
Beyond Data Parallelism: Identifying Parallel
Tasks in Sequential Programs

Zhen Li1(B), Bo Zhao2, Ali Jannesari1, and Felix Wolf1

1 Technische Universität Darmstadt, 64289 Darmstadt, Germany
{li,jannesari,wolf}@cs.tu-darmstadt.de

2 Xi’an Jiaotong University, Xi’an 710049, China
zhaobo36@stu.xjtu.edu.cn

Abstract. Today, millions of legacy programs are awaiting their par-
allelization. For this reason, the automatic discovery of parallelism in
sequential programs is now receiving considerable attention. However,
past efforts mainly concentrated on data parallelism hidden inside loops.
As programming models begin to support more irregular types of par-
allelism, centered around the notion of tasks in various forms, methods
are needed to identify code sections that could potentially represent par-
allel tasks. In this paper, we present a novel approach to automatically
finding parallel tasks in sequential programs. We first created a dynamic
dependence graph, then isolated tasks, and finally produced a task graph
according to the dependences we find. With the help of a source-to-source
code translator, parallel code is automatically generated. We conducted
a range of experiments to cover both tasks executing the same code and
tasks executing different code. Results showed that our method achieved
reasonable speedups on the test cases.

Keywords: Parallelism discovery · Task parallelism · Computational
unit · Data dependence · Parallel programming

1 Introduction

While writing parallel programs from scratch has always been considered a diffi-
cult task, parallelizing legacy programs written by someone else, today a common
scenario in many organizations, is even harder [8]. For this reason, many methods
have been proposed to assist programmers in parallelizing sequential programs.
The most attractive idea is to build a compiler that automatically translates a
sequential into a parallel program. Such compilers support a set of directives
that the programmer has to insert into the source code to mark sections that
can run in parallel. Although this approach requires only minor changes to the
source code, it leaves an important but time-consuming job to the programmer:
finding parallelism in the sequential program.

To support programmers also in this initial stage of the process, methods have
been proposed to discover potential parallelism automatically. So far, their main
target has been data parallelism in loops, which can be exploited by distributing
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 569–582, 2015.
DOI: 10.1007/978-3-319-27140-8 39

570 Z. Li et al.

iterations of a loop among multiple threads. However, as more programming
models such as OpenMP and Intel TBB [18] aim at task-based parallelism, this
original focus of parallelism discovery becomes too narrow. In contrast to loop-
based data parallelism, task parallelism does not require that every thread to
execute the same code. Tasking can exploit parallelism between arbitrary code
sections, including parallelism within individual iterations of a loop or between
different loops.

In this paper, we present an approach to the detection of parallel tasks in
sequential programs. As the first step, we run our data-dependence profiler [14]
to extract the dynamic data-dependence graph. This graph is then transformed
into another graph, whose edges represent only true data dependences and whose
nodes are small pieces of computation without any noteworthy internal paral-
lelism. We call these nodes computational units (CUs) and we call the graph
CU graph. Then we search the graph for strongly connected components (SCCs)
and chains, we merge the CUs they contain, and label them as potential tasks.
Finally, we feed the generated task graph to a code transformation component
that can transform serial C/C++ code into Intel TBB [18] parallel code. The
code transformation component then translates the sequential source code into
equivalent parallel code using TBB flow graph template.

The remainder of the paper is structured as follows. In the next section,
we review related work and highlight the differences to our own. In Sect. 3,
we explain our approach in more detail. Evaluation results and case studies are
presented in Sect. 4. Finally, Sect. 5 summarizes our paper and discusses possible
improvements.

2 Related Work

Methods for assisting parallelization mainly fall into one of two not necessarily
disjoint categories. Methods in the first category focus primarily on data depen-
dence analysis to find parallelism, whereas methods in the second category put
more emphasis on the runtime system as their primary vehicle of parallelization.

Dynamic Dependence Analysis. After purely static approaches including
auto-parallelizing compilers had turned out to be too conservative for the par-
allelization of general-purpose programs, a range of predominantly dynamic
approaches emerged. As a common characteristic, all of them capture dynamic
dependence to asses the degree of potential parallelism. Using dependence infor-
mation, Kremlin [6] determines the length of the critical path in a given code
region. Based on this knowledge, it calculates a metric called self-parallelism,
which quantifies the parallelism of a code region. Finally, Kremlin reports self-
parallelism for each region, in the same way as an ordinary performance profiler
such as gprof would report the time. Alchemist [20] is centered around the notion
of futures, treating predefined constructs as candidates for asynchronous execu-
tion. It profiles the dependence distance (the number of instructions between the
source and sink of a dependence) to estimate the effectiveness of parallelizing
a certain construct. AutoFutures [15] adopts a similar idea, but goes one step

Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs 571

further in that it automatically transforms the code. However, it seems to be
still at a preliminary stage with negative speedup results reported for some of
the test programs. Previous work [5] identified task parallelism in C applications
for multiprocessor System-on-Chip (MPSoC) platforms based on the notion of
a coupled block, which is a group of statements tightly coupled by dependences.
A coupled block is treated as a task.

All of the approaches mentioned above discover parallelism from massive raw
data dependences without respecting computation patterns. They overlook the
truth that the computation of a task usually does not contain any noteworthy
parallelism inside, and the set of variables used for communication among tasks
usually does not overlap with the set of variables used for computations.

Other approaches primarily concentrate on the efficiency of profiling depen-
dences. Parwiz [10] is an optimized data-dependence profiler that attaches the
dependences it finds to the nodes of an execution tree (i.e., a generalized call
tree that also includes basic blocks) that it maintains. Based on this execution
tree, it can identify DOALL [9] loops in sequential programs. Prospector [11] is
a parallelism-discovery tool based on the memory-efficient data dependence pro-
filer SD3 [12]. It tells whether a loop can be parallelized and provides a detailed
dependence analysis of the loop body.

Scheduling. Runtime scheduling frameworks are another way of adding paral-
lelismto sequential programs.DSWP[16] andDOMORE[2] targetDOACROSS [9]
loops, scheduling their iterations in a pipeline style according to previously iden-
tified (static) dependences. Anantpur and Govindarajan [7] profile cross-iteration
dependences for DOACROSS loops and try to accelerate their execution using
GPUs. Ye and Chen [19] profile data dependences on the superblock level.
Using a meta-reorder buffer to measure and exploit the available parallelism,
superblocks are dynamically analyzed, reordered, and dispatched, respecting
data dependences.

Generally, scheduling techniques incur a non-negligible fixed overhead, which
changes very little if the number of data dependences in the program varies.
Moreover, most scheduling approaches focus solely on DOACROSS loops, miss-
ing the potential parallelism outside such loops. While scheduling approaches
do not require any effort on the part of the programmer, the above limitations
often render the speedup they can achieve inferior to manual parallelization.

3 Approach

Our approach consists of the following steps. First, we profile the target program
to extract the dynamic data-dependence graph. This graph then undergoes two
transformations aimed at isolating tasks and dependences between them. During
both transformations, nodes are merged to simplify the graph structure. At
the end, some nodes may emerge as independent or dependent tasks. Finally,
we submit the generated task graph to a code transformation component that
transforms serial C/C++ code into Intel TBB parallel code.

572 Z. Li et al.

1 x = 3;
2 for (i = 0; i < MAX_ITER; i++) {
3 a = x + rand() / x;
4 b = x - rand() / x;
5 x = a + b;
6 }

1

2

3

4

5

Boundaries:

Line 2: BGN loop
Line 6: END loop

Fig. 1. Data-dependence graph and control-structure boundaries produced by Dis-
coPoP. Vertices are source lines and edges are data dependences.

3.1 Extracting Data Dependences

To generate the data-dependence graph, we use an efficient dynamic depen-
dence profiler [14]. The nodes of the graph are source-code lines and the edges
are data dependences between them. Figure 1 shows the profiler’s output for a
sample code section. The output also includes control-structure boundaries and
the names of variables involved in dependences. Of course, relying on dynamic
dependences makes our approach input-sensitive. However, the effects of the
input sensitivity can be ameliorated by (i) running the target program with a
range of inputs and merge the outputs (ii) letting the user specify a representa-
tive input that covers the typical execution flow.

3.2 Identifying Computational Units

Thefirst transformation of the dependence graph isolates small pieces of codewith-
out any noteworthy internal parallelism, which we call computational units (CUs).
A CU is built for a collection of instructions following the read-compute-write
pattern: a set of variables is read by a collection of instructions and used to per-
form computation, then the result is written back to another set of variables. We
call the two sets read set and write set, respectively. The two sets do not have to
be disjoint. The load instructions reading variables in the read set form read phase
of the CU, and the store instructions writing variables in the write set form write
phase of the CU.

We define a CU by read-compute-write pattern because in practice, tasks
communicate with one another by reading and writing values to variables that
are global to them. Thus, we require the variables in a CU’s read set and write
set to be global to the CU, and the variables used in a CU’s computation should
be local. To distinguish variables that are global to a code section, we analyze
variable scope information, which is available in any ordinary compiler. Note
that the global variables in read set and write set do not have to be global to the
whole program. They can be variables that are local to an encapsulating code
section, but global to the target code section.

Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs 573

Algorithm 1. Algorithm of building CUs (pseudocode).

1 for each region R in the program do
2 globalVars = variables that are global to R
3 isCautious = true
4 for each variable v in globalVars do
5 if v is read then
6 readSet += v
7 for each instruction Irv reads v do
8 readPhase += Irv
9 end

10 end
11 if v is written then
12 writeSet += v
13 for each instruction Iwv writes v do
14 writePhase += Iwv
15 end

16 end

17 end
18 for each instruction Ir in readPhase do
19 for each instruction Iw in writePhase do
20 if Ir happens after Iw then
21 isCautious = false
22 break

23 end

24 end

25 end
26 if isCautious then
27 cu = new computational unit
28 cu.scope = R
29 cu.readSet = readSet
30 cu.writeSet = writeSet
31 cu.readPhase = readPhase
32 cu.writePhase = writePhase
33 cu.computationPhase =
34 (instructions in R) - (readPhase + writePhase)

35 end

36 end

We further require that the load and store instructions in read phase and
write phase are cautious [17]. Cautious property is previously defined for oper-
ators in unordered algorithms. By adapting it to CU, we say a CU is cautious
if it reads all the variables in its read set before it writes any variables in its
write set. Cautious property guarantees the read-compute-write pattern. It does
not only give a clear way of separating read phase and write phase, but also
allows multiple CUs to be executed speculatively without buffering updates or

574 Z. Li et al.

x = 3

a = x + rand() / x

b = x - rand() / x

x = a + b

x = 3

a = x + rand() / x

b = x - rand() / x

CU

INIT

Data Dependence

Node in CU Graph

x = a + b

Fig. 2. Building a CU.

making backup copies of modified data because all conflicts are detected during
the read phase. Consequently, tasks extracted based on CUs do not have any
special requirement on runtime frameworks.

CUs are built for every region. A region is a single-entry-single-exit code
block. The difference between a region and a basic block is that not every instruc-
tion inside a region is guaranteed to be executed, meaning a region could be a
group of basic blocks with branches inside. A region can be a function, a loop,
an if-else structure, or a basic block. In practice, a basic block rarely contains
noteworthy parallelism because it usually contains a small number of instruc-
tions. Code in different branches of an if-else structure are semantically exclusive,
thus rarely run in parallel. Hence, we mainly focus on regions like functions and
loops, which usually contain important computations that can potentially run
in parallel. In our approach, regions of a program are traversed by implementing
the algorithm of building CUs shown in Algorithm1 using the region pass in
LLVM [13].

Figure 2 shows a CU built from the code section shown in Fig. 1. Each loop
iteration calculates a new value of x with the help of local variables a and b.
For a single iteration, the loop region is cautious since all the read to x happen
before the write to x. Following the read-compute-write pattern, lines 3–5 are in
one CU, and the CU depends on the initialization of x, as shown in Fig. 2. Note
that CUs never cross control-region boundaries. Otherwise a CU could grow
too large, possibly swallowing all the iterations of a loop and many other code
sections, and hiding important parallelisms that we actually want to expose.

Identifying CUs simplifies the dependence graph by not only merging vertices
into CUs, but also hiding dependences that are local to the computations of CUs.
After identifying CUs, edges in the dependence graph are all inter-CU depen-
dences, which are always among instructions in read phases and write phases.
Giving the truth that the number of global variables to a code section is usually
far less than the number of local variables, identifying CUs delivers a significant
simplification for the dependence graph. We call the simplified dependence graph
CU graph.

Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs 575

8-0 8-2 8-4 8-5 3-0 1-0 5-0

5-3

5-10 5-6 3-1 1-1

5-9

5-8 5-11 3-2 3-3 1-2 8-6 5-4 5-5

Fig. 3. Part of the CU graph of rot-cc.

Figure 3 shows a part of the CU graph of rot-cc, a benchmark from Starbench
parallel benchmark suite [1]. According to the figure, although it is quite clear
that some CUs can run in parallel (e.g. 8–4 and 8–5), it still requires effort to
tell whether other CUs can run in parallel. Thus, we simplify CU graph further
into a directed acyclic graph (DAG), which we call task graph.

3.3 Forming Tasks

The second transformation of the dependence graph helps identify either inde-
pendent or dependent tasks, the latter in a potential pipeline arrangement.
Whenever possible, we merge CUs contained in strongly connected components
(SCCs) or in chains. The idea of merging CUs in SCC comes from previous
work [16]. In graph theory, an SCC is a subgraph in which every vertex is
reachable from every other vertex. Thus, every CU in an SCC of the CU graph
depends on every other CU either directly or indirectly, forming a complex knot
of dependences that is likely to defy internal parallelization. Identifying SCCs is
important for two reasons:

1. Algorithm design. Complex dependences are usually the result of highly opti-
mized sequential algorithm design oblivious of potential parallelization. In
this case, breaking such dependence requires a parallel algorithm, which is
beyond the scope of our method.

2. Coding effort. Even if such complex dependences are not created by design,
breaking them is usually time-consuming, error-prone, and may cause signifi-
cant synchronization overhead that may outweigh the benefit of parallelization.

Hence, we hide complex dependences inside SSCs, exposing parallelization
opportunities outside, where only a few dependences need to be considered.
Figure 4 shows the graph simplification process by substituting SCCs and chains

576 Z. Li et al.

A

B

C

D

E

F

G

H

I

A

B

C

D

E I

FGH

A

B

I

FGH
CDE

1 2

SCCSCC

chain

Fig. 4. Simplifying CU graph by substituting SCCs and chains of CUs with vertices.

of CUs with vertices. In step 1, CU F , G and H are grouped into SCCFGH .
After contracting each SCC to a single vertex, the graph becomes a directed
acyclic graph. Moreover, we group CUs that are connected in a row without a
branching or joining point in between into a chain of CU since a chain of CU
does not contain significant parallelism inside, and merging them can lower the
communication overhead among tasks. In step 2, CU C, D and E are grouped
into chainCDE . We call the simplified graph task graph.

Finally, we declare each vertex in the task graph a potential task. If the
task graph has more than one entries, a virtual task (task0) is added to be the
predecessor of all the entry nodes. The virtual task ensures that a task graph
has only one entry node, which simplifies the code transformation algorithm
mentioned below.

3.4 Automatic Code Transformation

In the end, we submit the generated task graph to a code transformation com-
ponent that transforms serial C/C++ code into Intel TBB [18] parallel code.
Transformation is performed at AST level using Clang libraries. The transfor-
mation module traverses the Clang AST of the source code in order to locate
the code sections targeted by the task graph. Afterwards, a source code rewrit-
ing module rewrites the targeted source code strings in the Clang AST context
using TBB flow graph templates. The transformation component also supports
DOALL loops. A DOALL loop is transformed into a TBB parallel for tem-
plate with its loop body filled as a lambda expression.

The flow graph transformation algorithm is divided into three steps:

Step 1: Identifying Code Sections Corresponding to Each Task. For each
task in the task graph, the transformation module gets all its source
code lines via the AST context and save them to CU.codeBody in the
corresponding task. Note that the virtual task does not correspond to
any code section.

Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs 577

Step 2: Generating Source Code of the Flow Graph Node. The source code
rewriting module generates the flow graph node based on the following
three cases:
• The current task has a single or none incoming edge and multiple

outgoing edges. If all its successors receive the same data, we insert
a TBB broadcast node. Otherwise, a TBB split node is inserted.
When there is no input data for broadcast node or split node, the
node template uses type continue msg defined in TBB. Otherwise the
corresponding data types must be obtained via AST and be passed to
the template.

• The current task has a single incoming edge and single or none outgoing
edge. In this case, the source code rewriting module directly transforms
it to a flow graph function node using a lambda function.

• The current task has multiple incoming edges and single out going edge,
which means at least two variables need synchronization before they
are passed to the current task. Hence, we must first add a join node
to synchronize the operations on these variables and then insert the
function node. A join node has multiple input ports and generates
a single output tuple that contains a value received from each port.

Step 3: Generating Source Code of Flow Graph Edges. After all of the
flow graph nodes have been defined in the source code, the corresponding
code for edges must be added according to the task graph.

It’s worth mentioning that join node supports three different buffering poli-
cies: queueing, reserving, and tag matching. Currently the buffering policy
need to be determined by users, because it is usually semantic related and can
not be solved by our tool. When all the nodes and edges have been defined, the
transformation terminates and the parallel code is complete.

4 Evaluation

As we mentioned in Sect. 1, task parallelism does not require that every thread to
execute the same code. Like loop-based data parallelism, tasking can certainly
exploits parallelism among iterations of a loop (each task executes the same
code). However, tasking also exploits parallelism between different loops and
functions (each task executes different code). In this section, we show that our
method can handle both kinds of task parallelism.

We have mentioned that the buffering policy of TBB join node needs to
be determined by users. Another thing that has to be determined by users is
the data chunk size when data decomposition is needed. They are the only two
things our method requires. Determining data chunk size automatically requires
an auto-tuning technique, which is beyond the scope of this paper.

We conducted a range of experiments to evaluate our method. All experi-
ments ran on a server with 2× 8-core Intel Xeon E5-2650 2 GHz processors with
32 GB memory, running Ubuntu 12.04 (64-bit server edition). Time and speedup
numbers represent an average of five independent executions.

578 Z. Li et al.

4.1 Tasks Executing the Same Code

When tasks execute the same code, it means the parallelism comes from data
decomposition. In sequential code, such parallelism usually resides in loops,
where each iteration perform computation on a piece of input data. To determine
whether a loop in sequential code can be parallelized, we only need to check if
the partial CU graph of the loop has no circle, including edges that come from a
CU and point to itself. Otherwise, an iteration of the loop reads data produced
in the previous iteration, and the loop cannot be parallelized.

Programs containing loops where each iteration can be emitted as a task are
easy to find. In our experiments, we chose three benchmarks (BT, SP, and CG)
from NAS parallel benchmark suite [3], blackscholes from PARSEC benchmark
suite [4], and two applications (mandelbrot, ann training) that are commonly
used in parallel programming courses.

Instead of transforming each iteration into a tbb::task, we use tbb::
parallel for for loops because it utilize the thread pool in TBB for better effi-
ciency. On the other hand, tbb::task always creates a new thread for a task.

Table 1. Summary of parallelization results for tasks executing the same code.

Program # parallel loops # of threads Speedup(auto) Speedup(manual)

auto manual

BT 22 30 16 2.17 6.78

SP 26 34 16 2.03 5.07

CG 5 16 16 2.15 8.36

blackscholes 3 1 16 3.19 7.12

mandelbrot 2 2 4 2.02 3.96

ann training 4 2 4 1.91 3.07

Table 1 shows the results on parallelizing tasks residing in loops. In gen-
eral, our method exploits fewer parallelism than experienced programmers and
results in lower speedups, which is common to all of the automatic parallelization
approaches. In blackscholes and ann training, our method parallelized more loops
than the manually parallelized versions. However, all the additional loops that
are automatically parallelized are small loops doing initialization. Parallelizing
such loops does not bring any speedup, but rather incurs additional overhead in
creating and destroying threads.

An interesting case is mandelbrot, where our method parallelized exactly the
same places as the programmer did. However, the automatic parallelized version
still has a lower speedup due to imbalanced workload. In mandelbrot, whether
the matrix is divided row-wise or column-wise gives a different workload to each
worker thread. Unfortunately, there is no way to get such information before

Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs 579

running a parallel version of the program. This case shows that although auto-
matic parallelization method can bring some speedup for free, user’s knowledge
is still critical for a higher speedup.

4.2 Tasks Executing Different Code

In our experiments, we found that applications containing task parallelism that
different tasks run different code are mainly from multimedia processing area.
Thus, we chose Intel CnC sample program FaceDetection, and Ogg Vorbis codec
libVorbis as representative cases.

FaceDetection. FaceDetection is an abstraction of a cascade face detector used
in the computer vision community. The face detector consists of three different
filters. As shown in Fig. 5(a), each filter rejects non-face images and lets face
images pass to the next layer of cascade. An image will be considered a face if
and only if all layers of the cascade classify it as a face. The corresponding TBB
flow graph is shown in Fig. 5(b). A join node is inserted to buffer all the boolean
values. In order to decide whether an image is a face, every boolean value corre-
sponding to that specific image is needed. Thus we configure the transformation
tool to use tag matching buffering policy in the join node. tag matching policy
creates an output tuple only when it has received messages at all the ports that
have matching keys.

The three filters take 99.9 % of sequential execution time. We use 20,000
images as input. The speedup of our transformed flow graph parallel version is
9.92× using 32 threads. To evaluate the scalability of the automatically trans-
formed code, we compare the speedups achieved by official Intel CnC (short
for“Concurrent Collections”) parallel version and our transformed TBB flow
graph version using different number of threads. The result is shown in Fig. 6.
The performance is comparable using two and four threads. When more than
eight threads are used, the official CnC parallel version outperforms ours. The
reason is that the official CnC parallel code is heavily optimized and restruc-
tured. For example, some data structures are altered from vector to CnC
item collection. As shown in Fig. 6, when using just one thread, the speedup
of official CnC parallel version is already 2× because of the optimization (Fig. 6).

LibVorbis. We also tested the encoder of LibVorbis, a reference implementation
of the Ogg Vorbis codec. In contrast to previous test cases, it contains a pipeline
pattern, which is a special case of task flow graph. Four function nodes are
constructed for the four-stage pipeline, and our automatic version achieved a
speedup of 2.41 with four threads. We got a lower speedup mainly because the
code transformation tool uses task flow graph to mimic pipeline, which is less
efficient than the specialized tbb::pipeline class. This test case enlightened us
to improve our code transformation component to support pipeline pattern. We
consider this task as a future work (Table 2).

580 Z. Li et al.

Filter 1

Filter 2

Filter 3

images

T

T

T

Face

Non-Face

Non-Face

Non-Face

(a) Work flow of FaceDetection

Broadcast
node

Filter
1

images

Join
node

Filter
2

Filter
3

(b) Flow graph

Fig. 5. Work flow of FaceDetection and the corresponding flow graph

1 2 4 8 16 32
0

5

10

15

20

thread

sp
ee

du
p

Official Manual CnC Parallelization

Semi-automatic TBB Parallelization

Fig. 6. FaceDetection speedups with different threads

Table 2. Summary of parallelization results for tasks executing different code.

Program Function % of time # of threads Speedup(auto) Speedup(manual)

FaceDetection facedetector 99.9 32 9.92 18.60

LibVorbis main (encoder) 100.0 4 2.41 3.62

5 Conclusion and Outlook

Many efforts have been made to find potential parallelism in sequential programs.
However, most of them focused on loop-based data parallelism. In this paper,
we propose a novel method that can identify parallel tasks—another promising
source of parallelism but harder to find because more irregular. We extract the

Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs 581

dependence graph dynamically from the program and subject it to several (sim-
plifying) transformations at the end of which the tasks emerge. The main idea of
this paper is the identification of computational units (CUs) and the localization
of strongly connected components (SCC) and chains as representations of poten-
tial tasks. While CUs hide dependences that are local to computations, SCCs
encapsulate complex dependences inside a task. The generated task graph is fur-
ther submitted to a code transformation component that translate the sequential
code into parallel TBB code. Experiment results showed that for both tasks exe-
cuting the same code and different code, reasonable speedup is secured. The
bottom line is that, we believe this work closes a gap in parallelism discov-
ery technology, which is especially important for the systematic parallelization
of larger general-purpose application portfolios, a challenge many organizations
are facing today.

In the future, we want to support further types of task parallelism includ-
ing, for example, TBB pipeline. Furthermore, we want to develop heuristics to
validate the automatically generated code before submitting them to the pro-
grammer, providing more accurate and reliable results.

References

1. Andersch, M., Juurlink, B., Chi, C.C.: A benchmark suite for evaluating parallel
programming models. In: Proceedings 24th Workshop on Parallel Systems and
Algorithms, PARS 2011, pp. 7–17 (2011)

2. August, D.I., Huang, J., Beard, S.R., Johnson, N.P., Jablin, T.B.: Automatically
exploiting cross-invocation parallelism using runtime information. In: Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and Opti-
mization, CGO 2013, pp. 1–11. IEEE Computer Society (2013)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63–73 (1991)

4. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton
University, January 2011

5. Ceng, J., Castrillon, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G.,
Meyr, H., Isshiki, T., Kunieda, H.: Maps: an integrated framework for mpsoc
application parallelization. In: Proceedings of the 45th Annual Design Automa-
tion Conference, DAC 2008, pp. 754–759. ACM (2008)

6. Garcia, S., Jeon, D., Louie, C.M., Taylor, M.B.: Kremlin: Rethinking and rebooting
gprof for the multicore age. In: Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2011, pp. 458–469.
ACM (2011)

7. Govindarajan, R., Anantpur, J.: Runtime dependence computation and execution
of loops on heterogeneous systems. In: Proceedings of the 2013 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2013, pp. 1–10.
IEEE Computer Society (2013)

8. Johnson, R.E.: Software development is program transformation. In: Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Research, FoSER
2010, pp. 177–180. ACM (2010)

582 Z. Li et al.

9. Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern Architectures:
A Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco
(2002)

10. Ketterlin, A., Clauss, P.: Profiling data-dependence to assist parallelization: frame-
work, scope, and optimization. In: Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 45, pp. 437–448. IEEE
Computer Society (2012)

11. Kim, M., Kim, H., Luk, C.K.: Prospector: discovering parallelism via dynamic
data-dependence profiling. In: Proceedings of the 2nd USENIX Workshop on Hot
Topics in Parallelism, HOTPAR 2010 (2010)

12. Kim, M., Kim, H., Luk, C.K.: SD3: A scalable approach to dynamic data-
dependence profiling. In: Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 43, pp. 535–546. IEEE Computer Soci-
ety (2010)

13. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analy-
sis & transformation. In: Proceedings of the 2nd International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion, CGO 2004, pp. 75–86. IEEE Computer Society, Washington(2004)

14. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: Proceedings of the 29th IEEE International Parallel &
Distributed Processing Symposium, IPDPS 2015, pp. 484–493 (2015)

15. Molitorisz, K., Schimmel, J., Otto, F.: Automatic parallelization using autofutures.
In: Pankratius, V., Philippsen, M. (eds.) MSEPT 2012. LNCS, vol. 7303, pp. 78–81.
Springer, Heidelberg (2012)

16. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic thread extraction with
decoupled software pipelining. In: Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 38, pp. 105–118. IEEE
Computer Society (2005)

17. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R.,
Lee, T.H., Lenharth, A., Manevich, R., Méndez-Lojo, M., Prountzos, D., Sui, X.:
The tao of parallelism in algorithms. SIGPLAN Not. 46(6), 12–25 (2011)

18. Reinders, J.: Intel Threading Building Blocks. O’Reilly Media, Sebastopol (2007)
19. Ye, J.M., Chen, T.: Exploring potential parallelism of sequential programs with

superblock reordering. In: Proceedings of the 2012 IEEE 14th International Con-
ference on High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems, HPCC 2012, pp.
9–16. IEEE Computer Society (2012)

20. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: A transparent dependence
distance profiling infrastructure. In: Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2009, pp.
47–58. IEEE Computer Society (2009)

	Beyond Data Parallelism: Identifying Parallel Tasks in Sequential Programs
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Extracting Data Dependences
	3.2 Identifying Computational Units
	3.3 Forming Tasks
	3.4 Automatic Code Transformation

	4 Evaluation
	4.1 Tasks Executing the Same Code
	4.2 Tasks Executing Different Code

	5 Conclusion and Outlook
	References

