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Abstract—Communication patterns extracted from parallel
programs can provide a valuable source of information for
parallel pattern detection, application auto-tuning, and runtime
workload scheduling on heterogeneous systems. Once identi-
fied, such patterns can help find the most promising optimiza-
tions. Communication patterns can be detected using different
methods, including sandbox simulation, memory profiling, and
hardware counter analysis. However, these analyses usually
suffer from high runtime and memory overhead, necessitating
a tradeoff between accuracy and resource consumption. More
importantly, none of the existing methods exploit fine-grained
communication patterns on the level of individual code regions.
In this paper, we present an efficient tool based on DiscoPoP
profiler that characterizes the communication pattern of every
hotspot in a shared-memory application. With the aid of static
and dynamic code analysis, it produces a nested structure of
communication patterns based on program’s loops. By em-
ploying asymmetric signature memory, the runtime overhead
is around 225× while the required amount of memory remains
fixed. In comparison with other profilers, the proposed method
is efficient enough to be used with real world applications.

Keywords-nested communication pattern; program analysis;
thread dependency; profiler; parallel application;

I. INTRODUCTION

In the past few years multi-core processors have emerged

rapidly to address the shortcomings of single-core proces-

sors. Nowadays, these processors are also being replaced

by heterogeneous system architectures (HSA) due to power

limits and dark silicon phenomena [1]. In any case, paral-

lel programming is a must to fully utilize the computing

resources of these architectures. Although various parallel

programming models and parallelization algorithms have

been introduced to make software parallelization easier, the

programmers still do not have necessary insight about their

softwares being developed to decide about optimization [2].

More importantly, future systems require full collaboration

of hardwares and softwares to achieve maximum perfor-

mance regarding both runtime and power consumption.

Understanding communication behavior and characteristics

of the underlying performance bottlenecks could be a great

hint [3], [4].

One of the promising ways to characterize the appli-

cation’s workload is to identify their inherent communi-

cation patterns. These patterns can be used to detect the

communication behavior of the target parallel program and

also detect the relevant computational pattern [5]. Since,

each pattern has a unique communication topology between

each processor/thread [6] which helps us to discern them

quickly and apply relevant optimizations. Although there

are various methods already introduced to extract commu-

nication patterns, they are mainly designed for distributed-

memory applications while detecting only a single pattern

and neglecting dynamic behavior of the target program.

Because, they mainly produce a communication pattern for

the whole program execution. Additionally, they often suffer

from heavy memory usage and high runtime. For instance,

runtime overhead is between 80× ∼ 400× and analysis of

bzip with an input that requires 25 MB consumes more than

10GB of memory [7] with state-of-the-art approaches. This

points out that these methods could not be used for on-the-fly

pattern detection. Therefore, considering the important role

of patterns in software optimization and workload distribu-

tion in HSA platforms, detecting communication patterns

with maximum accuracy and efficiency has remained a

challenge.

In this paper, we present a tool for automatically extract-

ing multiple communication patterns inside shared-memory

applications based on DiscoPoP profiler[8], [9]. Detecting

these patterns in shared-memory programs is far different

than distributed-memory applications. There is no explicit

way (e.g. MPI calls) to detect communications in shared-

memory systems and there are additional levels of irreg-

ularities and complexities to data communication between

processing cores [4]. We have addressed this issue by ex-

tending DiscoPoP to act as an inter-thread data dependency

profiler which maintains runtime and memory consumption

overhead. Furthermore, our method is able to detect multiple

communication patterns in hotspots of the target program

and create a multi-layer communication matrix.

We experimentally validate our approach against pro-

grams in SPLASH [10] benchmark suite. We follow six

important properties proposed by E. Cruz et al. [11] for eval-

uating the applicability of the proposed profiler. Based on

these properties a comparison between various dependency
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profilers is provided.

The following items summarize the main contributions of

this paper:

• Creating an efficient dynamic inter-thread dependency

profiler specifically for shared-memory programs based

on DiscoPoP.
• Producing multi-layer communication matrix for

hotspot loops.
• Devising a new data structure called “Asymmetric Sig-

nature Memory” for recording memory accesses and

controlling memory footprint of the profiler.
• Deriving a communication metric named “thread load”

for expressing hotspots’ efficiency rate quantitatively.

The remainder of this paper is organized as follows:

First, a concise review of related works will be presented

in Section II. Then, in the next section, we explain the

concept behind communication in shared-memory systems

and DiscoPoP profiler. In Section IV the main approach

will be proposed. Afterwards, an experimental evaluation

of our method follows in Section V. Application of the

proposed method will be discussed in Section VI and finally,

we conclude the paper and discuss possible extensions in

Section VII.

II. RELATED WORKS

Methods to deliver parallel application characteristics

analysis and communication pattern detection can be divided

into three categories: Simulation-based and log analysis,

Code instrumentation, and Hardware counters measurement.

Simulation-based analysis projects try to log and record

every change in the system while the program is running.

They do this by either running the application in a controlled

sandbox (e.g. by using Virtutech’s Simics simulator [12])

with many software probes attached to record the changes.

Or, by using debugging helper libraries available in parallel

programming frameworks (e.g. IPM [13] in MPI). Papers

[4], [14] follow the former approach to trace memory

accesses in order to analyze the pattern of communication.

Paper [4] clearly shows that communication patterns could

be clearly identified in shared-memory programs. However,

despite compressing the analysis results, it produces extra

large output files more than 100GB for a moderate program

input size [4]. Papers [6], [15], [16], [17], [13] follow the

latter approach and utilize IPM [18] to collect MPI com-

munications between processors. These efforts are mainly

designed for distributed-memory applications and do not

take shared-memory systems’ characteristics into account.

Additionally, since every one of them utilizes IPM, they have

high memory overhead since it uses 128-bit signature size

for each MPI call. Therefore, beside having high execution

runtime, they do not seem fit for on-the-fly analysis. Finally,

there is no way to detect multiple and nested patterns inside

parallel program using the above methods.

Code instrumentation based methods work by inserting

instrumentation function before every target instruction in

the program to extract runtime information. Projects which

have used this approach mainly employ instrumentation

tools like LLVM, Intel Pin, DynamoRIO and Valgrind.

DiscoPoP falls into this category, since it uses LLVM

instrumentation to analyze thread dependencies. In [19],

workloads of PARSEC benchmark suite have been analyzed

with Intel Pin. Another project called MACPO [20] uses

LLVM to instrument program source code and analyze its

data structures. CYPRESS [21] on the other hand tries

to find MPI communication traces while compressing to

reduce overhead. Helgrind [22] and Helgrind+ [23], [24]

are Valgrind based tools to detect synchronization errors.

They utilize shadow memory approach with 32 and 64

bits shadow values, respectively. SD3 [7] is another profiler

for data dependency analysis of sequential programs which

reduces space overhead of tracing memory accesses by

compressing strided accesses using a finite state machine.

We have compared DiscoPoP to this profiler, since the basic

concepts are the same and it finds dependencies in loops.

Hardware performance counter measurement approaches

[25], [26], [27], [28] monitor the performance counters

available in the underlying hardware to collect required

information. They have much less overhead in comparison

with the previous methods. As a result they are more suit-

able for making on-the-fly communication pattern detection

approach with the cost of impreciseness. This technique

can only estimate thread communications indirectly and

therefore leads to inaccurate result [11]. A replacement

approach to overcome with this issue is using translation

look-aside buffers [11]. Although this approach could only

be used for thread migration in shared-memory systems,

it could be a great start point for future researches. This

approach also needs some tweaks in operating system kernel

which makes it hard to use on every system.

III. BACKGROUND

A. Communication in Shared Memory Architecture

There are various researches [6], [17], [13], [16], [29],

[30], [15] which are focused on finding communication

patterns in distributed memory applications using MPI and

IPM [18] libraries. IPM provides a straightforward approach

for collecting explicit MPI call logs to extract communica-

tion patterns. However, the amount of research on shared

memory systems are far less and need extra effort to fill

the gaps. Shared memory systems have fundamental differ-

ences in comparison with distributed memory system which

demand special attention to attain best performing parallel

applications. New parallelization models for shared mem-

ory architectures imply different communication patterns

[4] as we compared with distributed memory applications.

Therefore, a new study is required to accurately determine

the communication behavior on this architecture. Besides,
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shared memory applications bring additional irregularity and

complexity to data sharing and are entirely dependent on

efficient communication performance between processors

[4]. This irregularity impose additional difficulty on finding

the communication pattern, which is implicit and occurs

through memory accesses [14]. It happens automatically

when one worker writes a value and another one reads it.

Communication time between the tasks may be different

depending on which core they are executing and the way

memory hierarchy and interconnection are used. The prob-

lem is even more important in multi-core machines with

NUMA characteristics, since the remote access imposes high

overhead, making them more sensitive to thread and data

mapping [14]. Detecting automatically a communication

phase allows for decreasing frequency and voltage of the

processor which leads to reducing power consumption by

30% [26]. Therefore, finding the communication patterns

inside parallel programs could be a great source of help

for optimizing both the program’s performance and power

consumption. For instance, exploiting communication pat-

terns can improve performance by mapping threads that

communicate a lot to nearby cores on the memory hierarchy.

This way, there is less replication of data in different caches.

The caches can be used more efficiently, and the number

of cache misses is reduced [11]. This can also immensely

affect the runtime performance of heterogeneous processors.

Since, these architectures hugely rely on managed workload

distribution among different processing cores.

B. DiscoPoP Dependency Profiler

DiscoPoP is a dependency profiler mainly designed for

detecting dependencies inside sequential and multi-threaded

programs. It detects write-after-read (WAR), read-after-write

(RAW) and read-after-read (RAR) dependencies among pro-

gram’s instructions with the aid of instrumentation tech-

nique using LLVM [31]. The main issue regarding software

profiling is runtime overhead and memory consumption

which prevents them from being used widely. However,

DiscoPoP has succeeded to overcome with this challenge

by employing software signatures for recording memory

accesses history. Therefore, profiling programs with less

than 500MB of memory and 86× average slowdown has

been made possible. A great feature about DiscoPoP is

that its components can be easily extended to add required

functionalities. In this paper, we have used this feature to

implement our communication pattern detection based on

this profiler.

IV. INTER-THREAD DEPENDENCY PROFILER

A. Architecture

Figure 1 demonstrates the proposed architecture for creat-

ing the inter-thread dependency profiler based on DiscoPoP.

Highlighted sections show the modules that we extended or

added to DiscoPoP. The input for the analysis is the target

Output Application

Instrumentation

Linker & Compiler

C
om

pile tim
e

R
un tim

e

Source Code
(Analysis Required)

Source Code
(Plain)

Static Analysis
(Loop Annotation)

Instrumented Source

Instrumentation
Library

Thread 
Pool

Communication Pattern Detection

RAW 
Pattern 

Detection

Asymmetric Software Signature

Read Signature

Write Signature

Figure 1. Architecture of the proposed method. Highlighted sections shows
the extended modules in DiscoPoP.

parallel program. The source code could be decomposed

by user into two pieces: code that has to be analyzed

and code that should not be analyzed. This can lead to a

significant speedup of the analysis, due to the elimination

of unnecessary analysis. The part which should be analyzed

is statically instrumented. In the next step the instrumented

program is linked with the instrumentation libraries which

contains the instrumentation functions and the part of the

program under test that should not be analyzed. The result is

an executable program along with a communication pattern

detection module which then can be executed natively on

the processor. In the following sections, we will introduce

each component one by one, following the processing flow.

B. Static Analysis

In order to produce nested structure of communication

matrices in potential hotspots of the target program, we

have devised a simple static analysis module. It analyzes

the program and annotates each loop with a unique identifier

(UID) using LLVM metadata nodes as depicted in Listing

1. If the instrumented memory access is inside a loop, the

UID of the parent loop is fed into the pattern detection for

further analysis.

1 LLVMContext& C = I->getContext();
2 MDNode* N = MDNode::get(C, ConstantInt::get(Int32,

loopUIDS++));
3 L->getHeader()->getFirstNonPHI()->setMetadata("loop.md

.peID", N);
4 currLoopID = L->getHeader()->getFirstNonPHI()->

getMetadata("loop.md.peID")->getOperand(0);

Listing 1. Loop annotation with LLVM

C. Instrumentation

In order to determine the communication pattern, the in-

strumentation approach has been utilized. There are various
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Figure 2. Communicating accesses and memory access ordering for
sharing patterns on a single memory location.

ways and frameworks available for instrumenting programs

and capturing inter-thread data dependencies. The follow-

ing items are the reasons behind choosing compiler-based

instrumentation over simulation, binary instrumentation and

hardware counter analysis:

• Compile-time instrumentation provides greater and eas-

ier control over the instrumentation process with the

aid of Intermediate representation (IR). For instance,

only specific functions, operations or data structures

could be selected for instrumentation. In contrast, other

methods suffer from this functionality and unable to

detect loop structures, boundaries and data structure-

related operations [20].

• Compile-time instrumentation enables us to provide

on-the-fly analysis feature. Although it degrades the

runtime performance by at least 80× ∼ 100×, it still

outperforms hardware analysis approach with regard to

accuracy. Clearly, simulation method could not provide

on-the-fly analysis.

• Binary output generated from compile-time instrumen-

tation could run natively on the target architecture

utilizing the hardware specific optimizations. While,

simulators may not be comprehensive enough to have

all features of high-end processors. [20].

Code instrumentation is necessary to access most of the

information, required by later performed dynamic analysis

in most accurate manner. The input of the pattern detection

is memory access operations. We have changed the instru-

mentation module in DiscoPoP to instrument each memory

access with its access type, memory address, function name,

variable size, current Loop ID and parent Loop ID.

D. Communication Pattern Detection

From threads sharing adjacency matrix which is called

communication matrix in the rest of this paper, we calculate

certain reduced quantities that describe the communication

pattern at a coarse level. Communication matrix is a n× n
adjacency matrix while n is the number of threads available

in the program. It defines the volume of data dependencies

among the threads while the program is running.

1) Communicating Memory Accesses: Due to implicit

communication behavior of shared memory applications, a

standard approach should be devised for identifying implicit

communications between software’s threads. This approach

should avoid redundant memory accesses which often maybe

viewed as communicative accesses. In order to determine

which words in memory are shared among threads, we

inspired from the concept proposed in [4]. A word in

memory is defined as shared among threads if it is writ-

ten to or read from by more than one threads while the

program is executing. However, not every reads and writes

to such a shared region are actually used to communicate

data. Figure 2 illustrates an example of accessing to one

memory location while discerning communicating and non-

communicating memory access. Communicating accesses

are shown in black, while non-communicating accesses are

shown in gray.

2) Asymmetric Signature Algorithm: In order to detect

communication among threads, an efficient algorithm and

data structure should be utilized. Otherwise, in case of using

pairwise dependence checking, the overhead of analysis

would be very unbearable. Clearly, inter-thread data depen-

dencies can be viewed as data conflict since a dependence

exists only when the same memory location is accessed

several times in a particular order by more than one thread.

Based on this fact, we have employed a modified signature

algorithm called asymmetric software signature which deter-

mines conflicts between two sets: set of read accesses and

set of write accesses. A software signature is a data structure

that we borrowed from transactional memory systems. It

provides approximate representation of an unbounded set

of elements with a bounded amount of state [32]. This

data structure is based on hash functions and can access

its elements in O(1). Additionally, the memory overhead is

constrained to a fixed value while its size can be adjusted

by the user, which makes it suitable for different situations.

In other words, the false positive rate could be controlled by

changing signature size.

Our solution consists of two signature memories: Two-

level signature memory is designed for “Read Signature”

because we need to store the list of all threads which have

accessed to the correspondent memory location. It uses a

fixed-length array of size n, where n is the signature size,

in combination with an efficient MurmurHash [33] function

that maps memory addresses to array indexes. We opted for

this hash function because it has much lower time complex-

ity while having less collisions in comparison with other

hash functions. The first-level array stores the pointers to

the second-level arrays which are actually bloom filters. The

bloom filter [34] is a simple and space efficient probabilistic

data structure for recording and representing a set of data in

order to support rapid membership queries. In our case, it

has been used to save the list of threads which accessed

the same memory address. Figure 3(a) demonstrates the

proposed two-level signature approach. Memory location

address hashes to an element in the first array. If the element

is empty, a pointer to the second array will be allocated

and points to the new bloom filter. The size of signature

elements and bloom filters are adjustable by the programmer,
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Figure 3. Proposed signature memory architecture. (a) Read signature uses
two-level approach, (b) Write signature uses regular signature memory.

so that it can be optimized for a particular program under

test. However, the bloom filter has been designed in a way

that its size does not need to be adjusted manually. The

bloom filter uses a bit vector of size m, where m depends on

the number of threads available in the target program. Also

a linear combination of hash functions has been devised to

automatically adjust the number of hash functions according

to the false positive rate required by the user. Since the

number of elements going to be inserted to the bloom filter

is limited to the number of threads which may access the

same memory location, it is guaranteed that the false positive

rate does not go beyond the threshold limit.

On the other hand, one-level signature memory tries to

only store source thread numbers and is used for repre-

senting “Write Signature”. In every situation, the values

stored in the elements of this signature represent the last

thread number which accessed the relevant memory location.

Figure 3(b) shows the one-level signature.

The most challenging problem with signature memories

is the collision issue. Defining a small signature size could

lead to numerous collisions (h(v1) = x and h(v2) = x with

v1 �= v2). This will then produce inter-thread dependencies

that do not actually exist (a.k.a. false positive). It is obvious

that the accuracy of the algorithm decreases when the size

of the signature decreases. Hence, the size of the signature

is a trade-off between memory consumption and accuracy.

3) RAW Pattern Detection: Although DiscoPoP already

detect various kinds of dependencies, we only need RAW de-

pendency for extracting communication pattern. Moreover,

due to using specific signature memory, we have modified

RAW dependency algorithm inside DiscoPoP to comply

with our asymmetric signature memory. The pseudocode

for detecting dependences among threads with signature

memories proposed in this paper is demonstrated in Algo-

rithm 1. This algorithm should process memory accesses in

temporal order to detect thread dependencies and it should

be performed by different threads concurrently in order to

enable the parallel analysis. In order to provide parallelism,

we use the same threads in the program. Whenever a thread

tries to access a memory, it also adds the information

Algorithm 1 RAW thread-dependence using asymmetric

signature memory.

for all memory access a in the program do
if Type(a) is read access then

if a in write signature then
if a not in read signature & lastWrite.tid �= a.tid
then

add RAW dependency to comm. matrix;

end if
else {a not in write signature}

insert a to read signature;

end if
else {a is write access}

clear correspondent bloom filter in read signature;

insert a to write signature;

end if
end for

of its access being performed to the signature memories.

Therefore, the dependencies will be identified as the program

is running without any need to any extra threads. This simple

approach will increase the performance hugely and also

reduce the difficulty of implementation. However, special

care is required because the signature memory is completely

shared with all of the target program’s threads. Hence,

there is a high risk of contention between threads. We

have used C++11 lock-free primitives for implementing

signature memory arrays to ensure preventing data race

among threads.

E. Extracting Quantitative Metric

We found out that extra valuable metrics could be ex-

ploited from communication patterns to quantitatively ex-

press performance and bottlenecks of each code region. This

feature could be directly fed into an auto-tuner program in

order to automatically tune the correspondent parameters

and increase the overall runtime performance. One of the

sources of bottlenecks in a parallel program could be uneven

distribution of workload among threads. However, if this is

inevitable, by placing threads on a same socket by thread

affinity method, one can diminish this effects [11]. We can

transform communication matrices into a simple vector to

quantitatively express the overhead of communication on

each thread. Equation 1 is a simple example for this mean.

The numerator denotes total bytes of communication for

threadi which can be computed by summing all values on

that thread’s row in communication matrix. threads count
is total number of threads available in the program.

threadLoadi =
sum(dataCommunicationInBytesi)

threads count
(1)
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Table I
COMPARING DISCOPOP AND OTHER WELL-KNOWN PROFILERS BASED ON THE SIX PROPERTIES PROPOSED BY CRUZ ET AL. [11]

Criteria DiscoPoP TLB [11] IPM [18] SD3 [7]
Real-time detection Yes Yes No Full support

Memory overhead Fixed small memory,
adjustable by user

N/A Variable, large output
(gigabytes)

Variable memory based
on the input size

Runtime overhead (Average) 225× w/o considerable overhead N/A 29x - 289x (Depend on
the threads count)

Communication Pattern Accuracy Precise∗ Approximate Precise N/A

Dynamic behavior Yes Partial No No

Resiliency to FP communication Yes Yes N/A Yes

Implementation independence Depend on LLVM HW architecture
dependent

Just MPI applications Depend on LLVM

∗ In case of having enough signature slots available.

V. EXPERIMENTAL RESULTS

We conducted a range of experiments to measure the

applicability and accuracy of the proposed method. First of

all we verified the correctness of communication patterns

produced by DiscoPoP on all SPLASH benchmark applica-

tions. Afterwards, we analyzed the profiler itself. The testbed

is a server with 2x 8-core Intel Xeon E5-2680 processors

with 64 GB memory, running 64-bit CentOS 6.5. All test

programs are based on SPLASH [10] parallel benchmark

suite. They were instrumented by LLVM 3.5 and compiled

with option -g -O2 using Clang 3.4. We have used various

input sizes to consolidate the applicability of our idea. It

should be noted that all instrumented programs are set to

use FPRate (False positive rate of bloom filter) of 0.001

to obtain accurate results.

A. Profiler Evaluation

E. Cruz, et al. [11] proposed six properties which need to

be addressed for every profiler working on finding communi-

cation patterns to be suitable for a real-world environment.

In table I our enhanced DiscoPoP profiler has been com-

pared with other profilers based on these six properties. It

should be noted that, even though DiscoPoP involves false

dependencies, its rate can be easily controlled by the user.

Having constrained memory consumption and reasonable

runtime overhead while getting full insight about dynamic

communication phase transition of the target program is a

big advantage compared with other methods. In the follow-

ing, these properties will be discussed in details.

1) Communication Pattern Detection During Execution:
Many previous approaches [4], [14], [16], [17], [29], [30]

rely on finding the communication pattern in a phase before

the actual execution of the workload, for example by using

program simulation and sandboxing. This is very time-

consuming and potentially takes a lot of storage space to

store intermediate data, such as memory traces. However,

DiscoPoP is able to detect nested communication patterns
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Figure 4. Slowdown of the DiscoPoP on Splash benchmark applications
(simdev input size)

while the program is already running without requiring any

post-mortem analysis phase.

2) Runtime Performance Impact: Mainly, performance

impact of any profiler is assessed with its runtime and

memory overhead. Any real-world profiler should have a

low overhead both runtime and memory-wise in order to not

interfere with normal execution procedure of the target appli-

cation. Previous approaches [4], [17], [14], [29] which fall

into simulation and code instrumentation approaches have

critical problems with performance. They mainly suffer from

high memory consumption which in some cases the memory

footprint of the profiler could not fit into the memory and

lead to occasional system crashes. They also have runtime

performance issue where the slowdown is pretty high more

than 2500× which absolutely prevent them from working

on-the-fly. In the following, runtime and memory overhead

of our method will be analyzed and compared with other

well-known profilers.

Profiler Runtime: Figure 4 demonstrates the slowdown

of SPLASH applications after instrumentation while execut-

ing with 32 threads. It is vividly clear that the slowdown rate

of target programs are not equal. The range of slowdown

spans from 700× to 15× and it largely depends on the

inherent communication behavior of the application. If the

765764764764764764



M
em

or
y 

C
on

su
m

pt
io

n 
(K

B
)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

ba
rn

es
fm

m

oc
ea

n_
cp

ra
dio

sit
y

ra
ytr

ac
e

vo
lre

nd

wat
er

_n
sq

wat
er

_s
pa

t

ch
ole

sk
y fft

lu_
nc

b
lu_

cb
ra

dix

DiscoPoP Memcheck Helgrind Helgrind+ IPM

(a) simdev input size

M
em

or
y 

C
on

su
m

pt
io

n 
(K

B
)

0

300,000

600,000

900,000

1,200,000

1,500,000

1,800,000

2,100,000

ba
rn

es
fm

m

oc
ea

n_
cp

ra
dio

sit
y

ra
ytr

ac
e

vo
lre

nd

wat
er

_n
sq

wat
er

_s
pa

t

ch
ole

sk
y fft

lu_
nc

b
lu_

cb
ra

dix

DiscoPoP Memcheck Helgrind Helgrind+ IPM

(b) simlarge input size

Figure 5. Comparison of memory consumption of the DiscoPoP with other profilers.

target application need a lot of communication, it will suffer

from more slowdown after instrumentation. This approach

has 225× runtime slowdown which has been computed by

computing the average of the slowdown factors. To the

best of our knowledge, there is no similar profiler which

instrument the application and try to find dependencies

among threads exactly like our approach. Therefore, it is

not possible to directly compare the runtime of the DiscoPoP

method with others.
Memory Consumption: Due to using a fixed length

signature memory, the memory consumption is bounded

to a specific value. Since, all previous records of memory

accesses are stored in signature memory, total memory con-

sumption by the profiler is largely dependent on the signature

memory being used and its parameters. Small subset of

memory is devoted to store communication matrices of the

whole program and its hotspot loops which is negligible in

comparison with the size of signature memory.

As described before in section IV, the signature memory

used in our extended DiscoPoP is composed of two different

signature memories for read and write operations. Equation 2

shows the total memory consumption (Bytes) by the profiler.

Where, n is the maximum number of signature elements and

t is the number of threads available in the target application.

FPRate is the acceptable false positive rate for the bloom

filters used in the “read” signature memory.

SigMem(n, t) = n.(4 +
−t× ln(FPRate)

8× ln2(2)
) (2)

In this section, we have set the signature memory sizes

to 10,000,000 because it is not very large and also yields

acceptable accuracy in inter-thread dependency results. Ad-

ditionally, t is set to 32 because all programs are running

with 32 threads. Hence, by computing the equation 2, we

can see that around 580MB could be sufficient to perform

the analysis for any program with moderate input sizes.

Memory consumption of DiscoPoP is compared with

Memcheck [35], Helgrind [22], Helgrind+ [23] and IPM

[18] which the first three projects all use shadow memory

for their analysis and the last one store its output in a

log file. Figure 5a and 5b show the memory usage for

each SPLASH program while using DiscoPoP and other

profiling tools. Figure 5a is for applications using small

input size and Figure 5b is for large input size. It is clear

that, shadow memory approach consume more memory

as the program size grows. However, DiscoPoP memory

consumption remains the same disregard to the program’s

memory allocations.

Simulation based approaches produce more than 100GB

[4] log files which is extremely hard to work with. Also,

shadow memory based methods clearly could fail if the

machine does not have enough memory space. DiscoPoP

[8] is the only method which has used signature memory

to limit the memory consumption, but due to using queue

for analyzing memory accesses orderly, the queue size may

increase dramatically if there is burst in accessing memory

in the program. However, the DiscoPoP does not have this

problem at all and its memory footprint remains the same

in every situation.

3) Accuracy of Communication Pattern Detection: Col-

lecting communication patterns should also be as accurate as

possible. For example, methods which use hardware coun-

ters can only observe the applications behavior indirectly and

provide a less accurate view of the communication between

the threads [11]. Simulation based and instrumentation ap-

proaches produce more accurate results but impose much

more overhead on the target program’s runtime.

In order to provide an equilibrium in this trade-off,

DiscoPoP has equipped with a special signature memory.

However, this data structure impose false positive effect in

case of choosing a small signature memory. We evaluated

the false positive rate (FPR) under four different signature

sizes by implementing a perfect signature memory without

any collision to be the baseline for FPR comparison. When

using 1.0E+6 slots, the average FPR 85.8% which is very

high. However, by increasing the slot numbers to 4.0E+6,

the FPR significantly reduced to 22.0%. If more accurate

results are required, signature size could be set even higher

to 1.0E+7 or 1.0E+8 which result in false positive rates of

8.4% and 2.1%, respectively.

4) Dynamic Behavior Detection: Since applications may

transition into different phases of computation at runtime,
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Figure 6. A subset of nested communication patterns found in SPLASH lu ncb program. Gray boxes denote group of child nodes in nested patterns.
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Figure 7. A subset of nested communication patterns found in SPLASH water nsquared program. Gray boxes denote group of child nodes in nested
patterns.

this may change their behavior and therefore the commu-

nication pattern during the execution at different points. A

useful mechanism should be able to detect changes dynam-

ically and thereby notify the optimizer from these changes

in the target program. Almost every previous approaches

analyze the application over the whole execution time and

provide a static pattern for overall program execution. This

leads to wrong results when the application contains more

than one computational task. DiscoPoP on the other hand

fully supports this feature. It can identify potential patterns

in every hotspot of the program and produce a final report

about all patterns found in each stage of the application as

depicted in Figures 6 and 7 for “lu” and “water nsquared”

programs in SPLASH benchmark. It is clear that the final

communication matrix can be obtained by summing all its

child matrices together. It should be noted that, based on ex-

perimentations, communication patterns are not identifiable

enough while using less than 8 threads.
5) Resiliency to False Positive Communication Problem:

False positive communication in shared-memory systems

denotes the fact that threads appear to communicate through

shared data. However, in reality they are not communicating.

The root of the problem is that communication is implicit

and happens through shared memory. As an example, false

communication can happen when two threads access the

same address, but at different times during the execution.

Our main idea for detecting RAW dependencies among

threads is that only first time access by a thread is counted

as a communication between relevant threads. Therefore, it

avoids other accesses from counting as communication and

therefore do not allow false communication in the analysis

to be recorded.
6) Application Implementation Independence: In order

to cover a wider range of applications for profiling, the

architecture should be independent from the application’s

implementation. This has two consequences. First, using the

mechanism should not depend on a particular parallelization

API, such as OpenMP and Pthreads. Second, it should not

require the programmer to modify the source code or manu-

ally link to additional libraries. Among the previous works,

only hardware counter methods have this feature. Projects

which have used IPM [18] to analyze the memory trace of

the target program, can only work with MPI applications

and also need to manually re-link their program with IPM

libraries. Other methods which have used Virtutech’s Simics

simulator [12], can only run their method in a simulated

sandbox. Therefore, the application cannot run on a regular

system. Additionally, binary code instrumentation methods
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Figure 8. Workload distribution among threads of three hotspots in (a) radix, (b) raytrace and (c) radiosity applications.

discussed earlier which use Intel Pin or Valgrind, have

limited support on multi-threaded libraries. They also need

to be applied manually on the target applications. DiscoPoP

on the other hand has tried to overcome with this issue.

Although it needs the program’s source-code to inject its

instrumentation functions, but this procedure can be done

very easy just by adding a compiler option “-pe” to the

compiler. Also, since it uses LLVM for instrumentation,

it can instrument every common language which LLVM

compiler supports. Beside that, currently LLVM supports

a wide range of parallelization libraries and its supported

frameworks is also growing rapidly.

B. Quantitative Metric Result
We have analyzed radix, raytrace and radiosity applica-

tions from SPLASH benchmark and selected three inter-

esting hotspot loops communication matrices to show the

applicability of the proposed metric expressed in Equation

1. Figure 8 demonstrates these three communication load

detected in loops of selected interesting applications. Each

diagram contains the load on each thread. Hence, load

balancing among threads in each hotspot could be easily

analyzed. For instance, Figure 8a depicts that half of threads

are accessing the memory in the correspondent loop and

may lead to performance inefficiency. However, threads’

load shown in Figure 8c reflects a loop that uses all

threads available to do its job. Therefore, the load is evenly

distributed among threads.

VI. APPLICATION

DiscoPoP can be used for extracting inherent communi-

cation patterns of parallel programs for various reasons. One

of the most obvious reasons for gathering these patterns is

to optimize the runtime performance of parallel programs.

Based on these patterns, one can apply most suitable thread

mapping to place most communicating thread on the same

core for increasing data locality. They can also be used to

tune the most relevant performance parameters according to

the communication behavior of each code region.
Another usecase of communication patterns is for detect-

ing parallel patterns inside parallel programs. It is known

that computational patterns have unique communication

pattern which can be utilized for detecting them inside

applications. Hence, we made a comprehensive study and

found out that based on the communication matrices that we

can obtain with DiscoPoP, three classes of parallel patterns

could be identified: (1) Computational patterns (Motifs),

(2) Architectural patterns and (3) Synchronization patterns.

Linear algebra, spectral methods, n-body, structured grids,

master/worker, pipeline and synchronization barriers were

among the patterns we could identify along with additional

performance hints with DiscoPoP. We succeeded to detect

these pattern with more than 97% accuracy with the aid

of algorithmic methods and supervised learning. We also

found out that the negative effect of false positives could

be compensated by using machine learning classification

methods.

VII. CONCLUSION AND OUTLOOK

In this paper, we extended DiscoPoP profiler to create

a specialized tool for identifying nested communication

patterns inside shared-memory applications. First of all an

efficient thread dependency profiler has been proposed based

on a specific data structure, called “Asymmetric Signature

Memory”. Then, we proposed a static analysis approach

for annotating loop regions in order to discern potential

hotspots of the target program. We also found out that based

on the communication patterns, some reduced quantitative

metrics could be derived for expressing the performance

of the relevant code region. We tested our approach on all

SPLASH applications to verify the correctness of produced

communication patterns. Furthermore, the results show that

communication patterns in each hotspot of the program

could be identified distinctively. Based on the evaluation

results, it can be concluded that the proposed method can

be used for real-world application profiling. It imposes

225× runtime overhead on average which is in acceptable

range, because of using code instrumentation approach. Its

memory footprint could be less than 500MB and remains

fixed regardless of the program input size. In the future we

plan to apply sampling technique to reduce the overhead of
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instrumentation and use sparse matrices to reduce memory

consumption even further.
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