C 
codes are compiled to assembly instructions, we use number 
of assembly instructions to measure transaction size 

In large transactions, STM performs better than RTM 
primarily due to capacity overload of hardware resources.  
Another critical behavior of a transaction is working set size 
(read/write accesses).  RTM performs well for transactions 
that consist of low to medium working set size, while STM 
performs well for large working set size.  This is due to the 
hardware constraints associated with RTM which caps the 
threshold for performance gain in transactions with large 
working set sizes.  In YADA, there are 4 transactions with a 
transaction size that ranges from 95-115. For these 
transactions, RTM executes faster than STM. The remaining 
transaction has a size of 626 and contains a very large 
working set size in which STM greatly outperforms RTM.  
By training the decision tree using all parameters of the 
training benchmarks, it is possible to achieve accurate 
predictions. 

TABLE I.  CHARACTERISTICS OF BENCHMARK YADA CONSISTING OF 
FIVE TRANSACTIONS 

TX # STM 
Time(ms) 

RTM 
Time(ms) 

Read-set 
Size 

Write-set 
Size 

TX 
Size

Write 
Ratio

_TX1 291 113 2525298 1219387 101 0.3256 
 TX2 523 48 580197 0 115 0 
 TX3 39833 51061 10396152 24145158 626 0.1884 
 TX4 52 24 0 464996 95 1 
 TX5 144 66 1127133 505601 109 0.3096 

 

2) Testing Phase 
The testing phase is conducted to predict whether RTM 

or STM is better for a given transaction. This testing phase 
consists of 6 different benchmarks, which are: Conjugate-
Gradient, Multi-Grid, KMEANS, SSCA2, Ann_Training and 
Mandelbrot. The C4.5 algorithm of the decision tree applies 
pruning to increase the accuracy of the prediction.  Pruning 
is the basis of increasing the accuracy of unseen data.  The 
decision tree is designed to give an accurate prediction, 
which means that there is no guarantee that the prediction is 
correct all the time.  This is due to the parameters that impact 
execution time of transactions. These parameters vary from 
one benchmark to another. Table II is an example of the 
prediction of the decision tree for benchmark CG 
(Conjugate-Gradient).  D. T prediction in the table stands for 
decision tree prediction. The decision tree prediction is based 
on the dataset of the training phase. The optimum system 
represents the system that executes the fastest.   

TABLE II.  CONJUGATE-GRADIENT BENCHMARK COMPARING 
DECISION TREE PREDICTION WITH OPTIMUM SYSTEM 

TX # STM 
Time(ms) 

RTM 
Time(ms) 

D.T 
prediction 

Optimum 
prediction 

TX1 4 21 RTM STM
TX2 83391 9664 RTM RTM
TX3 97 809 STM STM
TX4 14 2 STM RTM
TX5 4 20 RTM STM
TX6 172 1873 STM STM

 
This table indicates that the decision tree predicted the 

best system at a rate of 50% (3/6 transactions). Even though 
50% accuracy seems poor, it is actually very accurate in 
terms of transaction execution time greater than 100ms.  
Approximately, 3 out of the 6 transactions have an execution 
time greater than 100ms (for both RTM and STM), in which 
the decision tree accurately predicted the correct system to 
use. The miss-predictions for the transactions with an 
execution time less than 100ms are not important as small 
transactions have insignificant impact on performance. Our 
adaptive system works alongside the predictions resulted by 
the decision tree. Based on the prediction, either a 
programmer or a compiler will statically change the source 
code for the adaptive system. The adaptive system will then 
run the benchmark, which consists of both hardware and 
software transactions to achieve a performance gain. 

IV. EXPERIMENTAL RESULTS 
For our adaptive system, it is important to simulate both 

STM and RTM on the same commodity processor. The 
experimental setup consisted of 4th generation Intel Core i7 
processor comprising of four physical cores that can run up 
to eight threads simultaneously (hyper-threading). Each core 
consists of two 8-way 32KB L1 cache, 256 KB L2 cache, 
and 8 MB of L3 cache. We compile all benchmarks using 
gcc 4.8.1. We use the –mrtm flag to access the Intel’s TSX 
intrinsic. For evaluation, the benchmarks from the testing 
phase are used. This includes benchmarks Conjugate-
Gradient, Multi-Grid, KMEANS, SSCA2, Ann_Training and 
Mandelbrot.  We did not include the training benchmarks for 
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our evaluation because we wanted to have discrete analysis 
based on the decision tree prediction.  Therefore, the focus 
was on attaining a prediction based on the training 
benchmarks then applying the prediction to another set of 
benchmarks (testing benchmarks). Figure 4 represents 
normalized speedup comparison between the adaptive 
system and TinySTM.  A benchmark that consists of a value 
less than 1 shows speed-up for the adaptive system.  The 
benchmarks Conjugate-Gradient, Kmeans, and SSCA2 have 
a significant speedup over STM. The rest of the benchmarks, 
Multi-Grid, Ann_Training and Mandelbrot have a 
normalized speedup value of 1, which indicates that the 
prediction used for the adaptive system heavily favored 
TinySTM. On average, speed-up is 34.31%, 34.44%, and 
34.35% for 2, 4 and 8 threads, respectively. 

 

 
Figure 4.  Normalized Speedup comparison between adaptive system and 
TinySTM. 

 

Figure 5.  Normalized Speedup comparison between sdaptive system and 
RTM. 

Figure 5 represents Normalized Speedup comparison 
between the Adaptive system and RTM. On average, 
speedup is 5.88%, 5.16% and 11.79% for 2, 4 and 8 threads, 
respectively. The benchmarks that have a normalized 
speedup less than one, indicate that the adaptive system 
achieves speedup.  At 4 and 8 threads, benchmark Multi-
Grid indicates a slowdown when compared to the baseline 
RTM. This is due to the decision tree prediction that 
incorrectly predicted the wrong system to execute for that 
specific benchmark. Table III shows transaction parameters 
of Multi-Grid when the number of threads is 4. Multi-Grid 
benchmark consists of two transactions in which the decision 
tree predicts correctly for only one of the two transactions. 

The other transaction (TX2) is incorrectly predicted and this 
results in slowdown of the adaptive system compared to the 
baseline RTM. There are a few reasons why RTM executes 
better than STM even though the transaction and working set 
sizes are very large. The primary reason is the abort ratio of 
this benchmark. In RTM, capacity induced aborts 
dramatically hamper the performance of transactional 
executions. Yet, for benchmark Multi-Grid there is a total 
abort ratio of 11.46% and out of that, only 9.54% consists of 
capacity aborts.  This means that there is a low abort rate as 
this benchmark has a higher percentage of successfully 
committing transactions. Also, since the capacity abort rate is 
very low, this benchmark executes efficiently in RTM thus 
achieving a better performance. 

TABLE III.  TRANSACTION PARAMETERS AND EXECUTION TIME FOR 
MULTI-GRID BENCHMARK WHEN NUMBER OF THREADS IS 4.  

TX # STM 
Time(ms)

RTM 
Time(ms)

Read-
set Size 

Write-
set Size 

TX 
Size 

Write 
Ratio

D. T. 
Pred.

Opt. 
Sys. 

TX1 120 60 64 64 130 0.5 RTM RTM
TX2 18818 16990 8008 8008 276 0.5 STM RTM

A. Energy Expenditure Analysis 
An important aspect of a computational platform is 

energy efficiency.  With modern technology (laptops, cell 
phones, tablets, ext.) relying heavily on battery power, it is 
essential to expend an efficient amount of energy as possible.  
We used Intel’s runtime average power limit monitor 
(RAPL) to measure energy expenditure of the benchmarks 
[13]. RAPL relies on a set of hardware counters inside the 
processor which provides energy and power consumption 
information.   

The energy readings are measured on the entire 
application for our adaptive system and then compared the 
statistics to the baseline RTM and TinySTM. First, energy 
measurements are taken for each system and an analysis is 
made. RTM is more energy efficient than TinySTM as RTM 
exploits hardware resources and does not incur the software 
overhead of TinySTM. By implementing our adaptive 
system, there is a possibility that by switching to RTM 
(when possible), it may be more energy efficient than STM.  
Furthermore, the adaptive system will also incorporate STM, 
meaning the energy efficiency readings compared to RTM 
does not result in efficiency. To take into account the impact 
of both energy and performance, we use energy-delay to 
compare adaptive system with RTM and TinySTM. 

Figure 6 depicts normalized energy-delay of our adaptive 
system compared to TinySTM.  For this evaluation, only the 
benchmarks in the testing phase are used in order to have a 
realistic evaluation based on the decision tree predictions.  
Since this is a normalized graph, values less than 1 depict 
energy efficiency for the adaptive system.  In all the testing 
benchmarks, our adaptive system is 42.11% more energy 
efficient than TinySTM.  This is because for certain 
benchmarks that consist of low-medium transaction and 
working set sizes, by implementing these transactions in 
RTM, we are able to save energy.  If all the transactions are 
implemented in STM, then there will be additional overhead 
for each transaction initiated. Figure 7 depicts normalized 
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energy-delay graph comparison between RTM and our 
Adaptive system.  Our adaptive system is not energy 
efficient when compared to RTM.  This is simply due to the 
overhead associated with switching into STM.  There is extra 
overhead, when initiating and overseeing a transaction in 
STM, which expends extra energy.  Thus, since our adaptive 
system incorporates both systems, the energy efficiency 
drops when compared to RTM. 

 

 
Figure 6.  Normalized Energy-delay comparison between adaptive system 
andTinySTM. 

 

Figure 7.  Normalized Energy-delay comparison between adaptive system 
and RTM. 

V. RELATED WORK 
Research in Transactional Memory has progressed 

positively in the past decade with majority of studies focused 
on STM systems.  Recently, Intel [5] and IBM [7, 8] released 
chip multiprocessors that include hardware support for 
transactional memory. This has sparked a new interest on 
successfully coupling the new hardware support with 
software approaches.  An intensive evaluation of Intel’s TSX 
was presented by Yoo et al. [14], in which they used STAMP 
benchmarks to compare RTM and TL2. They investigated 
significant performance differences between both systems as 
well as identifying potential pitfalls with hardware resources 
that can lead to performance loss. A continuation of this 
study was presented by Wang et al. [15] where they focused 
on the relationships between transaction size, write-ratio, 
retry count and abort ratio.  They conducted these tests using 
micro-benchmarks and compared performance to lock based 
mechanisms. Our work is different as we offer a design 
technique that incorporates both RTM and TinySTM to 
boost performance of TM applications.  

Calciu et al. [16] presented Invyswell, a hybrid 
transactional memory system that incorporates RTM and 
InvalSTM. They investigate RTM’s limitations and provide 

InvalSTM as a fallback policy instead of using lock 
mechanisms.  For Invyswell, each transaction is first tried in 
hardware. If the hardware abort status (EAX register) 
suggests that a transaction is unlikely to succeed in hardware, 
then it is retried in InvalSTM.  They also incorporate fail-fast 
optimization technique. This technique is used for an 
application with high contention, which results in a higher 
probability of hardware resources reaching capacity limit. It 
is used to identify certain cases when RTM is wasting work 
with too many retries which eventually calls the fallback 
policy once the retry threshold has been met.  In this study, 
energy expenditure was not included and this is primarily 
due to being a dynamic approach (runtime overhead is high) 
as well as having InvalSTM as a fallback policy, which 
incurs extra overhead.  In our study, the adaptive system is 
static and its runtime overhead is low. Also, we do not use 
STM as a fallback policy for RTM. Instead we implement 
independent switching between RTM (lock mechanism for 
fallback policy) and STM.  Energy delay measurements 
shows that our adaptive system is much more efficient than 
baseline STM. 

Pereira et al. [17] presented an extensive evaluation of 
Haswell’s Transactional Memory performance. They focus 
on RTM’s forward-progress polices since Intel’s TSX does 
not guarantee that a transactional execution will commit.  
This technique is to retry the execution of a transaction with 
or without a time delay to attempt to complete the transaction 
execution speculatively. They introduced an optimized 
policy called SerControl where the focus is on the type of 
transactional abort in RTM by using the EAX register status 
bit.  If the transaction is aborted due to conflict or capacity 
consecutively, SerControl will serialize the transaction by 
using a lock.  If the cause of abort is not conflict or capacity, 
then the Max retry policy is applied.  In our study we 
incorporated the concepts of forward progress policies and 
applied it to the RTM system.  Although, the notion of 
having an efficient forward progress policy is important, the 
actual performance gains are negligible.  Pereira et al. [17] 
do not show the comparisons between the proposed RTM 
forward progress policy and another STM system.  On the 
other side, we investigated the behaviors of a transaction that 
best suit each TM system.  If a transaction consists of a very 
large transaction size as well as a very large working set size, 
having an optimized forward progress policy will not change 
the fact that RTM will perform poorly.  In this case, our 
adaptive system will automatically execute the optimal 
system based on the characteristics of a transaction. 

Castro et al. [18] presented a dynamic approach to 
do efficient thread mapping using machine learning which 
relies on matching the behavior of an application with the 
system characteristics.  The basis of thread mapping assigns 
threads dynamically to the processing cores in order to 
reduce the latency associated with memory hierarchy.  This 
is accomplished by monitoring the status of a transaction as 
well as the STM system at specific intervals.  Following 
each interval, the thread mapping strategy is applied based 
on the decision tree prediction model using ID3 algorithm 
[19].  In our study, we incorporated the decision tree to 
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predict the optimum system for a given transaction.  This 
paper proves that by incorporating a decision tree, we are 
able to classify a transaction’s parameters in order to predict 
the optimum system that achieves the best performance.  
The decision tree algorithm used in the paper is ID3 while 
our study focused on the C4.5 algorithm.  C4.5 is an 
enhanced version of ID3, as it also supports continuous 
attributes that result in better performance. This paper also 
follows a procedure of attaining a training set of 
benchmarks and a testing set of benchmarks.  By separating 
the training and testing, it is possible to achieve results 
based on the prediction of the decision tree itself.  For our 
study, a training set of benchmarks consisted in the basis of 
low, medium, large transaction sizes as well as low, 
medium, large working set sizes. 

VI. CONCLUSION 
In this paper, we proposed an adaptive system that 

exploits both STM and HTM at transaction granularity. We 
developed a synchronization technique to seamlessly switch 
between RTM and TinySTM based on the characteristics of 
a transaction. We exploit the decision tree to predict the 
optimum system for each transaction in a given application.  
The decision tree is a form of supervised machine learning to 
classify the input transaction parameters (such as transaction 
size, transactional write ratio, etc.).  This leads to an accurate 
prediction to execute the optimum TM system. The 
evaluation consisted of three parallel benchmark suites 
separated into the training phase and the testing phase.  The 
decision tree attains all transactional parameters from the 
benchmarks in the training phase and predictions are created 
for varying number of threads. These predictions are then 
evaluated on the testing phase which reveals that the 
adaptive system is able to improve transactional execution 
time and energy-delay.  
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