
Preventing the explosion of exascale profile data with
smart thread-level aggregation

Daniel Lorenz
Laboratory for Parallel

Programming
Technische Universität

Darmstadt
Darmstadt, Germany

lorenz@cs.tu-
darmstadt.de

Sergei Shudler
Laboratory for Parallel

Programming
Technische Universität

Darmstadt
Darmstadt, Germany
shudler@cs.tu-
darmstadt.de

Felix Wolf
Laboratory for Parallel

Programming
Technische Universität

Darmstadt
Darmstadt, Germany

wolf@cs.tu-darmstadt.de

ABSTRACT
State of the art performance analysis tools, such as Score-P,
record performance profiles on a per-thread basis. However,
for exascale systems the number of threads is expected to
be in the order of a billion threads, and this would result in
extremely large performance profiles. In most cases the user
almost never inspects the individual per-thread data. In
this paper, we propose to aggregate per-thread performance
data in each process to reduce its amount to a reasonable
size. Our goal is to aggregate the threads such that the
thread-level performance issues are still visible and analyz-
able. Therefore, we implemented four aggregation strategies
in Score-P: (i) SUM – aggregates all threads of a process into
a process profile; (ii) SET – calculates statistical key data
as well as the sum; (iii) KEY – identifies three threads (i.e.,
key threads) of particular interest for performance analy-
sis and aggregates the rest of the threads; (iv) CALLTREE
– clusters threads that have the same call-tree structure.
For each one of these strategies we evaluate the compres-
sion ratio and how they maintain thread-level performance
behavior information. The aggregation does not incur any
additional performance overhead at application run-time.

General Terms
Algorithms, experientation, measurement

Keywords
Performance analysis, data compression, exascale comput-
ing

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ESPT2015 November 15-20 2015, Austin, TX, USA
Copyright is held by the owner/authors. Publication rights licensed to ACM.
Copyright 2015 ACM 978-1-4503-3997-1/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2832106.2832107.

1. INTRODUCTION
Score-P [10] is a performance measurement tool that tar-

gets massively parallel codes. The Score-P measurement
system is used by Scalasca [5], Vampir [8], Periscope [1] and
TAU [18] to record performance data. It instruments appli-
cations and records performance data either as a stream of
events in a trace file or as a call tree profile which is stored
as a CUBE4 report [4]. The Score-P measurement system
records data for each thread separately to avoid additional
synchronization for accesses to common data structures dur-
ing the profile generation. In general, the required memory
per thread for the profile data is small compared to the mem-
ory available for each thread. However, the total size of the
profile data grows linearly with the number of threads in an
application.

The estimated number of threads in future exascale sys-
tems is in the order of a billion threads. This means that if
a performance analysis tool records just one datum with a
length of 8 bytes, e.g. one timestamp, for each thread, then
the total amount of data would be 8 GB. The growing size
of the profile data is one of the challenges for performance
analysis tools which should be able to scale to an exascale
system. However, not only the total number of threads is
expected to grow, but also the number of threads per pro-
cess is expected to be in the order of 100 to 1000 threads
per process. Thus, we propose to aggregate the per-thread
data within each process, thereby, significantly reducing the
amount of data. Aggregating all the per-thread data might
reduce the user’s ability to investigate thread-level perfor-
mance behavior. However, the user rarely inspects all of the
individual threads, and if a deeper insight into the perfor-
mance behavior of the thread-level parallelism is required,
he would most likely inspect only a few candidates. Thus,
we want to keep enough data to be able to catch significant
performance issues in an application.

In this paper, we present four different aggregation strate-
gies. Each strategy aggregates the threads in a different
way, but still keeps track of the total number of aggregated
threads.

• SUM: Provides only aggregated per-process data. In
most cases, it means summing up thread-specific val-
ues.

• SET: In addition to the sum, it calculates some key
statistical values. In particular, it calculates the max-



imum value among all thread, the minimum, and the
sum of squares, which allows to calculate the standard
deviation.

• KEY: Keeps the data for the initial thread, the fastest
thread, and the slowest thread. All other threads are
aggregated. This strategy keeps the data for the slow-
est thread, because it assumes that in order to im-
prove the overall performance the user has to improve
the performance of the slowest thread. The strategy
also keeps the fastest thread since it would most prob-
ably have a different behavior than the slowest one.
This would allow comparing the slowest thread to a
candidate with a different behavior. Since the master
thread often plays a special role in some applications,
the KEY strategy keeps it too. Furthermore, we can
calculate a mean over the aggregated threads that can
also be used for comparison. The KEY strategy as-
sumes that most often single members of the aggre-
gated threads are not investigated in detail.

• CALLTREE: Aggregates threads that have the same
call tree structure. It is based on the assumption that
different behavior is often reflected by a difference in
the call tree. It implicitly provides information about
the number of different call trees that are within the
application and allows to analyze the differences be-
tween threads that have different call trees.

The rest of the paper is organized as follows. We start
with a survey of related work in Section 2. Afterwards,
Section 3 presents an overview about the CUBE data for-
mat and a common workflow of a CUBE profile inspection.
This provides the foundation for Section 4, which describes
the aggregation strategies and their implementation in more
detail. In Section 5 we evaluate the compression ratio of
these strategies, and in Section 6 we apply the aggregation
strategies to codes which show performance issues with the
thread-level parallelism. Section 7 concludes the paper and
outlines some ideas for future work.

2. RELATED WORK
The growing size of performance data was already ad-

dressed in a number of other studies. The CUBE4 profile
format [4], which we use in our work, uses the standard zlib
compression mechanism to reduce the file size. Furthermore,
if a metric contains many zero values, CUBE can reduce the
space consumption by using a different internal data repre-
sentation compared to when metrics have mostly non-zero
values. These compression techniques are used in addition
to our aggregation strategies.

A similar approach to thread aggregation, especially to the
CALLTREE method, is the clustering mechanism for time
series profiles [19]. Time series profiles generate separate
sub-profiles for each visit to a source code region. Typically,
each iteration of the main loop creates its own sub-profile
represented by a sub-tree in the call tree. If there are many
iterations in the code, time series profiles can become very
large. Thus, similar iterations are clustered to reduce the
profile size. In contrast to our approach, however, the call-
path dimension is clustered.

PerfExplorer [6] is a tool for data mining on parallel pro-
files. It can apply hierarchical and k-means clustering on

profiles. The main purpose of the clustering is data analy-
sis.

Since trace data is usually much larger than profile data,
compression of trace data became already an issue on smaller
scales. Standard compression methods, such as leading-
zero compression and zlib compression, can be applied to
traces too, as described in [20]. In addition to the gen-
eral compression techniques, trace-specific methods exist as
well. Knüpfer et al. developed a trace compression algo-
rithm [9] that searches for matching event sequences along
the time axis and compresses them. ScalaTrace [16] uses
intra- and inter-node compression to reduce the size of MPI
event traces. The authors also exploit repetitions of event
sequences along the time axis to reduce the overall trace size.

Another approach that reduces the size of the trace data is
stratified sampling [3]. It adjusts the sampling frequency to
the measured application, and exploits equivalence classes of
processes to reduce the number of processes to be sampled.

Filtering of frequently called functions can significantly
reduce the size of a trace. However, it also removes the in-
formation about filtered events from the measurement data.
Profile sizes are not significantly reduced by filtering, but
it is used for measurement overhead reduction. Filtering
requires the user to define appropriate filter files before pro-
filing the application. Lorenz et el. [15] presented criteria
for automatic filters based on static analysis of the exe-
cutable. TAU [18] contains an option, called throttling, to
stop recording events after a defined amount of occurrences.
More details about filtering and throttling are given in [21].

When debugging large-scale applications, inspecting all
MPI tasks may become a burden comparable to inspecting
all the threads. Laguna et al. [11] use hierarchical clustering
to determine outliers that exhibit uncommon behavior and
are of special interest for inspection.

3. ANALYSIS WORKFLOW WITH CUBE
This paper presents a number of aggregation strategies

that reduce the detail-level of performance data. However,
we want to aggregate the data in such way that it still main-
tains the necessary information to identify, classify and solve
performance bottlenecks. First, we want to describe the
CUBE data model and the most common workflow for the
evaluation of a CUBE profile (Figure 1). The goal of this
workflow is to find criteria for relevant information.

Even at a smaller scale than exascale, performance anal-
ysis measurements usually produce a large amount of data.
In order to understand and evaluate the data, the user starts
with an overview and digs down into the source of the prob-
lem. Thus, to actually find performance bottlenecks, with-
out requiring the user to manually sift through multiple GB
of data, the performance analysis tool must first present a
high-level indication of a certain problem and then guide
the user to the place where he should dig deeper to find the
cause of the bottleneck.

The CUBE data model has the three dimensions: metric,
call path and system. The elements in each dimensions can
be arranged in a tree structure. Let M be the number of
metrics and C the number of call paths. In the system
dimension, CUBE stores data only for an execution location,
e.g, a CPU thread. The execution locations are always leaves
in the system tree; thus, the set of all execution locations
S defines the possible data indices of the system dimension.
The data D(s) of each execution location s ∈ S is a two-



Figure 1: CUBE analysis workflow.

dimensional matrix where the rows represent the calltree
dimension and the columns represent the metric dimension:

D(s) =

 d1,1 ... d1,M
... ...
dC,1 ... dC,M

.

Any aggregation operation ⊕ ∈ {+, ∗,max,min} that is
performed on the data of two threads s1, s2 ∈ S is applied
element-wise. Thus, for the data of the two threads

D(s1) =

 a1,1 ... a1,M
... ...
aC,1 ... aC,M


and

D(s2) =

 b1,1 ... b1,M
... ...
bC,1 ... bC,M


the aggregation result of the data of the two threads is:

D(s1)⊕D(s2) =

 a1,1 ⊕ b1,1 ... a1,M ⊕ b1,M
... ...

aC,1 ⊕ bC,1 ... aC,M ⊕ bC,M

.

Processes are represented by parent nodes of the execution
locations. With P we define a division of S where each p ∈ P
contains the subset of execution locations that belong to the
same process. Thus, p represents a process.

The CUBE graphical user interface presents each dimen-
sion in a separate panel, with all the three panels located
next to each other (Figure 2). In the default configuration,
the left panel shows the metric tree, the middle panel the
call tree, and the right panel the system tree. However, the
order of the panels can be changed. The left panel shows
values that are aggregated over the other two dimensions.
The middle panel shows the value that is selected in the
left panel, aggregated over the dimension of the right panel,
and the right panel shows the values that are selected in the
middle and left panel. In the default configuration, the left
panel shows the metric values aggregated over all call paths
and the whole system tree. The middle panel shows the
values of the selected metric for the call tree dimension ag-
gregated over the system dimension. The right panel shows
the value of the selected metric and the selected call path
on each system tree node.

The tree structure allows the user to interactively explore
each dimension by expanding or collapsing tree nodes. If a
node is collapsed, it does not show its child nodes and the
value next to it is inclusive. Inclusive value means that it
includes the values of all the child nodes, e.g., the execution
time of this region including all regions called by this region.
On the other hand, if a node is expanded, the child nodes

are shown in the panel right below it and the value next to
it is exclusive. Exclusive value means it does not include
the child nodes values. By default, the viewer starts with
collapsed trees, i.e., all dimensions show only collapsed root
nodes.

In the first step of exploring a CUBE report, the user
needs to know which performance problems exist in his ap-
plication, if at all. Problem indicator metrics, such as time
spent in MPI wait states or OpenMP synchronization con-
structs, provide an immediate indication of the significance
of the relevant performance bottleneck. At this point, the
overview values are aggregated over all call paths and all
execution locations. If a performance bottleneck exists, it
raises the question of ”Where?”. The user first selects the
indicator metric he wants to investigate, and then expands
the call tree and the system tree until the indicator metric
value is visible as exclusive value. Expanding the call tree
dimension allows the user to identify the source code region
and the calling context information. Furthermore, expand-
ing the system tree dimension allows the user to identify the
relevant execution locations.

In some cases, pointing to the place where the perfor-
mance bottleneck occurred may already be sufficient to solve
it. Otherwise, further investigation is needed. This typically
involves various techniques, such as comparing the suspected
execution location to other locations and correlating other
metrics (e.g., hardware counters) with the execution time
and the indicator metric. For example, let us assume that
OpenMP synchronization time points us to a barrier where
all threads, except the master, wait a significant amount of
time. It tells us that we have an imbalance and the master
thread needs much longer time than all worker threads. We
may now want to investigate why it takes so long and look
at the code that is executed before that barrier. One possi-
bility might be that there is a function that takes more time
on the master thread than on the other threads. At this
point, we might want to continue correlating other metrics
to find the reason for this difference.

4. AGGREGATION STRATEGIES
The Score-P measurement system records a separate pro-

file for each thread. In general, the profile of each thread con-
sumes only a small fraction of its memory, and it means that
during the measurement we can still record per-thread data.
However, the collective data amount over all the threads can
become too large. It is the system dimension that poses the
challenge, and to tackle it we want to aggregate the perfor-
mance data of multiple threads. Aggregating the data of the
threads within a process affects only the information that
is related to the thread-level parallelism. It maintains all
performance-relevant data on the process level and higher.
Because estimations for exascale systems predict some 100
to 1000 threads per process, this already provides signifi-
cant data reduction potential. Furthermore, each process
can perform the aggregation without any additional inter-
process communication, since all data is available in a shared
scope. The aggregation happens in the measurement final-
ization step, avoiding additional overhead at measurement
time.

We developed four aggregation strategies, each represent-
ing a different approach, to find a compromise between com-
pression and information reduction.



Figure 2: The unaggregated profile after selecting the indicator metric and expanding the call tree and the system tree to
determine where the synchronization time occurs.

4.1 SUM
In the first strategy, called SUM, the threads of a process

p are replaced by an artificial execution location sa, which
contains the aggregated values of all threads. The aggrega-
tion is an element-wise sum of the data of all threads:

D(sa) =
∑
s∈p

D(s)

This aggregation strategy has the best compression ratio.
The size of the system dimension shrinks to the number of
processes.

4.2 SET
The goal of the second strategy, called SET, is to pro-

vide the user with information about the variation of data
through statistical key values such as minimum, maximum
and standard deviation. Thus, in addition to the sum over
all threads, it also calculates the maximum value, the min-
imum value, and the sum of the squares over all threads.
Moreover, each tuple contains the number of samples which
equals to the number of aggregated threads in p that have at
least one visit to the corresponding call path. In combina-
tion with the number of samples, the sum of squares allows
to calculate the standard deviation. In principle, it would be
possible to extend this set with further statistical data, such
as median and quartiles. Thus, the aggregated process data
can be represented as p′ = {ssum, smin, smax, sn, ssum2},
where ssum stores the sum, smin the minimum, smax the
maximum, sn the number of samples, and ssum2 the sum of
squares.

For the calculation of ssum, smin, smax, ssum2, we use element-
wise operations:

D(ssum) =
∑
s∈p

D(s)

D(smin) = mins∈pD(s)

D(smax) = maxs∈pD(s)

D(ssum2) =
∑
s∈p

D(s)2

To calculate the number of elements, this strategy calcu-
lates first a M × C matrix N(s) for every thread s, which

contains the value 1 on all elements in rows that represent a
call path that was visited at least once by s and 0 otherwise.

D(sn) =
∑
s∈p

N(s)

One drawback in this strategy is that when it is used with
the CUBE GUI it does not allow, for all the members of
the set, to convert from inclusive to exclusive values and
vice versa. For example, it is not possible to calculate the
minimum exclusive time from the inclusive values.

4.3 KEY
The third aggregation strategy, called KEY, is based on

the idea that for the analysis of the thread-level parallelism
not all threads are necessary. Sometimes only a few key
threads are of particular interest. If we want to increase
the overall performance of the process, we need to improve
the performance of the slowest thread first. Everything else
would, most probably, not improve the runtime. Therefore,
we are mostly interested in the data of the slowest thread
sslow. On the other hand, we want to be able to compare
this data to a thread which is different from sslow. For that
purpose, we are also interested in the other extreme, namely
the fastest thread sfast. Since also the initial thread s0 plays
a distinct role in many applications, we decided to record
its data as well. All the remaining threads are aggregated,
and the average in this case may also be a good comparison
candidate, especially if comparing to the fastest thread does
not provide sufficient insight.

To determine which thread is the fastest or slowest thread,
we classify the call path of the application based on re-
gion type information that is provided by the instrumen-
tation. For example, the OPARI2 [12, 14] instrumentation
of OpenMP regions and the OpenMP tools interface [2] pro-
posal provide the means to mark a barrier as such a region.
We distinguish regions that are doing work from regions that
indicate synchronization, idling, or waiting. We calculate
the execution time that a thread spent inside those regions
that we classified as doing work. The thread with the high-
est execution time in work regions is the slowest thread. The
thread with the smallest execution time in work regions is
the fastest thread. The initial thread is excluded from the
determination of the fastest and slowest thread, because it
is recorded anyway.



SU
M

SE
T

K
EY

C
A
LLT

R
EE

0.5

1

1.5

2

2.5

3

3.5

fi
le

si
ze

(M
B

)

Figure 3: The size of the CUBE profile in MB for the gen-
erated test profile with 100 call paths, 7 metrics and 128
processes. 90% of the call paths are parallel call paths. The
file size of the aggregated profile data is independent of the
number of threads per process.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

100

101

102

103

number of threads

co
m
p
re
ss
io
n
ra
ti
o

number of threads SUM

SET KEY

CALLTREE

Figure 4: The compression ratio for all aggregation strate-
gies in dependence on the number of threads per process.

As a result, we substitute the locations in p with the
four elements p′ = {s0, sslow, sfast, sa}, where sa contains
the aggregated threads. For the aggregation we perform an
element-wise calculation of all elements.
D(sa) =

∑
s∈p\{s0,sfast,sslow}D(s)

Our selection of threads covers the most cases where thread-
level parallelism is evaluated. It also provides some addi-
tional analysis hints by pointing the user to the most prob-
lematic and most extreme threads.

4.4 CALLTREE
The fourth aggregation strategy, called CALLTREE, ag-

gregates threads that have the same call tree structure. The
call tree of two threads s1, s2 ∈ S match if for all call path
c ∈ C the equivalence
visits(s1, c) > 0⇐⇒ visits(s2, c) > 0

is valid. Hereby, visits(si, c) denotes the number of visits to
call path c by thread si. It results in a non-predetermined
number of aggregated clusters of threads. Clustering in it-
self is already an additional automatic analysis, because it
provides an overview of how many groups of threads with
distinct call tree exist. It is based on the assumption that
differences in the call tree structure may indicate a different
behavior. For the aggregation of threads within a cluster,
we use again the element-wise calculation.

5. COMPRESSION
One of the motivating goals for the aggregation was a

reduced profile size. To determine the compression ratio,
we generated profiles for every aggregation strategy and one
without any aggregation. The compression ratio is the size
of the profile without aggregation divided by the aggregated
profile size. The generated profiles contain 7 metrics, 100
call paths, and had 128 processes. Figure 3 presents the file
sizes, and Figure 4 shows the compression ratio against the
number of threads per process.

The amount of data per process is constant for all four
aggregation strategies. Thus, the size of the aggregated pro-
file file was independent of the amount of threads for all
aggregation strategies. The compression ratio grows with
the number of threads in the application, because the un-
compressed original becomes larger. The SUM strategy has
the best compression ratio. However, the compression ra-
tio is a factor of 1.35 to 1.36 smaller than the number of
threads because it uses an additional metric, which stores
the number of aggregated threads. Furthermore, the pro-
file metadata section requires some additional space to store
information about the metric dimension and the call tree
dimension, which has constant size.

The compression ratio of the SET strategy is approxi-
mately 4.2 times smaller than the number of threads. It
needs to store four additional values per metric. The size of
the number-of-threads value is only 4 bytes, while the size
of all other values is 8 bytes. Thus, the ideal compression
ratio would be 4.5 times smaller than the number of threads.
We contribute the difference to the constant sized metadata
section.

The KEY strategy stores four 8 bytes values per met-
ric/call path pair. The compression ratio is approximately
4.6 times smaller than the number of threads. The ideal
compression rate would be 4 times smaller than the number
of threads per process. The SET strategy has a slightly bet-
ter compression ratio than the KEY strategy although the
ideal compression ratio is worse. The SET strategy, how-
ever, is more likely to store the same number multiple times,
which is exploited by CUBE’s inbuilt zlib compression.

The CALLTREE strategy creates 2 clusters for this ap-
plication. Thus, it needs to store 2 values per original met-
ric/call path pair. It uses a similar approach to the KEY
strategy to store the data, and creates an artificial location
for each cluster. The compression ratio is 1.97 better than
KEY which is explained by the fact that it stores only half
the values. The compression ratio is 2.3 times smaller than
the number of threads per process. The result of 2 clusters
is typical for such OpenMP applications, where one master
thread is in one cluster and the worker threads produce all
the same call tree and, therefore, form the second cluster.

The compression ratio is mostly determined by the num-
ber of threads per process. Other factors that affect the
compression ratio in a minor way are the number of metrics
and the number of processes. The data section of the CUBE
profile grows linearly with the number of metrics. However,
the metadata section for the system dimension and the call
tree dimension stay constant. Because only the data sec-
tion shrinks during the aggregation, the compression ratio
becomes larger if the number of metrics grow. Similarly, if
the number of processes grow, the data-to-metadata ratio
grows as well, which leads to a slightly better compression
ratio.



6. ANALYSIS OF THREAD-LEVEL
PARALLELISM

In Section 3, we identified the following steps which usu-
ally occur in the analysis of the profile data:

1. Which types of performance bottlenecks exist? This
question is answered by the aggregated value of indi-
cator metrics over the whole measurement. Because
the value of interest is aggregated anyway, providing
only aggregated values on a process level does not cur-
tail the potential insights in this step.

2. Where does it occur? Unfolding the call tree dimension
until the indicator metric value is shown as exclusive
value works also with aggregated threads. However,
identifying the execution location on thread level is
affected by aggregation.

3. For further investigation of a problem cause, the first
strategy is to compare a problematic thread to other
threads.

4. Another investigation strategy is to correlate metrics.

To evaluate the retained information, we measured multi-
ple applications that contain a specific performance bottle-
neck with every aggregation strategy. Afterwards we com-
pare the process of finding the performance bottleneck in the
aggregated profiles to the same process with unaggregated
profile. All tests ran on an Linux cluster node equipped
with two 2.67 GHz Intel XEON quad-core processors with
two-way simultaneous multi-threading.

6.1 Imbalance
For this test, we injected some imbalance in a parallel re-

gion of the Lulesh code [7] by forcing a static schedule with
a chunk size of 2000. We executed the code on 8 threads and
calculated 27,000 particles. The loop iterates over the par-
ticles, which means that 5 threads execute 4000 iterations,
the 6th threads gets 3000 iterations and two threads execute
2000 iterations.

In order to obtain the required profiles, we instrumented
the artificial test program with Score-P, and then performed
one measurement run for every evaluated aggregation strat-
egy and one measurement without any aggregation. The
generated profiles contained the following metrics: execu-
tion time, number of visits, minimum and maximum execu-
tion time at a single visit. To enhance the very basic metric
set of the Score-P measurement with further metrics that
are able to highlight a particular performance bottleneck,
we applied the cube_remap tool on the resulting profiles.
The cube_remap tool classifies every call path and creates
additional metrics related to the classification. For exam-
ple, the execution time gets sub-metrics that allow to divide
execution time by user code, or OpenMP regions and fur-
ther sub-divide time spent in OpenMP regions (e.g, separate
synchronization regions). We can use the execution-time-in-
synchronization-regions metric to reveal imbalances by iden-
tifying places where the application spends a significant time
for synchronization.

6.1.1 Without aggregation
The CUBE profile shows that 10.65 s (13.37% of the whole

execution time of the application) were spent in OpenMP

(a) SUM

(b) KEY

(c) CALLTREE

Figure 5: The system dimension of the aggregated profile
using the SUM, the KEY and the CALLTREE strategy.

implicit barriers. If we select this metric and expand the
call tree, it shows that the implicit barrier at the end of the
parallel for construct in lulesh.cc at line 1595 produced the
largest amount of the synchronization time. Full expansion
of the system tree shows that the synchronization time is
unevenly distributed. Five of the threads show very little
synchronization time of less than 0.1 s at the barrier, while
two other threads waited approx. 1 s each and OMP thread

5 spent 0.51 s at the barrier. Figure 2 shows the CUBE
interface after expanding the call tree and the system di-
mension.

If we correlate the visits and the execution time metric
to the synchronization time, we see that the threads that
spent little time in the implicit barrier, visited the function
CalcElemVolume twice as often as the threads that spent 1 s
in the barrier. Also, the execution time of the first group of
threads is twice the execution time of the waiting threads.
The different number of visits stem from a different number
of iterations that the threads execute. The reason is that
the chunk size in the static schedule clause of the parallel
region statement is too large.

6.1.2 SUM
Figure 5a shows the profile of the SUM aggregation strat-

egy. The indicator metric still shows that 2.94 s of the total
time was spent in the implicit barrier. However, we can
not tell in which threads the synchronization happened, or
whether it is evenly distributed among all threads. The SUM
strategy, therefore, allows to identify the performance prob-
lem type and the source code location where it occurred.
Although this might already provide valuable hints, it is im-
possible to identify the specific thread or perform further
thread-level analysis.

6.1.3 SET
In the SET strategy, the conversion of inclusive values

to exclusive values does not work anymore for some mem-
bers of the data set. Thus, the cube_remap tool does not
compute the indicator metrics. A first approach to iden-



Figure 6: The call path dimension of the aggregated pro-
file using the SET strategy. The highlighted metric is the
number-of-visits.

tify performance bottlenecks is to expand the call tree and
look for execution time in a suspicious call path. Although
scanning the call tree for suspicious call paths requires some
extra work, we are still able to find the barrier that has the
largest execution time. From the minimum and maximum
values we can derive that there is at least one thread that
has almost no waiting time while at least one thread must
have a waiting time of 1 s. This shows some imbalance,
although we do not know which threads suffer from it and
wait at the barrier.

For further analysis, we can investigate the visits metric
for CalcElemVolume (Figure 6). It shows that the average
number of visits is 3.15 million with a standard deviation of
0.8 million, the maximum is 3.73 million and the minimum is
1.86 million visits. Most likely, the thread that spent most
time at the barrier is the thread that has the least visits
to CalcElemVolume. However, we can not conclude this for
sure, because the statistics for each metric/call path pair is
independent. Thus, in general we can not correlate metrics
or call path data. For example, the thread that had the
minimum or maximum execution time at the implicit bar-
rier does not need to be the same thread that produces the
minimum or maximum number of visits to CalcElemVolume.
Therefore, the distribution may provide some extra informa-
tion to estimate that a certain performance bottleneck ex-
ists, but it does not provide enough information to compare
threads and correlate metrics and call path information.

6.1.4 KEY
Figure 5b shows the profile of the KEY aggregation strat-

egy. Again, the synchronization time metric points to the
implicit barrier. Expanding the system tree dimension shows
that the fastest thread waits at this barrier, while the slowest
thread has no waiting time here. This indicates that there
is an imbalance. Since the aggregated threads contain some
synchronization time at the barrier as well, this indicates
that more threads wait for the slowest thread. Although
we do not know exactly how much time the other threads
wait at the barrier, the slowest thread can serve as an ex-
ample for the kind of threads where we need to improve the
performance.

The KEY strategy allows us to compare the slowest thread
to the fastest thread, and to correlate the execution time and
number of visits for CalcElemVolume. This reveals that the
slowest thread has twice the number of visits and twice the
workload than the fastest thread. It proves that the num-
ber of iterations is unequal and this, subsequently, causes
the imbalance. Thus, the KEY strategy provides enough
information to identify the causes of the problem.

Figure 7: The call tree of the artificial program with lock
contention. It shows the execution time metric.

6.1.5 CALLTREE
Figure 5c shows that the CALLTREE strategy distin-

guishes between the initial thread, which has a visit to the
main function, and the worker threads. We can find the
implicit barrier by using the synchronization time metric.
In our example, the initial thread (cluster 0) spends only
0.14 s at the barrier, while the aggregated worker threads
(cluster 1) spend 2.75 s there. Since cluster 1 contains 7
of the 8 threads, it has larger execution times nearly every-
where. Nevertheless, some of the worker threads must have
spent much more than 0.14 s at the implicit barrier. We
can compare the behavior of the two clusters and also cor-
relate metrics and call path. Thus, we can discover that the
number of visits and the execution time in CalcElemVolume

in cluster 0 is larger than the mean of this value in cluster
1. Because the algorithm decided to distinguish between
the initial thread and the worker threads, it suggests that
the differences between the initial thread and the worker
threads are larger than the differences among the worker
threads. The clustering decision is based on call paths out-
side the parallel region, and though the initial thread has
the longest execution time, it may be misleading to inter-
pret that all or most of the worker threads are idle. To
make the performance bottleneck more obvious, a distinc-
tion between threads that wait at the barrier and threads
that execute two chunks of iterations would be better.

Nevertheless, indicating that the initial thread executes
more iterations than the average worker thread puts us on
the right track to balance the work in the loop more evenly.
Similar to the KEY strategy, the total number of time and
visits spent in CalcElemVolume leads to the conclusion that
the number of iterations is not evenly distributed among the
threads. Since the clustering decision did not separate the
threads according to the execution time, the solution in this
case is more obscured than in the KEY strategy. Although
the call tree structure is an important factor to determine
clusters, there might be better clustering criteria.

6.2 Lock contention
To evaluate the possibility of finding a lock contention

with aggregated profile data, we created an artificial test
program in which the access to the function foo is protected
by a lock. Without aggregation, the profile shows that most
of the time is spent inside OpenMP synchronization regions.
In particular, 110.21 s are spent in the OpenMP Lock API
and 46.61 s in the implicit barrier. We select the execution-
time-in-OpenMP-Lock-API metric and expand the call tree.
This leads us to the lock where the application spends most
of its time.

Figure 7 shows the execution time for all the call paths.
From the call path, we can derive the source code location



and the lock that causes the lock contention. At this point,
we have all the necessary information to detect and analyze
the lock contention.

We note that the application spent also a significant amount
of time at the barrier in the end, and this usually indicates an
imbalance. If we compare the time spent in foo and the par-
allel region, we can see that the execution of the user code
has no significant variation between the threads, but the
time spent in omp_set_lock varies significantly. The sum of
the time spent in the implicit barrier and omp_set_lock is
the same for each thread. It means that the imbalance is
caused by the lock contention.

As a result, we do not need thread-specific information to
identify the causes of the lock contention. The SUM aggre-
gation strategy provides us with sufficient information. As
already discussed in Section 6.1, thread-specific information
is only needed to conclude that the imbalance is caused by
the lock contention.

6.3 False sharing
Our third test case is an artificial code that contains false

sharing. To indicate false sharing, we would need to asso-
ciate data accesses to memory locations and cache misses to
prior data accesses to another memory location. This infor-
mation is currently not available in Score-P, and it does not
provide an indicator metric for false sharing. Although we
can record cache misses, they might be caused by a number
of issues and it is hard to tell whether a certain amount of
cache misses actually indicates a performance problem.

During the measurements we also recorded level 1 data
cache misses, level 1 data cache hits, and level 2 data cache
misses. Because of the false sharing, the parallel for loop
contains 27.7 million level 2 data cache misses. It means
that 3.3% of all data accesses inside the parallel for loop
result in a cache miss. In general, 3.3% cache misses do not
necessarily imply a performance bottleneck. However, 27.7
million level 2 data cache misses in a program that has an
aggregated computing time of 5 s contribute significantly to
the overall runtime. After resolving the false sharing, the
same program had an aggregated runtime of only 0.06 s and
only 3005 level 2 data cache misses.

The relevant information that we can extract from the
unaggregated profile is the source code location where most
of the cache misses occur. We correlate the number of cache
hits to estimate the fraction of the cache misses. The system
dimension is of interest if false sharing occurs only on a few
threads. It allows then to identify the threads where we
have a significantly higher number of cache misses. Knowing
the involved threads may help to identify the variables that
share a cache line.

All aggregation strategies allow to find source code loca-
tions where a high number of cache misses occur. The level
of support each strategy provides for identifying the threads
with higher cache misses is different. The SUM strategy
does not provide any support for thread identification. The
SET strategy shows whether there is a variation among the
threads, but does not allow to identify the threads with
a high number of cache misses. The KEY strategy shows
whether the slowest thread has a large number of cache
misses compared to other threads. Thus, the KEY strategy
can highlight one involved thread, but not the threads it in-
terferes with. If false sharing does not occur in the slowest
thread, it does not limit the performance. Although it might

Figure 8: Implicit tasks call path in the task granularity test
program (shown metric is execution time).

Figure 9: Explicit tasks call path in the task granularity test
program (shown metric is the execution time).

occur in other threads, the user should first concentrate his
efforts on fixing the slowest thread. With the CALLTREE
strategy the identification of a subset of threads depends on
whether the threads that show false sharing differ also in
their call tree. If they do, the CALLTREE structure sepa-
rates them into different clusters, otherwise they end up in
the same cluster and, therefore, unidentifiable.

6.4 Task granularity
In our fourth use case, we want to evaluate a task-based

parallelization problem. One of the most common perfor-
mance analysis targets is to identify tasks with inappropri-
ate granularity [17]. For this purpose, we use an artificial
program that has two task constructs. One task construct
creates tasks that execute for 1s. The other task construct
creates tasks that do not perform any work besides the re-
cursive task creation.

Figures 8 and 9 present a CUBE profile with call paths of
implicit and explicit tasks. The former shows stub nodes at
execution locations along the main call tree, and the latter
shows a subtree for every task construct. The Score-P task
profiling mechanism and resulting profile data is explained
in [13] in more detail.

The main call tree in Figure 8 shows that, basically, the
whole time was spent inside the implicit barrier at the end
of the parallel region. Inside the barrier, 1013.3s were spent
executing the tasks, whereas 627.38s are the exclusive exe-
cution time of the barrier. One possible explanation for this
time is an overhead caused by task management activities,
imbalance, or complex task dependencies, which have insuf-
ficient parallelism. Figure 9 shows that the tasks created
from the task construct at task.c:5 spent all the time in
the task region doing some work. The average execution
time per task was 1s. On the other hand, the tasks created
from the task construct at task.c:14 spent 607s out of 677s
creating new tasks. Only 69.9s were spent outside the recur-
sive task creation. This indicates that the overhead is large
and the tasks are too small. The average execution time for
a task was 14µs, including the measurement overhead.

Since tasking provides a form of automatic work balancing
and since the test program contains no task dependencies,
the possible imbalances must be smaller than the largest



task. Therefore, we can exclude imbalance as a major con-
tributor to the exclusive time in the barrier. On the other
hand, we spend 607s creating tasks. Former task analysis ex-
amples showed that task switches and task completion can
require roughly the same amount of execution time which
will appear as exclusive execution time in the barrier [13]. In
principle, task dependency structures may limit parallelism.
Although it would be possible to investigate these depen-
dencies with trace data, our current profiling approach does
not provide the means to do so.

The whole analysis used no thread-level data, but only
the call tree dimension. Thus, all of the presented aggrega-
tion strategies are able to provide the necessary information.
The uncompressed profile, the SET strategy, and the KEY
strategy are able to show that the execution time in the bar-
rier is evenly distributed among all threads supporting the
claim that there is no imbalance. Attributing performance
data of tasks to threads is not trivial, especially for migrat-
ing tasks. Furthermore, the task schedule is dynamic and
may suffer from run-to-run variation. As a matter of fact,
it is one of the goals of the tasking paradigm that the pro-
grammer should not have to worry about the distribution of
tasks among the threads. In this case, it is reflected by the
fact that the per-thread data is not necessary for the analy-
sis of task performance behavior. A separation of tasks for
other criteria, e.g., the recursion depth [13], provides much
more important information.

7. CONCLUSION AND FUTURE WORK
This paper presents the strategies SUM, SET, KEY, and

CALLTREE that aggregate the performance data of threads
within a process. Although the aggregation reduces the
granularity of the performance information, some strategies
still provide sufficient information to identify and investi-
gate thread-level performance bottlenecks. These aggrega-
tion strategies differ in compression ratio and the availability
of thread-level information.

The SUM strategy has the best compression ratio, but
provides the least thread-specific information. Although
lack of information prevents thread-level root-cause anal-
ysis, it is still possible to detect the presence of thread-level
performance issues and to identify the source code locations
where they happen. Since this strategy provides a good
compression rate, it is a good choice for cases in which the
focus of the analysis works sufficiently well with process-level
data, such as analysis of MPI, or if the only purpose is to
get an overview of the potential bottlenecks.

The amount of data produced by the KEY strategy equals
approximately to the amount of data produced when there
are 4 to 5 threads per process. It allows to identify perfor-
mance bottlenecks on the thread level, to compare between
threads, and to correlate the metric and call path data. Al-
though this strategy reduces the set of threads to which
we can apply these analysis techniques, it still captures the
slowest thread information and this is the thread that needs
performance improvement in most cases. If multiple bottle-
necks exist, the aggregation may limit the in-depth analysis
to the most dominant bottleneck. Nevertheless, the KEY
strategy provides a good tradeoff between compression ra-
tio and available thread-level information for the analysis of
large scale applications.

The SET strategy provides an aggregated value per pro-
cess and some additional statistical information about the

distribution of the performance data among the threads.
This information, however, does not allow to compare threads
or correlate call paths. Since the KEY strategy provides
better analysis possibilities with a very similar compression
ratio, the KEY strategy is preferable to the SET strategy.

The CALLTREE strategy is the only strategy that does
not provide a predicable compression ratio that depends on
the number of threads per process, the number of metrics,
and the number of processes. The compression ratio, in this
case, depends also on the call tree structure. CALLTREE
provides information to investigate a performance bottle-
neck using thread comparison and metric/call path corre-
lation if the different behavior of the thread is reflected by
a difference in the call tree. In our example, using the call
tree structure as the only clustering criterion provided some
hints, but did not result in clusters that would have been
best suited for performance bottleneck analysis. Neverthe-
less, clustering of threads is a promising approach that pro-
vides some useful information, such as how many different
thread groups can be distinguished. However, developing
a meaningful distance function for performance data is not
trivial and subject to future research – especially if it is to
be used for analyzing any kind of performance issue and not
just one specific bottleneck.

The effects of heterogeneous architectures with acceler-
ators and coprocessors are not covered by this paper and
subject to further research. One approach might be to sep-
arate each type of execution location and then apply data
reduction on each of the subgroups. Probably the call trees
of CPU threads, accelerator code and other execution loca-
tion types differ. Thus, a combination of the CALLPATH
strategy to separate the execution location types and any
other strategy within each execution location group might
provide reasonable results.

Besides the conclusions for the particular compression strate-
gies, one future guiding conclusion is that the amount of
data becomes too large when we store the full, fine granular-
ity, per-thread information. Thus, our more promising ap-
proaches perform various degrees of automated analysis on
the full thread-level information to determine which parts
of the information should be stored with fine granularity
and which parts of the information can be accumulated to a
coarser granularity. Even if it as simple as the KEY strat-
egy, which determines simply the slowest and fastest thread,
the automated analysis approaches can reduce the amount
of data while retaining its usefulness. These approaches
form a wide field that provides numerous opportunities for
further research, and the simple approaches in this paper
are a baseline for more elaborate automated analysis and
granularity selection strategies. Advanced analysis methods
may, for example, include clustering algorithms based on
Score-P’s region type classification, execution time, commu-
nication patterns or any other metric. Another promising
approach subject to future research would be to cluster pro-
cesses, record all threads of one process from every cluster
and aggregate the threads on the other processes.

8. ACKNOWLEDGEMENT
This material is based upon work supported by the

US Department of Energy under Grant No. DE-FG02-
13ER26158 / DE-SC0010668 and by the German Federal
Ministry for Education and Research (BMBF) under Grant
No. 01|H13001.



9. REFERENCES
[1] S. Benedict, V. Petkov, and M. Gerndt. PERISCOPE:

An online-based distributed performance analysis tool.
In Tools for High Performance Computing 2009, pages
1–16. Springer, Berlin/Heidelberg, 2010.

[2] A. E. Eichenberger, J. M. Mellor-Crummey,
M. Schulz, M. Wong, N. Copty, J. DelSignore,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz. OMPT:
OpenMP tools application programming interfaces for
performance analysis. In Proc. of the 9th International
Workshop on OpenMP (IWOMP), Canberra,
Australia, number 8122 in LNCS, pages 171–185,
Berlin / Heidelberg, 2013. Springer.

[3] T. Gamblin, R. Fowler, and D. A. Reed. Scalable
methods for monitoring and detecting behavioral
equivalence classes in scientific codes. In IEEE
International Symposium on Parallel and Distributed
Processing, 2008. IPDPS 2008, pages 1–12, Apr. 2008.

[4] M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and
B. J. N. Wylie. Scalable collation and presentation of
call-path profile data with CUBE. In Proc. of the
Conference on Parallel Computing (ParCo),
Aachen/Jülich, Germany, pages 645–652, September
2007. Minisymposium Scalability and Usability of HPC
Programming Tools.

[5] M. Geimer, F. Wolf, B. J. N. Wylie, D. B.
Erika Abraham, and B. Mohr. The Scalasca
performance toolset architecture. Concurrency and
Computation: Practice and Experience, 22(6):702–719,
Apr. 2010.

[6] K. Huck and A. D. Malony. PerfExplorer: A
performance data mining framework for large-scale
parallel computing. In Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference,
pages 41–52, Nov. 2005.

[7] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates
and changes. Technical Report LLNL-TR-641973,
August 2013.

[8] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz,
M. Lieber, H. Mickler, M. S. Müller, and W. E. Nagel.
The Vampir performance analysis tool-set. In Tools
for High Performance Computing, Proceedings of the
2nd International Workshop on Parallel Tools for
High Performance Computing, pages 139–155,
Stuttgart, Germany, July 2008. Springer-Verlag.

[9] A. Knüpfer and W. E. Nagel. Compressible memory
data structures for event-based trace analysis. Future
Generation Computer Systems, 22(3):359–368, 2006.

[10] A. Knüpfer, C. Rössel, D. an Mey, S. Biersdorff,
K. Diethelm, D. Eschweiler, M. Geimer, M. Gerndt,
D. Lorenz, A. D. Malony, W. E. Nagel, Y. Oleynik,
P. Philippen, P. Saviankou, D. Schmidl, S. S. Shende,
R. Tschüter, M. Wagner, B. Wesarg, and F. Wolf.
Score-P – A joint performance measurement run-time
infrastructure for Periscope, Scalasca, TAU, and
Vampir. In Proc. of 5th Parallel Tools Workshop,
2011, Dresden, Germany, pages 79–91. Springer Berlin
Heidelberg, Sept. 2012.

[11] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi,
G. Bronevetsky, D. H. Anh, M. Schulz, and
B. Rountree. Large scale debugging of parallel tasks
with automaded. In Proceedings of 2011 International

Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages
50:1–50:10, New York, NY, USA, 2011. ACM.

[12] D. Lorenz, R. Dietrich, R. Tschüter, and F. Wolf. A
comparison between OPARI2 and the OpenMP tools
interface in the context of Score-P. In Proc. of the
10th International Workshop on OpenMP (IWOMP),
Salvador, Brazil, September 2014, volume 8766 of
LNCS, pages 161–172. Springer International
Publishing, Sept. 2014.

[13] D. Lorenz, P. Philippen, D. Schmidl, and F. Wolf.
Profiling of OpenMP tasks with Score-P. In Proc. of
the 41st International Conference on Parallel
Processing Workshops (ICPPW), Workshop on
Parallel Software Tools and Tool Infrastructures
(PSTI), pages 444–453, Sept. 2012.

[14] B. Mohr, A. D. Malony, S. S. Shende, and F. Wolf.
Design and prototype of a performance tool interface
for OpenMP. The Journal of Supercomputing,
23(1):105–128, August 2002.

[15] J. Mußler, D. Lorenz, and F. Wolf. Reducing the
overhead of direct application instrumentation using
prior static analysis. In Proc. of the 17th Euro-Par
Conference, Bordeaux, France, volume 6852 of Lecture
Notes in Computer Science, pages 65–76. Springer,
Sept. 2011.

[16] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R.
de Supinski. ScalaTrace: Scalable compression and
replay of communication traces for high-performance
computing. Journal of Parallel and Distributed
Computing, 69(8):696 – 710, 2009.

[17] D. Schmidl, P. Philippen, D. Lorenz, C. Rössel,
M. Geimer, D. an Mey, B. Mohr, and F. Wolf.
Performance analysis techniques for task-based
OpenMP applications. In Proc. of the 8th
International Workshop on OpenMP (IWOMP),
Rome, Italy, volume 7312 of Lecture Notes in
Computer Science, pages 196–209, Berlin /
Heidelberg, June 2012. Springer.

[18] S. S. Shende and A. D. Malony. The TAU parallel
performance system. The International Journal of
High Performance Computing Applications,
20(2):287–311, May 2006.

[19] Z. Szebenyi. Capturing Parallel Performance
Dynamics. PhD thesis, RWTH Aachen University,
volume 12 of IAS Series, Forschungszentrum Jülich,
2012. ISBN 978-3-89336-798-6.

[20] M. Wagner, A. Knüpfer, and W. E. Nagel. Enhanced
encoding techniques for the Open Trace Format 2.
Procedia Computer Science, 9:1979–1987, 2012.
Proceedings of the International Conference on
Computational Science, {ICCS} 2012.

[21] M. Wagner and W. Nagel. Strategies for real-time
event reduction. In Euro-Par 2012: Parallel
Processing Workshops, volume 7640 of Lecture Notes
in Computer Science, pages 429–438. Springer Berlin
Heidelberg, 2013.


