
doi: 10.1016/j.procs.2015.05.320

Cube v4 : From performance report explorer to

performance analysis tool

Pavel Saviankou1, Michael Knobloch1, Anke Visser1, and Bernd Mohr1

Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre,

52425 Jülich, Germany

{p.saviankou,m.knobloch,a.visser,b.mohr}@fz-juelich.de

Abstract
Cube v3 has been a powerful tool to examine reports of the parallel performance tool Scalasca, but was

basically unable to perform analyses on its own. With Cube v4, we addressed several shortcomings of

Cube v3. We generalized the Cube data model, extended the list of supported data types, and allow

operations with nontrivial algebras, e.g. for performance models or statistical data. Additionally, we

introduced two major new features that greatly enhance the performance analysis features of Cube:

Derived metrics and GUI plugins. Derived metrics can be used to create and manipulate metrics directly

within the GUI, using a powerful domain-specific language called CubePL. Cube GUI plugins allow the

development of novel performance analysis techniques and visualizations based on Cube data without

changing the source code of the Cube GUI.

Keywords: Performance analysis, Call-tree profile, Derived metrics, DSL, GUI plugins

1 Motivation and Introduction
Performance analysis tools generate enormous amounts of data, especially for large-scale applications

running on several thousands of compute cores. One of the major challenges for the tools is to identify

and present the hot spots, i.e. the performance-critical parts of the program execution. So performance

analysis tools have to be versatile and feature-rich, but on the same time easily accessible to the user.

For several years, the Cube framework [4] provided the data format and graphical user interface

(GUI) for the performance analysis reports generated by Scalasca [5]. With the development of Score-P[7]

as a community measurement system and profiler for multiple tools, a new version of Cube, Cube v4,

was developed. This includes, among various tools and GUI improvements, a new file format. Cube v3
used a single XML file, which was replaced by a tar archive consisting of an XML meta data file and

several binary data and index files.

The set of tools distributed with the Cube v3 framework only covered basic operations on Cube

profiles and provided only limited data export and analysis capability. Due to its monolithic structure,

Cube was difficult to maintain and extend, especially by third-party developers who wanted to perform

novel types of analysis on Cube data.

Procedia Computer Science

Volume 51, 2015, Pages 1343–1352

ICCS 2015 International Conference On Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2015
c© The Authors. Published by Elsevier B.V.

1343

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.320&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.320&domain=pdf

To ease performance analysis with Cube, we added various improvements in Cube v4. We extended

the range of supported metric types, allow non-trivial data types for metrics and added non-trivial alge-

bra, which goes beyond simple addition and subtraction. Data types do not have to be a single numeric

value any more, but instead can be of a complex type, e.g. tuples of values, and might even be not

numeric at all, e.g. strings. We introduced derived metrics in order to allow users to perform more com-

plex performance analysis directly within Cube. To enable these, a powerful domain-specific language,

called CubePL, was developed and integrated into Cube.

The Cube v3 GUI offered little flexibility for presenting performance data other than showing trees

with aggregated values. In order to provide more flexibility in data presentation we changed Cube’s GUI

architecture from a monolithic model to a plugin based one. Multiple plugins are provided by us and

third parties. Users are also able to develop their own plugins to implement novel analysis techniques

and visualizations. We are confident that all these changes in the Cube framework remove a significant

number of drawbacks of Cube v3 and strengthen Cube as a powerful tool for performance data analysis.

The rest of this paper is organized as follows: In section 2 we outline the Cube framework and

highlight some changes in the transition from Cube v3 to Cube v4. The next two sections are devoted to

major enhancements in Cube v4. Cube’s derived metrics and CubePL are presented in detail in section 3.

Section 4 covers the Cube GUI plugin architecture and shows first examples of plugins. Related work

for derived metrics in tools is discussed in section 5. Finally, we conclude the paper and give an outlook

on future work in section 6.

2 Cube v4

Cube has been designed around a high-level data model of program behaviour called the Cube perfor-
mance space. The Cube performance space consists of three dimensions: a metric dimension, a program

dimension, and a system dimension. Each dimension of the performance space is organized in a hierar-

chy, as displayed in Figure 1. The usual operations while exploring Cube analysis reports are expanding

and collapsing sub-trees to get the exclusive or inclusive values for the selected metric. Furthermore,

the values shown in a pane are the aggregated values over the panes to its right.

The metric dimension contains a set of metrics, such as communication time or cache misses. This

dimension is organized in an inclusive hierarchy, where a metric at a lower level is a subset of its parent.

For example, communication time is a subset of execution time. The program dimension contains the

program’s call tree, which includes all the call paths onto which metric values can be mapped. The

system dimension is organized in a multi-level hierarchy consisting of multiple levels. In Cube v3 this

was the fixed set machine, node, process, and thread. Each point (m,c,s) of the performance space can

be mapped onto a number representing the actual measurement for metric m while the control flow of

process/thread s was executing call path c. This mapping is called the severity of the performance space.

This general data model is common for Cube v3 and Cube v4. However, we introduced several

improvements and new features to it in Cube v4, not all of them directly visible by the user.

In contrast to Cube v3, the data relationship in the call tree is not any more always exclusive, but can

vary from metric to metric, depending on its data density and algebraic properties. Now, it is possible

to store the metric data in an inclusive format, i.e. a value for a call path includes the contribution of

its sub-trees, or in an exclusive format, where every call path value corresponds to the call path itself,

without its sub-trees.

The system dimension in Cube v4 is organized in a more general manner - we do not restrict it to

the four levels mentioned above - but allow an arbitrary depth in the system description. Instead of the

fixed machine and node elements, Cube v4 defines a generic system tree node, which can be

anything from the whole machine down to a socket. Every system tree node can define location

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1344

Figure 1: Cube screenshot as example of the Cube data model. The left pane shows the metric dimen-

sion, the middle pane the call tree and the right pane the system dimension.

groups, which usually represents processes1. Each location group defines locations, which are

usually identical with execution threads. Every value within the Cube data model corresponds to one

specific location.

Cube v4 extends the range of supported data types, which goes beyond plain numeric data types

(integers, doubles, etc.), and now includes complex data types like scaling functions, histograms, or

tuples describing statistical data. Moreover, Cube v4 supports non-trivial algebra like min or max
operators for numeric data types. As mentioned above, Cube v4 allows to define data along the call tree

dimension in an exclusive or inclusive format. This directly influences the formula for the calculation

of the complementary value2. In the case of an exclusive metric, the corresponding calculation formula

uses only the aggregation operator ”+”. However, in the case of an inclusive metric, also the inverse

operator ”-” is used. Therefore, the data type plus the operator ”+” would build a monoid in first

case and a group in the second one, where operator ”-” indicates an inverse value. When using a

generalized operator ”+”, which does not have an inverse operator, the metric data has to be stored in

an exclusive format. For example, the operator max doesn’t have an inverse form, so it can be only

used with exclusive metrics. This aspect is especially important when redefining an operator ”+” in

the context of derived metrics. Another remarkable extension of Cube v4 is the possibility to define a

ghost metric, which does not appear in the GUI or tools. Such a metric can be used as a container

for raw measured data which is referred to in a derived metric, but has no meaning on its own.

1But can also be executions on a GPU or something similar.
2Inclusive value out of exclusive data, or exclusive value out of inclusive data

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1345

3 Cube Derived Metrics
One of the most remarkable features introduced with Cube v4 is the possibility to perform a data trans-

formation using so called derived metrics. With Cube v3, there were basically two ways to

transform the data stored in a Cube performance report:

1. Writing an application that reads the Cube file, retrieves the data out of it, calculates desired met-

rics and exports result in one or another format. Visualization or further analysis of the results is

then possible with additional tools like R or gnuplot. However, this usually required special-

ized tools which were not made available to the HPC community. Further, simultaneous analysis

of the result of this tool and the measurement data is difficult because of the missing connection

between the Cube GUI and the developed tool.

2. Another approach would be to extend the measurement system, record/calculate the desired met-

rics during the measurement, and store them next to the usual performance metrics, such as ex-
ecution time or function visits, within the Cube report. In Scalasca, we implemented a flexible

system for hardware counter metrics that way [11]. However, there are several drawbacks of this

approach. First, it is necessary to reconfigure and to rerun the whole measurement for every new

such ”derived” metric (although of course multiple metrics could be recorded in one run). Further,

not all metrics can actually be recorded during measurement or produce meaningful results when

performing standard operations in the Cube GUI, such as calculation of inclusive or exclusive

values of a call path by collapsing or expanding the corresponding sub tree.

The ideal approach would be the ability to extend an existing Cube profile by another metric, which

delivers a meaningful result for every operation within the GUI, even if it goes beyond trivial aggrega-

tion. Therefore, with Cube v4 we introduced so-called derived metrics. While Cube’s predefined

metrics are stored in the analysis report, the values of derived metrics are calculated on-the-fly when

necessary according to user-defined arithmetic expressions formulated using a domain-specific language

called CubePL (Cube Processing Language).

Derived metrics are also used by the Cube remapper, a tool for creation and proper nesting of a

metric hierarchy in Cube performance reports. Initially, the profiler and trace analyzer create a raw list

of metrics which is post-mortem processed by the Cube remapper. The user can configure the remapping

by using a specification file containing the desired metric hierarchy.

3.1 Aggregation vs. Calculation
The main challenge in the definition of a derived metric in this manner is to ensure that it produces a

meaningful result which doesn’t collide with the normal interpretation of the values while exploring the

measurement result in the Cube GUI. To demonstrate this aspect, let us assume that an application with

the following call tree was executed:

main
- foo
- bar

where main, foo and bar are function calls, with foo and bar being called from main. Further, assume

that the number of floating-point operations (FLOP) has been measured for every call path, as well as

the respective execution time. In this example, exclusive values are stored for every call path.

To calculate the floating-point operations per second (FLOPS) as a derived metric for every call

path, the naı̈ve approach would be to define a new metric FLOPS and calculate its values for every call

path using the formula FLOPc
timec

, where c is either main, foo, or bar, and store the resulting values as a

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1346

data metric within the corresponding Cube profile. With this approach, however, a problem arises when

the user would like to get an inclusive value of the metric FLOPS for the main call path. In this case,

the Cube GUI would sum up all values of the metric FLOPS for every region and therefore deliver the

result of the expression
FLOPmain

timemain
+

FLOPf oo

time f oo
+

FLOPbar

timebar
(1)

However, this expression is the sum of FLOPS of every region instead of the intended FLOPS of main.

So, the correct calculation would be

FLOPmain +FLOPf oo +FLOPbar

timemain + time f oo + timebar
(2)

which yields the desired floating-point operations per second for main. With the introduction of a

derived metric in Cube v4 it is possible to formulate metrics with the same or similar behaviour and

perform the analysis within the Cube GUI, thus preventing the drawbacks mentioned above.

Figure 2 shows Cube screenshots for the FLOPS metric defined by equation (2). Inclusive values for

FLOP and FLOPS are shown in Figures 2a and 2b, respectively. Figures 2c and 2d show the correspond-

ing exclusive values, i.e. the values for foo and bar. It clearly shows the difference of equations (1)

and (2). While the FLOP add up correctly, the FLOPS would not if equation 1 would be used.

(a) FLOP inclusive (b) FLOPS inclusive

(c) FLOP exclusive (d) FLOPS exclusive

Figure 2: Cube screenshots showing the FLOPS metric

As shown in the previous example, the calculation of the FLOP
time ratio should be performed as a last

step – after the aggregation of the corresponding metric values for FLOP and time is done. We call

this a postderived metric. In contrast, the case where the derived metric should be calculated before the

aggregation of the involved metrics is called a prederived metric. This leads to three kinds of derived

metrics within Cube:

Prederived metric - Its CubePL expression defines a value of a point in the Cube data model. This

metric behaves in the same manner as any native data metric. There are two kinds of such metrics,

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1347

inclusive prederived metrics and exclusive prederived metrics.

Postderived metric - calculation of a CubePL expression is performed after all aggregations of refer-

enced metrics are done. The example above should be formulated as a metric of this type.

3.2 Calculation Context
One of the most important things to consider when defining a derived metric in Cube is the calculation
context for this metric. As mentioned in section 2, Cubes GUI displays 3 the data in the metrics panel as

an aggregated value over the whole call tree and over the whole system tree. Thus, every value shown

in the metric pane does not depend on a specific call path or system location, but only on one parameter,

the metric being displayed. Analogous, the values in central pane are aggregated values over the whole

system tree for a selected metric. So those values depend on two parameters, the selected metric and

the call path being displayed. Finally, the values in most right panel are discrete. It means, for every

value all three coordinates are defined: the selected metric, the selected call path, and the location in the

system tree. Further, there is the question whether an inclusive or an exclusive value is being calculated.

All these points define the context of the calculation.

3.3 CubePL
CubePL is a powerful domain-specific language to operate on Cube data. The basic syntax of CubePL
is similar to many modern programming languages. It offers function calls, local and global vari-

ables and constants as well as the usual control flow statements. But its true power comes from

the domain-specific functionality. CubePL defines special variables to interact with Cube data ob-

jects. First, there are reserved variables, which CubePL initializes during the creation of a Cube

object. Examples are ${cube::#metrics} or ${cube::filename}. These variables have a

global scope. Further, there are automatic variables, which are defined during every step of the

calculation and contain information about the current calculation context. For example the variable

${calculation::callpath::id} holds a numerical ID of the current call path. These vari-

ables have a local scope. This allows CubePL to use the value of other metrics of the Cube report in a

CubePL expression. For this propose one uses a construction metric::name(A,B) where name is

the unique name of the metric, and A and B are calculation context modifiers. A is a context modifier

for the call tree and B is a context modifier for the system tree. There are three possible values for

the context modifiers: i – enforces an inclusive evaluation, e – enforces exclusive evaluation and *
– evaluation depends on state of call tree, i.e inclusive if collapsed and exclusive if expanded. These

context modifiers can be omitted, in this case they default to *. For a detailed list of all possible calls

and statements we are referring to [10].

To enhance the computational power of CubePL expressions, we introduced parameterless
defined-in-place, or lambda function, calls. Listing 1 shows the basic syntax of such functions:

{
[s t a t e m e n t 1] ;

[s t a t e m e n t 2] ;

. . . .

[s t a t e m e n t N] ;

r e t u r n [e x p r e s s i o n] ;

}

Listing 1: CubePL syntax for lambda functions

3In case Cube GUI shows the default configuration: the left pane displays the metric tree, central pane displays the call tree

and the most right pane displays the system tree, see Figure 1

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1348

where expression yields the value of this function call. Usually, this is a value of a variable,

which has been calculated in the sequence of statements 1 to N. Statements in the lambda function can

be control flow constructs, loops, and memory assignments. An example of a lambda function is shown

in Listing 2.

3.4 Examples
Here we give some examples of derived metrics, which might be useful for the performance analysis:

• The FLOPS metric presented above is a postderived metric with the CubePL expression

metric::flop()/metric::time()

Here we use the default evaluation which yields the results shown in Figure 2. Several hardware

counter related metrics, like IPC (cycles per instruction) or similar, can be defined in the same

manner.

• Another useful metric which calculates the average execution time per visit of a function is a

postderived metric with the CubePL expression

metric::time(i)/metric::visits(e)

Here we use inclusive evaluation for the metric time and exclusive evaluation for metric visits.

This means, it always shows the time including all functions called within the selected call path.

It is possible to use derived metrics to classify call paths and formulate metrics which represent only

a part of another metric. Derived metrics of this kind are, for example, used in the Cube remapper.

Listing 2 shows an example of an exclusive prederived metric, which gathers the time spent in the

regions beginning on ”!$omp ordered @”

{
${a }=0;

${ r e g i o n i d } = ${ cube : : c a l l p a t h : : c a l l e e i d } [${ i }] ;

i f (${ cube : : r e g i o n : : name} [${ r e g i o n i d }] = ˜ / ˆ ! \ $omp o r d e r e d \s@ /)

{ ${a}= m e t r i c : : t ime () ; }
e l s e

{ ${a }=0; } ;

r e t u r n ${a } ;

}

Listing 2: CubePL expression to determine the time spend in !$omp ordered

4 Cube GUI Plugins
Cube v4 (starting with version 4.3) provides a plugin interface for the Cube GUI. This interface allows

the development of external tools for data representation and analysis, which are integrated into the

Cube GUI. As no modification of the Cube source code is required, it’s easy to develop and distribute

new tools as plugins, independent of Cube’s release schedule. Cube provides two different kinds of

plugins:

• plugins that derive from the CubePlugin class depend on a loaded Cube file in the GUI. They

can react on user actions, e.g. tree item selection, and may insert a context menu or add a new tab

next to the tree views.

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1349

• plugins that derive from the ContextFreeplugin class are only active if no Cube file is

loaded. These plugins create or modify Cube objects which can be loaded and displayed. That

way the Cube command line tools – like cube merge or cube diff – can be integrated in the

GUI.

Listing 3 shows a minimal example of a plugin definition. The function treeItemIsSelected
connects this plugin with an user’s action within the Cube Core GUI and allows the plugin to react on

it. For further details we are referring to the Cube Plugin Development Guide [9]

c l a s s SimpleExample : p u b l i c QObject , CubePlug in

{
Q OBJECT

Q INTERFACES (CubePlug in)

i f QT VERSION >= 0 x050000

Q PLUGIN METADATA(IID ” ExampleP lug in ”) / / u n iq u e p l u g i n name
e n d i f
p u b l i c :

/ / CubePlugin i m p l e m e n t a t i o n
v i r t u a l bool cubeOpened (p l u g i n S e r v i c e s ∗ s e r v i c e) ;

v i r t u a l vo id cubeClosed () ;

v i r t u a l Q S t r i n g name () c o n s t ;

v i r t u a l vo id v e r s i o n (i n t& major , i n t& minor , i n t& b u g f i x) c o n s t ;

v i r t u a l Q S t r i n g g e t H e l p T e x t () c o n s t ;

p r i v a t e s l o t s :

void t r e e I t e m I s S e l e c t e d (TreeType type , T r e e I t e m ∗ i t em) ;

p r i v a t e :

p l u g i n S e r v i c e s ∗ s e r v i c e ;

} ;

Listing 3: Basic Cube Plugin Structure

Several parts of the Cube GUI itself have been reimplemented as plugins, for example the topology

and statistics views. Besides that, a wide range of different Cube plugins have already been developed

that extend its functionality, or offers completely new analysis features. Some examples are:

• Barplot and Heatmap: These plugins work on special callpaths representing loop iterations.

They show the dynamic behaviour of a loop as a barplot, applying one of the defined operations

(min, max, avg), or present the data for locations and iterations as a colormap.

• Callgraphplugin: Uses Graphviz to generate a dependency graph for a selected metric.

• Vampir [6] and Paraver [8] connector: integrates Cube v4 with these applications, for example

to show the most severe instance of a performance problem in the timeline displays of these tools.

• ScalingBehaviourExploration, PerformanceModeling, and HotspotHighlighting: These plu-

gins work on Cube files containing performance models, generated by ”Extra-P” [3]. The Scal-

ingBehaviourExploration plugin, shown in Figure 3, allows the detailed exploration and study of

the scaling behaviour of a callpath, the HotspotHighlighting plugin evaluates the severity of the

scaling behaviour of a callpath and highlights it in the Cube GUI. The PerformanceModelling

plugin allows the interactive remodelling of the scaling models within Cube.

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1350

Figure 3: Cube screenshot showing the ScalingBehaviourExploration plugin. It also shows Cubes han-

dling of performance models, i.e. scaling functions, as data types.

5 Related Work
Other performance analysis tools like ParaProf [2], Paraver [8], and Vampir [6] provide derived metrics

for some time already. They typically allow to define simple arithmetic expressions build out of con-

stants and already defined metrics. Paraver also provides powerful filtering and masking functions. The

capabilities and features of CubePL go beyond this simple form of derived metrics. Due to the hier-

archical analysis and visualization of performance data inside Cube, much more complex operations –

which exceed simple arithmetic – and definitions are needed as explained in detail in Section 3.1. The

usage of CubePL by the Cube remapper further requires possibilities to classify and filter metrics or

metric data, which can also be benefitial for user-defined analyses.

6 Conclusion & Future Work
In this paper we presented the transition of the Cube framework from version 3 to version 4, which

not only brought a new file format, but also several improvements in the GUI. We presented Cube
derived metrics and GUI plugins and have shown how these features enhance the analysis capabilities

of Cube. We will emphasize these new features in upcoming instances of our various bring-your-own-

code tuning workshops, for example in the VI-HPS context [1], to increase awareness among our users

and get feedback. We are looking into ways to provide a common repository for Cube plugins to collect

and distribute both our own and third-party developed plugins.

Despite being an actively used software framework, the Cube framework is under constant develop-

ment to implement new features requested by users, and to fix bugs found by our rigorous testing and

by our user community. One of the main features that are currently under development is a client-server

architecture for Cube. This will have many benefits: it will increase the scalability of the Cube GUI, it

reduces the need to copy large Cube files to the users’ own system and it will allow the creation of new

front-ends, for example for mobile systems.

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1351

Acknowledgements
The research leading to these results has received funding from the European Community’s Seventh

Framework Programme [FP7/2007-2013] under the Mont-Blanc 2 Project (www.montblanc-project.eu),

grant agreement 610402 and the German DFG Priority Programme 1648 ”Software for Exascale Com-

puting” (SPPEXA) under the Catwalk project. The authors would like to use this opportunity to thank

the Scalasca and Score-P development teams for many fruitful discussions and remarks.

References
[1] VI-HPS Tuning Workshops web page. http://www.vi-hps.org/training/tws/.

[2] Robert Bell, Allen D Malony, and Sameer Shende. Paraprof: A portable, extensible, and scalable tool for

parallel performance profile analysis. In Euro-Par 2003 Parallel Processing, pages 17–26. Springer, 2003.

[3] Alexandru Calotoiu, Torsten Hoefler, Marius Poke, and Felix Wolf. Using automated performance modeling

to find scalability bugs in complex codes. In Proc. of the ACM/IEEE Conference on Supercomputing (SC13),
Denver, CO, USA, pages 1–12. ACM, November 2013.

[4] Markus Geimer, Björn Kuhlmann, Farzona Pulatova, Felix Wolf, and Brian J. N. Wylie. Scalable collation and

presentation of call-path profile data with CUBE. In Proc. of the Conference on Parallel Computing (ParCo),
Aachen/Jülich, Germany, pages 645–652, September 2007. Minisymposium Scalability and Usability of HPC
Programming Tools.

[5] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd Mohr. The Scalasca
performance toolset architecture. Concurrency and Computation: Practice and Experience, 22(6):702–719,

April 2010.

[6] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mickler,

Matthias S. Müller, and Wolfgang E. Nagel. The Vampir performance analysis toolset. In Tools for High
Performance Computing (Proc. of the 2nd Parallel Tools Workshop, July 2008, Stuttgart, Germany), pages

139–155. Springer, July 2008.

[7] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic Eschweiler,

Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D. Malony, Wolfgang E. Nagel, Yury Oleynik, Peter

Philippen, Pavel Saviankou, Dirk Schmidl, Sameer S. Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg,

and Felix Wolf. Score-P – A joint performance measurement run-time infrastructure for Periscope, Scalasca,

TAU, and Vampir. In Proc. 5th Parallel Tools Workshop (Dresden, Germany), pages 79–91. Springer, Septem-

ber 2012.

[8] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A tool to visualize and analyze parallel

code. In Proceedings of WoTUG-18: Transputer and occam Developments, volume 44, pages 17–31, 1995.

[9] The Scalasca Development Team. CUBE 4.3.0 – Cube GUI Plugin Developer Guide. Distributed with the

Cube framework.

[10] The Scalasca Development Team. Cube Derived Metrics. Distributed with the Cube framework.

[11] Brian J. N. Wylie, Bernd Mohr, and Felix Wolf. Holistic hardware counter performance analysis of paral-

lel programs. In Proc. of the Conference on Parallel Computing (ParCo), Malaga, Spain, pages 187–194,

September 2005.

Cube v4 P. Saviankou, M. Knobloch, A. Visser, B. Mohr

1352

