
Fast Data-Dependence Profiling by Skipping
Repeatedly Executed Memory Operations

Zhen Li1(B), Michael Beaumont2, Ali Jannesari1, and Felix Wolf1

1 Technische Universität Darmstadt, 64289 Darmstadt, Germany
{li,jannesari,wolf}@cs.tu-darmstadt.de

2 RWTH Aachen University, 52062 Aachen, Germany
michael.beaumont@rwth-aachen.de

Abstract. Nowadays, more and more program analysis tools adopt pro-
filing approaches in order to obtain data dependences because of their
ability of tracking dynamically allocated memory, pointers, and array
indices. However, dependence profiling suffers from high time overhead.
To lower the overhead, former dependence profiling techniques either
exploit features of the specific program analyses they are designed for,
or let the profiling process run in parallel. Although they successfully
lowered the time overhead of dependence profiling by a certain amount,
none of them have tried to solve the fundamental problem that causes the
high time overhead: the memory operations that are repeatedly executed
in loops. In most of the time, these memory operations lead to exactly
the same data dependences. However, a profiling method has to profile
all these memory operations over and over again in order to not miss a
single dependence that may occur just once. In this paper, we present
a method that allow a dependence profiling technique to skip memory
operations that are repeatedly executed in loops without missing any sin-
gle data dependence. Our method works with all types of loops and does
not require any prepossessing like source annotation of the input code.
Experiment results show that our method can lower the time overhead
of data-dependence profiling by up to 52 %.

Keywords: Data-dependence · Profiling · Optimization · Program
analysis · Parallel programming

1 Introduction

Extracting data dependences from programs serves as the foundation of many
program analysis and transformation methods. Especially, since data depen-
dence is one of the main factors that preventing parallelism, data-dependence
analysis is the base of nearly all the tools that discover parallelism in paral-
lel programming area. Tools for discovering parallelism [6,10,11,15,18,24] iden-
tify the most promising parallelization opportunities. Runtime scheduling frame-
works [4,7,17,22] add more parallelism to programs by dispatching code sections
in a more effective way. Automatic parallelization tools [1,8,13,25] transform
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 583–596, 2015.
DOI: 10.1007/978-3-319-27140-8 40

584 Z. Li et al.

sequential into parallel code automatically. Method that suggests parallel pat-
terns [9] helps programmer to choose the most promising pattern for parallelizing
code. All the tools and methods mentioned above have in common the fact that
they rely on data-dependence information to achieve their goals.

Data dependences can be obtained in two main ways: static and dynamic
analysis. Static approaches determine data dependences without executing the
program. Although they are fast and even allow fully automatic paralleliza-
tion in some cases [1,8], they lack the ability to track dynamically allocated
memory, pointers, and dynamically calculated array indices. This usually makes
their assessment conservative, limiting their practical applicability. In contrast,
dynamic dependence profiling captures only those dependences that actually
occur at runtime. Although dependence profiling is inherently input sensitive,
the results are still useful in many situations, which is why such profiling forms
the basis of many program analysis tools [3,6,10,11,15]. Moreover, input sen-
sitivity can be addressed by running the target program with changing inputs
and computing the union of all collected dependences.

However, a serious limitation of data-dependence profiling is high time over-
head. It may significantly prolong the analysis, sometimes requiring an entire
night [19]. This is because dependence profiling requires all memory operations
to be instrumented and records of all accessed memory locations to be kept.
Many solutions have been proposed to lower the overhead. The first solution is
to limit the scope to the subset of the dependence information needed for the
analysis they have been created for, sacrificing generality and, hence, discourag-
ing reuse. The second solution is sampling, also tries to analyze a subset of all
the memory operations but without losing generality. Based on sampled mem-
ory operations combined with a probabilistic model, the second solution profiles
data dependence with a sacrifice of accuracy. The last solution is to let the data-
dependence profiling process run in parallel. This is possible because some data
dependences related to one memory address do not affect other dependences
related to another memory address. It does not lose generality or accuracy, but
it surely needs much more effort to implement.

An observation is that many memory operations in loops are repeatedly
executed. In most of the time they lead to always the same data dependences,
but still need to be analyzed over and over again just because of some special
data dependences that rarely occur. None of the solutions mentioned above tried
to deal with this problem. In this paper, we present a method that allow a
dependence profiling technique to skip memory operations that are repeatedly
executed in loops without missing any data dependence. Our method works with
all types of loops, and allows nesting. Furthermore, our method can be applied in
combination with the existing overhead-reducing techniques mentioned above.
Experiments results on applications from NAS Parallel Benchmarks 3.3.1 [5] and
Starbench parallel benchmark suite [2] show that our method can lower the time
overhead of data-dependence profiling by up to 52 %.

The remainder of the paper is organized as follows. First, we summarize
related work in Sect. 2. Then, we introduce the work flow of data-dependence

Fast Data-Dependence Profiling 585

profiling in Sect. 3, providing a background of our method. In Sect. 4, we describe
the details of skipping memory operations in loops. Evaluation of our method and
a discussion on the characteristics of skipped memory operations are presented
in Sect. 5. Finally, we conclude the paper and outline future prospects in Sect. 6.

2 Related Work

In previous dynamic data-dependence profiling techniques, their overhead was
reduced through three major ways: tailoring the profiling technique to a specific
analysis, sampling memory operations, or parallelizing the profiling process.

Using dependence profiling, Kremlin [6] determines the length of the critical
path in a given code region. Based on this knowledge, it calculates a metric
called self-parallelism, which quantifies the parallelism of the region. Instead
of pair-wise dependences, Kemlin records only the length of the critical path.
Alchemist [24], a tool that estimates the effectiveness of parallelizing program
regions by asynchronously executing certain language constructs, profiles depen-
dence distance instead of detailed dependences. Although these approaches pro-
file data dependences with low overhead, the underlying profiling technique has
been tailored to the specific analysis, and has difficulty in supporting other pro-
gram analyses.

Another solution to decrease the profiling overhead is to use approximate rep-
resentation rather than instrument every memory operation. Previous work [20]
tried to ignore memory operations in a code section when it had been executed
more than 232−k times. However, when setting k = 10, only 33.7 % of the mem-
ory operations are covered, which can lead to significant inconsistency in profiled
data dependences. Vanka and Tuck [21] profiled data dependencies based on sig-
nature and also compared the accuracy under different sampling rates. In this
work, sampling was done in function level. A sampling rate of M means the next
M − 1 invocations of a function will be skipped. When decreasing the sampling
rate from 1 to 100, an obvious drain of accuracy was observed.

There are also approaches that reduce the time overhead of dependence pro-
filing through parallelization. For example, SD3 [12] exploits pipeline and data
parallelism to extract data dependences from loops. DiscoPoP [16] distributes all
the memory operations of a program among a number of worker threads based on
the accessed address, and a redistribution table is used to ensure balanced work-
load. Multi-slicing [23] leverages compiler support for parallelization. Before exe-
cution, the compiler divides the profiling job into multiple profiling tasks through
a series of static analyses. All these approaches successfully reduced the time over-
head of data-dependence profiling without losing generality or accuracy. However,
they still analyze all memory operations. At a certain time, the parallelism exist
among different memory addresses cannot be exploited further by increasing the
number of worker threads, and the huge number of memory operations that need
to be processed sequentially dominates the profiling overhead.

Like Kremlin, Alchemist, and former work [20,21], our method also profiles
only a subset of all the memory operations of a program. Unlike these methods,

586 Z. Li et al.

Instrumentation

Shadow memory

Dependence storage

...

 sink source type var loop-carried

read: 3, write: 2

SubTable 0

 4 2 RAW x no

R
untim

e
m

em
or

y
op

Fig. 1. Work flow of data-dependence profiling.

our approach does not lose generality or accuracy. The skipped memory oper-
ations are those repeatedly executed and lead to identical data dependences.
Theoretically, our approach can work with any code sections that are executed
more than once.

3 Background

A profiling techniques usually contains two parts: an instrumentation component
that inserts analysis functions into the target code following specific rules, and
a runtime library that implements the analysis functions and data structures.
In data-dependence profiling, the instrumentation component inserts analysis
functions for every memory operation. Instrumented code will be linked against
the runtime library and executed. The runtime library is further divided into
two components. The first component is called shadow memory. During run-
time, the analysis functions keep tracking each memory locations accessed in
the target application, and maintain access status of each memory location in
a separate memory space. The second component is data-dependence storage,
where data dependences are built and stored when the statuses in shadow mem-
ory are changed.

Figure 1 shows the work flow of data-dependence profiling. Among the three
phases, instrumentation can be done statically, and time overhead of instrumen-
tation is usually negligible. The main time overhead are caused by the remaining

Fast Data-Dependence Profiling 587

two phases: updating shadow memory and building dependence. Both shadow
memory and dependence storage are typically implemented based on table-like
data structures where each memory address or data dependence has an entry.
Given the truth that the number of memory operations and data dependences
are usually very large, the overhead is mainly incurred by searching, updating,
and inserting elements to the data structures. As a result, data-dependence pro-
filing typically slows the program down by a factor ranging from 100 to 150. [10]

However, not every memory operation has to be processed through all the
three phases. Let us take the loop shown in Fig. 2 as an example. After profiling
two iterations of the loop, data dependences are complete. Table 1 shows the
dependences. Source and sink are the source code locations of the former and the
latter memory operations, respectively. Type is the dependence type, including
read after write (RAW), write after read (WAR), and write after write (WAW).
Variable is the variable that causing a dependence. When source and sink of
a dependence belong to different iterations of a loop, we call the dependence a
loop-carried dependence.

Fig. 2. A simple loop where data dependences will not change over iterations.

Table 1. Data dependences of the loop shown in Fig. 2.

ID Sink Source Type Variable Loop-carried

1 2 2 write after read (WAR) sum no

2 3 1 write after read (WAR) k no

3 3 2 write after read (WAR) k no

4 3 3 write after read (WAR) k no

5 1 3 read after write (RAW) k yes

6 2 2 read after write (RAW) sum yes

7 2 3 read after write (RAW) k yes

8 3 3 read after write (RAW) k yes

Among the dependences shown in Table 1, dependence 1–4 can be obtained
within the first iteration, and dependence 5–8 will be added once the second
iteration is done. After that, no more data dependence will be built, no matter
how many iterations the loop has. In this case, profiling these memory operations
over and over again is just a waste of time. It may be necessary to keep updating
statuses in shadow memory for correctness, but we definitely do not want to
touch dependence storage after data dependences for a code section are complete.
In the next section, we show how we skip these memory operations after the
dependences are fully obtained to accelerate the profiling process.

588 Z. Li et al.

4 Approach

An abstract analysis function for a memory operation looks like this:

mem op(accessType, accessInfo, addr).

For a memory operation, accessType can be either read or write. It does not
change over time. In practice, two analysis functions will be created for read and
write operations, respectively. Necessary information needed to update shadow
memory are stored in accessInfo, and passed into the analysis function. Usu-
ally, accessInfo is the identifier of the associate memory operation. For exam-
ple, the address of the instruction, the source line location, the variable name,
or a combination of such information. Depending on concrete implementation,
accessInfo may or may not be unique to each memory operation. However,
for one memory operation, its accessInfo does not change. addr is the mem-
ory address accessed by the memory operation. It can change if the address is
referred by pointers.

4.1 Condition on addr

If a memory operation can be safely skipped, the memory address it accesses
must not change over time. For simplicity, we create a variable called lastAddr
for each memory operation storing the memory address accessed by the memory
operation last time. And we require

addr == lastAddr

to be a necessary condition if a memory operation can be safely skipped. last
Addr should be initialized with an address which is rarely accessed, like 0×0.

When the condition on addr holds, it only means that the current memory
operation has been profiled before. It does not mean all data dependences that
are related to the current memory operation have been obtained. Again, let
us take the loop shown in Fig. 2 as an example. After applying the condition
on addr, all the memory operations in the first iteration will be profiled, and
dependence 1–4 in Table 1 are obtained. However, from the second iteration,
memory operations are skipped because the addresses they access do not change.
Thus, we name the condition on addr a necessary condition, and we still need
other conditions to decide if a memory operation can be skipped.

4.2 Condition on accessInfo

The key to cover all data dependences is to decide when to resume profiling once
the profiling has been paused. Our solution is to have a mechanism that allows
a memory operation be notified if the access status of its memory address has
changed, so that the memory operation must be profiled again.

In order to track the access status of a memory address, the shadow memory
stores accessInfo of the last read operation and the last write operation to

Fast Data-Dependence Profiling 589

the address. We call them statusRead and statusWrite, respectively. We
then create two variables lastStatusRead and lastStatusWrite for each
memory operation, storing the accessInfo of the last read operation and the
last write operation to the memory address when the memory operation was
profiled last time, respectively. Then we require

statusRead == lastStatusRead &&

statusWrite == lastStatusWrite

to be another necessary condition if a memory operation can be safely skipped.
Both lastStatusRead and lastStatusWrite should be initialized with
impossible values for accessInfo.

When the condition on accessInfo holds, it means that the access status of
the memory address has been seen before. We say “has been seen before” because
the address may change, and the access status of the current memory address
may just coincidentally be the same as the access status of another address.
This is very likely to happen when accessInfo is not unique to each memory
operation. However, combing the two conditions on addr and accessInfo
will give the sufficient condition if a memory operation can be safely skipped: a
memory operation has been profiled before, and the access status of its memory
address has not changed since it was profiled last time.

When the conditions do not hold anymore, it means either the memory oper-
ation accesses a different memory address, or the access status of the memory
address has changes. No matter which situation it is, the memory operation must
be profiled again in order to cover new data dependences.

4.3 Example

In this section, we show how our method works on a simple example, and a
special case where a memory operation can be skipped even without updating
its status in shadow memory.

Fig. 3. A loop containing for memory operations on the same memory address.

Figure 3 shows a loop with four memory operations (op1–op4). All the mem-
ory operations access the same memory address x. We show memory operations
instead of source code so that the profiling process can be clearly illustrated.
Data dependences of the loop shown in Fig. 3 are listed in Table 2.

590 Z. Li et al.

Table 2. Data dependences of the loop shown in Fig. 3.

ID Sink Source Type Variable Loop-carried

1 op2 op1 read after write (RAW) x no

2 op3 op1 read after write (RAW) x no

3 op4 op3 write after read (WAR) x no

4 op1 op4 write after write (WAW) x yes

Table 3. Changing process of values of lastStatusRead and lastStatusWrite
in the profiling process on the loop shown in Fig. 3.

Op
lastStatusRead lastStatusWrite
init 1st 2nd 3rd init 1st 2nd 3rd

write x — 0 3 S — 0 4 S

read x — 0 3 S — 1 1 S

read x — 2 S S — 1 S S

write x — 3 S S — 1 S S

Table 4. Changing process of the statuses in shadow memory in the profiling process
on the loop shown in Fig. 3.

init op1 op2 op3 op4 op1 op2 op3 op4

statusRead 0 0 2 3 3 3 2 3 3

statusWrite 0 1 1 1 4 1 1 1 4

The changing process of values stored in lastStatusRead and
last StatusWrite for each memory operation is shown in Table 3. “1st”,
“2nd””, and “3rd” refer to the first, the second, and the third iteration of the
loop, respectively. An “S”means the memory operation is skipped, otherwise
the memory operation is processed and the value of lastStatusRead and
lastStatusWrite are updated.

The changing process of the accessing status of x in shadow memory is shown
in Table 4. We adopt the most common design, where for each memory address
the last read operation and the last write operation to the address are stored.
In both Tables 3 and 4, we use “1” for op1, “2” for op2, and so fort.

Let us examine the profiling process step by step. In the beginning, last
StatusRead and lastStatusWrite are initialized to “–”, statusRead and
statusWrite are 0, and lastAddr is 0×0. Now comes op1. Since addr is
not equal to lastAddr, op1 is processed. Statuses in shadow memory are loaded
into lastStatusRead and lastStatusWrite, which are both 0 in case of
op1. Then op1 updates shadow memory. statusWrite of x is now 1.

The same process happens to op2. The difference is that when op2 is exe-
cuted, statusRead and statusWrite of x has been changed to 0 and 1,
respectively. With statusWrite is no longer zero, a read-after-write (RAW)

Fast Data-Dependence Profiling 591

dependence from op2 to op1 is built, which is the first dependence shown in
Fig. 2. The profiling process continues, and dependence 2, 3 are built when op3
and op4 are profiled.

Now the profiling process enters the second iteration, and op1 comes again.
Although the condition on addr holds this time, the condition on AccessInfo
fails. The last time op1 was profiled, the last read operation (stored in last
StatusRead) and the last write operation (in lastStatusWrite) to x were 0.
After the first iteration is completed, they are 3 and 4. op1must be profiled again
in order to cover new dependences. Thus, the last data dependence in Table 2
is built. The same situation also happens to op2, but it only leads to a read-
after-read (RAR) dependence, which is ignored in most of the data-dependence
profilers.

Both condition holds when op3 is executed again, and it is skipped. No
dependence instance is built, and no query to the dependence storage. Note
that shadow memory is still updated for correctness. From then on, all further
memory accesses to x in the same loop are skipped, and no dependence is missed.
The dependence storage is touched only four times, exactly as the number of
dependences the loop contains.

Special Case. When the loop contains only op1, op2, and op3, statusWrite
to x will be always 1. This is a special case where the following condition holds:

currentWrite == statusWrite == lastStatusWrite.

In this case, a write operation can be skipped without updating shadow
memory. The same applies for read operation as well.

5 Evaluation

We implemented our method in the data-dependence profiler [16] of DiscoPoP
[14,15]. The profiler contains several different implementations of shadow mem-
ory. In this paper, we choose an implementation where statusRead and
statusWrite of a memory address are stored in two separate sets called readSet
and writeSet, respectively. Both of the two sets are non-approximate represen-
tation, meaning no false positives or false negatives will be built.

We conducted a range of experiments to evaluate the effectiveness of our
method. Test cases are the NAS Parallel Benchmarks 3.3.1 [5] (NAS), a suite
of programs derived from real-world computational fluid-dynamics applications,
and a few applications from the Starbench parallel benchmark suite [2], which
covers programs from diverse domains, including image processing, information
security, machine learning and so on.

5.1 Time Overhead

Figure 4 shows the slowdowns of the data-dependence profiler on NAS bench-
marks and kmeans from Starbench before (dp) and after (dp+opt) applying the

592 Z. Li et al.

(a) Slowdown on NAS.

(b) Slowdown on Starbench.

Fig. 4. Slowdowns of the data-dependence profiler of DiscoPoP on NAS and Star-
bench benchmarks with (DiscoPoP+opt) and without (DiscoPoP) skipping repeatedly
executed memory operations.

mechanism of skipping memory operations that are repeatedly executed in loops.
As it shown, our method reduces the slowdown of data-dependence profiling on
all of the test cases. The highest slowdown reduction shows in FT (52.0 %), and
the lowest shows in rot-cc (31.1 %). On average, our method reduces the time
overhead of data-dependence profiling by 41.3 %. The outputs after applying our
method were compared to the original ones using diff tool, and no difference is
observed.

Whether our method reduces the time overhead of data-dependence profil-
ing on an application depends on the computation pattern of the application.
Theoretically, the more work done in loops (or other repetitive manner), the
more effective our method will be. If a program does not have any code sections
that are executed more than once, which is obviously very uncommon for a real-
world application, our method should actually bring a minor time overhead due
to condition checking. In test cases FT, LU, and CG, the biggest hot spots are
all loops. Applying our method on these test cases give reductions on slowdown
of 52 %, 51 %, and 44 %, respectively.

Memory access pattern is another factor that can affect the effectiveness
of our method. In the worst case, accessed memory addresses change in every
iteration, which means the profiling process cannot be paused. This usually

Fast Data-Dependence Profiling 593

Table 5. Statistics of memory operations that lead to data dependence but skipped
on NAS benchmarks and kmeans from Starbench.

Benchmark
read write read+write

total skipped [%] total skipped [%] total skipped [%]

BT 743 969 748 71.94 104 153 401 22.66 848 123 149 65.89

CG 562 665 608 79.20 82 428 819 92.32 645 094 427 80.88

EP 1 268 263 496 96.75 528 633 275 89.00 1 796 896 771 94.47

FT 1 034 144 426 99.68 274 436 113 99.53 1 308 580 539 99.65

IS 26 061 226 82.69 10 596 042 73.53 36 657 268 80.04

LU 368 187 710 87.09 36 303 260 41.92 404 490 970 83.04

MG 66 160 096 82.60 5 876 449 53.88 72 036 545 80.26

SP 450 997 264 83.54 51 853 149 44.31 502 850 413 79.50

kmeans 1 124 603 733 65.27 225 500 303 87.97 1 350 104 036 69.06

md5 3 908 055 91.05 1 368 725 97.99 5 276 780 92.85

c-ray 1 251 777 658 64.77 264 217 429 48.35 1 515 995 087 61.91

ray-rot 500 462 138 56.48 133 222 408 47.65 633 684 546 54.62

rgbyuv 25 639 777 89.28 15 977 310 85.32 41 617 087 87.76

rotate 328 610 773 89.17 53 662 659 56.59 382 273 432 84.60

rot-cc 427 139 027 91.67 76 733 411 57.34 503 872 438 86.44

average — 82.08 — 66.56 — 80.06

happens when computation is based on array or matrix. Results on test cases
BT, IS, rotate, and rot-cc are affected due to this problem.

5.2 Skipped Memory Operations

In the second experiment, we get statistics of the memory operations that
lead to data dependence but skipped in each test case. As most of the data-
dependence profilers do, read-after-read (RAR) dependences are not profiled in
our experiment.

Table 5 shows the statistics. In each column group, “percent” gives the per-
cent of memory operations skipped of the type specified for the group. As it is
shown, on average 80.06 % of the memory operations that lead to data depen-
dences are skipped. It is surprising that the full data dependence set of an appli-
cation can be obtained by profiling only 20 % of its memory operations (or even
less because those do not lead to dependences are skipped already). The results
give us an insight of how much time were wasted in a classic data-dependence
profiler that profiles identical data dependences over and over again.

Although on average about 80 % of the memory operations that lead to data
dependence are skipped, the slowdown reductions shown in Fig. 4 never achieve
60 %. There are two reasons for this. Firstly, in most cases, skipping a memory
operation means skipping the data dependence building phase. Overhead is still
incurred by updating shadow memory. The second reason is that profiling a
write operation is more complex than profiling a read, and the percentage of

594 Z. Li et al.

skipped write operations (66.56 %) is less than the percentage of read (82.08 %).
Profiling a write operation needs to check both WAW and WAR dependences,
while profiling read operation only needs to check RAW.

5.3 Memory Overhead

Our method introduces a minor overhead on memory consumption of data-
dependence profiling because of the variables created for condition check. However,
compared to the memory overhead of shadow memory, the memory overhead of
our method can be ignored. In our experiments, one 64-bit integer (lastAddr)
and two 32-bit integers (lastStatusRead and lastStatusWrite) are cre-
ated for each distinct memory operation. However, the number of distinct mem-
ory operations is usually small comparing to the number of total memory opera-
tions due to loops and other code blocks that are repeatedly executed. For exam-
ple, kmeans has 109 memory operations in total and iterates 300 times. Thus,
the number of distinct memory operations in kmeans is roughly 3 × 106. With
16 Bytes memory overhead each, our method results in about 50 MB memory
consumption. The memory overhead of shadow memory, however, is almost ten
times of that. Memory consumption of the state-of-the-art data-dependence pro-
filers [12,16] ranges from several hundred mega bytes to several giga bytes. Using
10 % memory more to reduce the time overhead by 30–50 % is definitely a bargain.

6 Conclusion

Data-dependence profiling has a huge time overhead because it applies heavy
analysis to every memory operation of the target program. Existing solutions
to reduce the number of memory operations needed to be analyzed includes
static analysis and sampling. However, the number of data dependences that
can be determined statically is usually limited. Sampling, on the other side,
skips memory operations according to certain pre-defined rules with no respect
to the memory access pattern of the target program.

In this paper, we proposed a fast data-dependence profiling method that
can skip memory operations repeatedly executed in loops. By storing a short
profiling history for each memory operation, our method recognizes memory
operations that have been recently profiled and skips them, and, which is more
important, resumes profiling when the access pattern changes. According to the
experiment results, our method reduces the time overhead of data-dependence
profiling by 42.5 % on average. Furthermore, in contrast to sampling approaches,
our method ensures consistent state in shadow memory, lowering the time over-
head without losing accuracy. Finally, our method can cooperate with existing
overhead-lowering techniques for data-dependence profiling like static analysis
and parallelization.

We plan to develop a fast data-dependence profiler with the help of both
former techniques of reducing overhead like parallelization and the method pre-
sented in this paper. We are also interested in applying our method to profilers

Fast Data-Dependence Profiling 595

that built on top of virtual machines, where the original code without instru-
mentation can be scheduled into execution when all its memory operations are
marked as skipped.

References

1. Amini, M., Goubier, O., Guelton, S., Mcmahon, J.O., Pasquier, F.X., Pan, G.,
Villalon, P.: Par4All: From convex array regions to heterogeneous computing. In:
Proceedings of the 2nd International Workshop on Polyhedral Compilation Tech-
niques, IMPACT 2012 (2012)

2. Andersch, M., Juurlink, B., Chi, C.C.: A benchmark suite for evaluating parallel
programming models. In: Proceedings 24th Workshop on Parallel Systems and
Algorithms, PARS 2011, pp. 7–17 (2011)

3. Atre, R., Jannesari, A., Wolf, F.: The basic building blocks of parallel tasks. In:
Proceedings of the 2015 International Workshop on Code Optimisation for Multi
and Many Cores, COSMIC 2015, pp. 3:1–3:11. ACM, New York (2015)

4. August, D.I., Huang, J., Beard, S.R., Johnson, N.P., Jablin, T.B.: Automatically
exploiting cross-invocation parallelism using runtime information. In: Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO 2013, pp. 1–11. IEEE Computer Society (2013)

5. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63–73 (1991)

6. Garcia, S., Jeon, D., Louie, C.M., Taylor, M.B.: Kremlin: rethinking and rebooting
gprof for the multicore age. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, pp. 458–469.
ACM (2011)

7. Govindarajan, R., Anantpur, J.: Runtime dependence computation and execution
of loops on heterogeneous systems. In: Proceedings of the 2013 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2013, pp. 1–10.
IEEE Computer Society (2013)

8. Grosser, T., Groesslinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Process. Lett. 22(04),
1250010 (2012)

9. Huda, Z.U., Jannesari, A., Wolf, F.: Using template matching to infer parallel
design patterns. ACM Trans. Archit. Code Optim. 11(4), 64:1–64:21 (2015)

10. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: Frame-
work, scope, and optimization. In: Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 45, pp. 437–448. IEEE
Computer Society (2012)

11. Kim, M., Kim, H., Luk, C.K.: Prospector: discovering parallelism via dynamic
data-dependence profiling. In: Proceedings of the 2nd USENIX Workshop on Hot
Topics in Parallelism, HOTPAR 2010 (2010)

12. Kim, M., Kim, H., Luk, C.K.: SD3: A scalable approach to dynamic data-
dependence profiling. In: Proceedings of the 43rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 43, pp. 535–546. IEEE Computer
Society (2010)

596 Z. Li et al.

13. Lee, S.I., Johnson, T., Eigenmann, R.: Cetus - an extensible compiler infrastruc-
ture for source-to-source transformation. In: Rauchwerger, L. (ed.) Languages and
Compilers for Parallel Computing. Lecture Notes in Computer Science, vol. 2958,
pp. 539–553. Springer, Heidelberg (2004)

14. Li, Z., Atre, R., Ul-Huda, Z., Jannesari, A., Wolf, F.: DiscoPoP: A profiling tool
to identify parallelization opportunities. In: Niethammer, C., Gracia, J., Knüpfer,
A., Resch, M.M., Nagel, W.E. (eds.) Tools for High Performance Computing 2014,
1st edn, pp. 1–10. Springer International Publishing, Switzerland (2015)

15. Li, Z., Jannesari, A., Wolf, F.: Discovery of potential parallelism in sequential pro-
grams. In: Proceedings of the 42nd International Conference on Parallel Processing,
PSTI 2013, pp. 1004–1013, vol. 13. IEEE Computer Society (2013)

16. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: Proceedings of the 29th IEEE International Parallel &
Distributed Processing Symposium, IPDPS 2015, pp. 484–493 (2015)

17. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic thread extraction with
decoupled software pipelining. In: Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 38, pp. 105–118. IEEE
Computer Society (2005)

18. Rul, S., Vandierendonck, H., De Bosschere, K.: Function level parallelism driven
by data dependencies. SIGARCH Comput. Archit. News 35(1), 55–62 (2007)

19. Rul, S., Vandierendonck, H., De Bosschere, K.: A profile-based tool for find-
ing pipeline parallelism in sequential programs. Parallel Comput. 36(9), 531–551
(2010)

20. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic race detec-
tion with LLVM compiler. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 110–114. Springer, Heidelberg (2012)

21. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using soft-
ware signatures. In: Proceedings of the 10th International Symposium on Code
Generation and Optimization, CGO 2012, pp. 186–195. ACM, New York (2012)

22. Ye, J.M., Chen, T.: Exploring potential parallelism of sequential programs with
superblock reordering. In: Proceedings of the 2012 IEEE 14th International Con-
ference on High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems, HPCC 2012, pp.
9–16. IEEE Computer Society (2012)

23. Yu, H., Li, Z.: Multi-slicing: a compiler-supported parallel approach to data depen-
dence profiling. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pp. 23–33. ACM (2012)

24. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: a transparent dependence dis-
tance profiling infrastructure. In: Proceedings of the 7th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2009, pp. 47–58.
IEEE Computer Society (2009)

25. Zhao, B., Li, Z., Jannesari, A., Wolf, F., Wu, W.: Dependence-based code trans-
formation for coarse-grained parallelism. In: Proceedings of the 2015 International
Workshop on Code Optimisation for Multi and Many Cores, COSMIC 2015, pp.
1–10. ACM, New York (2015)

	Fast Data-Dependence Profiling by Skipping Repeatedly Executed Memory Operations
	1 Introduction
	2 Related Work
	3 Background
	4 Approach
	4.1 Condition on addr
	4.2 Condition on accessInfo
	4.3 Example

	5 Evaluation
	5.1 Time Overhead
	5.2 Skipped Memory Operations
	5.3 Memory Overhead

	6 Conclusion
	References

