
Int J Parallel Prog (2016) 44:644–662
DOI 10.1007/s10766-015-0363-8

Automatic Generation of Unit Tests for Correlated
Variables in Parallel Programs

Ali Jannesari1,2 · Felix Wolf1,2

Received: 13 August 2014 / Accepted: 10 March 2015 / Published online: 17 March 2015
© Springer Science+Business Media New York 2015

Abstract A notorious class of concurrency bugs are race condition related to corre-
lated variables, which make up about 30% of all non-deadlock concurrency bugs. A
solution to prevent this problem is the automatic generation of parallel unit tests. This
paper presents an approach to generate parallel unit tests for variable correlations in
multithreaded code. We introduce a hybrid approach for identifying correlated vari-
ables. Furthermore, we estimate the number of potentially violated correlations for
methods executed in parallel. In this way, we are capable of creating unit tests that
are suited for race detectors considering correlated variables. We were able to identify
more than 85% of all race conditions on correlated variables in eight applications
after applying our parallel unit tests. At the same time, we reduced the number of
unnecessary generated unit tests. In comparison to a test generator unaware of vari-
able correlations, redundant unit tests are reduced by up to 50%, while maintaining
the same precision and accuracy in terms of the number of detected races.

Keywords Unit tests · Automatic testing · Parallel programming · Debugging ·
Race detection · Program analysis · Correlated variables

1 Introduction

Nowadays, unit testing plays a major role in the sphere of software development. Soft-
ware may consist of billions of lines of code and a full error analysis can be very time

B Ali Jannesari
a.jannesari@grs-sim.de

Felix Wolf
f.wolf@grs-sim.de

1 German Research School for Simulation Sciences, Aachen, Germany

2 RWTH Aachen University, Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-015-0363-8&domain=pdf

Int J Parallel Prog (2016) 44:644–662 645

consuming and is often unnecessary. Normally, only new and modified code regions
have to be tested. For this reason, developers create unit tests to effectively test small
parts of the program without executing more code than necessary. This is even more
helpful when dealing with multithreaded software and concurrency bugs. In multi-
threaded software, the same bug can result in different behavior for different thread
interleavings, making the debugging of multithreaded software hard and expensive.
A specific type of unit test designed to address this problem is the parallel unit test,
which focuses on concurrency bugs.

A class of concurrency bugs which are extremely difficult to debug are race condi-
tions related to correlated variables. These race conditions involve multiple variables.
Studies showed that over 30% of all race conditions involve correlated variables [1].
To the best of our knowledge, there exists noworkwhich covers the creation of parallel
unit test for data races related to correlated variables. There is no unit-test framework
available to support race detectors capable of considering correlated variables in their
analysis. Given that non-deterministic thread scheduling makes such races generally
hard to reproduce, there is a strong need for unit tests covering race conditions on
correlated variables.

In this work, we want to combine the benefits of automatic parallel unit
test generation with the advantages of race detection for correlated variables.
To achieve this, our work is based on the existing unit test generator AutoRT
[2]. In the scope of this paper, we introduce an extension called CorrRT which
enhances AutoRT by identifying possible correlation violations in method pairs
accessing correlated variables. The higher the number of correlations found, the
higher the probability that a potential race condition violates a variable correla-
tion.

We automatically generated 81 parallel unit tests for correlated variables on eight
different applications. After analyzing the unit tests, HCorr [3], a race detector
for correlated variables, reported more than 85% of the race conditions violat-
ing variable correlations. Furthermore, we were able to reduce the number of
redundantly generated tests by up to 50% in comparison to the original AutoRT
approach.

The rest of this paper is structured as follows: In Sect. 2, we introduce some basic
terms of parallel unit tests, race conditions and correlated variables. Further on, Sect. 3
discusses related work, detailing previous approaches to parallel unit test generators.
Section 4 describes the core of our approach. We present the dynamic approach to
enhance the unit test generation on correlated variables. Section 5 briefly explains our
implementation of the approach. In Sect. 6, we present experimental results of our
implementation on 8 different applications. Finally, Sect. 7 summarizes the paper and
gives an outlook on future works.

2 Background

In this section we introduce terms which we use in the scope of this paper. Also,
we present some basic techniques our algorithms apply and explain how we define
correlations between variables.

123

646 Int J Parallel Prog (2016) 44:644–662

Thread Normalize
Acquire Lock

len = x2 + y2;
x = 1

len ∗ x;
y = 1

len ∗ y;
end

end

Thread Double
Acquire Lock

x = 2 ∗ x;
end
Acquire Lock

y = 2 ∗ y;
end

end

Fig. 1 A high-level data race violating the semantics of the vector (x, y)

2.1 High-Level Data Races

In our work, we define a race condition as an anomalous behaviour of a pro-
gram due to a variable’s value unexpectedly depending on the scheduling of
threads. We divide race conditions into high-level and low-level data races, accord-
ing to whether we need a semantic understanding of the code for identify-
ing the race. For low-level data races we can neglect semantics. A low-level
data race occurs when two concurrent threads access a shared variable with-
out synchronization and when at least one of these accesses is a write opera-
tion.

A high-level race condition can be harder to detect. Generally, when the anom-
alous behaviour of a race condition is caused by a violation of the underlying
program semantics and if the anomaly is not a low-level data race, we speak of a
high-level data race. Figure 1 gives an example for such a high-level data race. All
accesses have been secured by locks. However, if the runtime normalizes the vector
in between the doubling operation, the values of x and y are not correctly tuned to
each other any more. We recognize that the semantics of those variables have been
violated.

As was seen in the given example, one kind of program semantics are the semantic
relationships between variables and their values. The violation of these relationships
by an anomaly, a race condition, is considered a high-level data race. Our work aims to
detect this kind of high-level data race by applying the concept of variable correlations
to a parallel unit test generation approach.

2.2 Variable Correlations

Two variables are correlated if their values are, or are meant to be, in a semantic
relationship during the whole program execution. We already introduced an exam-
ple of a variable correlation in Fig. 1, where the two variables x and y constitute a
vector. In Fig. 2 we show another example for a variable correlation. We can see
a function maintaining two variables Euro and Yen which contain the same value
in different currencies. The code implies a semantic relationship between these two
variables (both variables depend on euValue). Obviously, this relationship may be vio-
lated when these two variables do not express the same value, in different currency,
anymore.

123

Int J Parallel Prog (2016) 44:644–662 647

Fig. 2 Two correlated variables
Euro and Yen

Function Currency(int euValue)
Euro = euV alue
Y en = euValue ∗ 107.201;

end

Fig. 3 The general structure of
a parallel unit test

Function Parallel Unit Test()
// Context
// Initializing objects and variables...

// Concurrently invoke a method pair
Thread1.Start(Method1);
Thread2.Start(Method2);
// Wait for the methods to finish
Thread1.Wait();
Thread2.Wait();

end

2.3 Parallel Unit Tests

Unit testing has become a common practice in the field of software engineering. The
idea of unit testing is to concentrate debugging on small parts at a time instead of
the whole program. This promises better precision and shorter testing times since bug
detection can be focused on the relevant code without analyzing and/or executing the
whole program. A unit test verifies the correctness of the corresponding program part
and informs us when anomalous behaviour has occurred. For this verification we have
to execute the unit test. During execution, the program part to be tested is invoked and
the results gained are compared to the expected results.

Parallel unit tests are a special class of unit tests which distinguish themselves in
the following way:

1. A parallel unit test contains the parallel invocation of two methods, a method pair.
2. It should not be executed directly but is intended to be analyzed by tools for

concurrency bug detection.
3. The parallel unit test remains independent concerning execution. This means, it

can be executed without any additional support. This is an important feature for
dynamic concurrency bug detection tools which need to execute the code for
analysis.

Figure 3 illustrates the generic structure of a parallel unit test, divided into three
parts: Initializing the necessary context, concurrently invoking the methods and syn-
chronizing with the main thread. Note that the parallel unit test does not include
assertion statements or the like: Bug detection is realized only by the tools analyzing
and/or executing the parallel unit test. As an example, a race detector can analyze
and/or execute the code region specified by the parallel unit test in order to identify
race conditions.

The generation of unit tests, and especially parallel unit tests, bears a crucial chal-
lenge: Gaining sufficient test coverage without generating redundant or irrelevant unit
tests. A unit test generator runs into the danger of either neglecting relevant test cases

123

648 Int J Parallel Prog (2016) 44:644–662

or generating false positives, like test cases which cannot happen during real program
execution.

3 Related Work

We present some recent works focusing on the identification of correlated variables
and the automatic generation of parallel unit tests.

MUVI [4] is a hybrid race detector for correlated variables. The algorithm recog-
nizes correlations among variables by applying a static analysiswhich uses datamining
techniques. It identifies accesses to variables in the code which commonly happen in
the same method and occur relatively close to each other. The approach assumes
semantic relationships between these identified accesses and considers their variables
to be correlated. However, MUVI does not consider data or control dependencies
during variable correlation detection.

Helgrind+ for correlated variables (in short HCorr) [3] is a dynamic race detec-
tion approach. It is based on the dynamic race detector Helgrind+ [5–8] for single
variables. Like its predecessor, HCorr is a tool developed for the virtual execution envi-
ronment Valgrind [9]. The approach uses a dynamic analysis to identify code regions
which constitute units of computation. A computational unit expresses a sequence
of variable accesses forming an atomic computation. With the help of these compu-
tational units, HCorr identifies sets of correlated variables in the following way: In
the beginning, each variable has its own set. Inside one computational unit, whenever
there is a data or control dependency established between two variables of different
sets, the sets are merged. Thus, bigger sets of variable correlations are formed.

The approach has two main weaknesses: It relies heavily on the identification of
computational units, by considering a specific write and read access pattern. This
pattern can just heuristically identify units of computation and tends to either measure
them too broad, including accesses that do not belong to that computation, or measure
them too narrowly, excluding relevant accesses. Obviously, this has a big impact on
the precision for identifying correlations. Another issue is that the approach identifies
two variables to be correlated as soon as it identifies one data or control dependency
between their values. Even if these dependencies are of a temporary nature and do not
constitute a real semantic relationship between the variables.

ConCrash [10] uses static as well as dynamic approaches to reactively generate
unit tests for a given program. First the algorithm performs a static race detection
in order to identify race conditions inside methods. In the next step, the concerned
methods are instrumented: They track the program state and the scheduling of threads
during execution. A subsequent dynamic analysis on these methods captures this
information whenever the program throws an exception. Finally, ConCrash uses the
captured information to generate unit tests for the concerned methods.

Katayama et al. [11] explain an approach for the automatic generation of unit tests
for parallel programs. The approach uses the Event InterAction Graph (EIAG) and
Interaction Sequence Test Criteria, ISTC. EIAG represents the behaviour of parallel
programs. It consists of Event Graphs and interactions. An Event Graph is a com-
ponents control flow graph of a parallel program. The interactions, in turn, represent

123

Int J Parallel Prog (2016) 44:644–662 649

synchronizations between threads. The ISTC criteria are based on the sequences of
interactions and reduce the number of unit tests which the EIAG provides.

Wong et al. [12] use reachability graphs to generate unit tests for parallel programs.
In order to avoid a state explosion (of unit tests) they introduce four different techniques
to prioritize and topologically sort code regions. This approach was implemented and
evaluated in combination with the mod el checking approach Stubborn Set Method.
The approach is very effective on small programs. However, it is not scalable regarding
highly parallel programs.

Nistor et al. [13] generate parallel unit tests for randomly selected public class
methods. The approach appends complex sequential code to the unit tests in order
to increase the precision of concurrency bug detection. Furthermore, they employ
a clustering technique to reduce the number of falsely identified bugs. However, the
approach only considers some parts of the program for unit test generation and neglects
multiple class interactions.

4 Approach

This section presents CorrRT, a parallel unit test generator for high-level data races on
correlated variables. The approach essentially combines parallel unit test generation
with the identification of correlated variables, in order to obtain highly specialized
unit tests for the detection of correlation violations. First, we shortly introduce the
method inAutoRT. Thereafter, we describe our ownmethods and deal with the detailed
presentation of our employed analysis.

4.1 CorrRT in Relation to AutoRT

AutoRT is a proactive unit test generator for parallel programs which uses both
dynamic and static approaches for programanalysis. For a given program the algorithm
considers all possible method pairs as candidates for unit testing. In its subsequent
generation steps AutoRT filters this candidate set to the most significant method pairs.
Amethod pair is significant if its twomethods are parallel dependent on each other and
if they are executed in parallel (parallelism) during program execution. The algorithm
identifies parallel dependency and parallelism of a method pair in two subsequent
analysis:

1. A dynamic analysis checkswhichmethod pairs truly run in parallel during program
execution. Additionally, it reduces the candidate set to these parallel method pairs.

2. A static analysis operates on the reduced candidate set. The analysis further filters
the candidate set to parallel dependent method pairs, i.e. method pairs containing
accesses to the same variables.

Having obtained a significant candidate set the test generation approach employs
a Capture-and-Replay technique for creating unit tests out of the remaining method
pairs. This means AutoRT dynamically records the object states which are necessary
for invoking each method pair in parallel, called the context. After AutoRT has filtered
out equivalent contexts, the algorithm begins with the actual unit test creation process.

123

650 Int J Parallel Prog (2016) 44:644–662

The generator creates a parallel unit test for eachmethod pair and each different context
of that pair. Since the Capture-and-Replay technique reconstructs only contexts which
actually existed during program execution, the generated unit test cases do not depict
situations which never happen during runtime.

As we can see, AutoRT uses a multi-step candidate set reduction technique to filter
out irrelevant method pairs for unit test creation. CorrRT aims to support and enhance
this process by introducing analysis that is able to analyze this candidate set formethod
pairs which are likely to contain correlation violations, which equal high-level data
races. This information can be used for two purposes. On the one hand, we can further
reduce the candidate set and pass it on to the original AutoRT process for unit test
generation. As a result, we obtain a set of parallel unit tests which are likely to contain
high-level data races. This is useful to reduce the overall unit test generation time
which can be very significant for larger applications. On the other hand, we can just
pass along the likelihood for a method pair containing a high-level data race. As a
result, the developer can easily decide whether a parallel unit test should be analyzed
by a race detector considering high-level data races. This is very useful, since race
detectors for high-level data races tend to be generally slower than their conventional
counterparts.

In the following listing we give an overview of our enhancements of the unit test
generation process. Our extension is divided into six parts:

1. We have extended the dynamic parallelism analysis to additionally monitor and
protocol encountered shared variables.

2. A static analysis on the control flow of the whole program uses the information to
detect correlations which involve shared variables. For this purpose our algorithm
usesmethods of patternmatching and probability to estimatewhether two variables
are correlated.

3. For each method pair (which constitutes a unit test candidate) we determine the
number of accesses to variable correlations which may be violated by the parallel
execution of the method pair.

4. From these recognized correlation accesses, we identify especially endangered
correlations.

5. We use the information from the former analysis to compute the correlation rank of
the method pair. The correlation rank states the number of accesses to potentially
endangered correlations a method pair contains in comparison to its total number
of accesses.

6. We create unit tests from method pairs with high correlation ranks only. For this
reason we rely on the approach of AutoRT by dynamically recording the object
states inside the method pairs and generating unit tests in which we reconstruct
the recorded object states and invoke the method pair in parallel.

The result of the steps above is a set of unit tests which are especially suitable for
race detectors considering correlated variables. The following subsections explain the
most important enhancements of our approach in detail.

123

Int J Parallel Prog (2016) 44:644–662 651

Table 1 Overview of the correlation patterns

Features Vertical
pattern

Control
pattern

Parental
pattern

Horizontal
pattern

Chain pattern

Data dependency
types

Flow – Parent–child Input Flow

Control
dependency

– Yes – – –

Transitive
dependency

Yes – No No Yes

4.2 Correlation Patterns

For identifying correlations between variables we perform a static analysis of the given
program.Our approach is basedon the concepts ofHCorr [3] andMUVI [4].According
to HCorr variables are correlated if they become data and/or control dependent on each
other during a computational unit. This implies a strong relationship between these
dependencies and variable correlations. Further on, MUVI assumes that variables
which are accessed relatively often near to each other, are with a high probability
correlated to each other.

We combine both ideas. As a result, we consider variables which are relatively
often data and control dependent on each other to be correlated. Therefore, we iden-
tify correlations on the basis of predefined patterns which indicate strong data and
control dependencies between the variables. We use these patterns to find indications
of correlations between variables. If we recognize enough patterns which support this
indication we then regard the variables to be correlated. We introduce four basic types
of patterns: vertical, horizontal, parental, control and also one secondary type called
chain pattern. Table 1 presents an overview of the characteristics of those patterns.

Vertical pattern: After the execution of an assignment, the written variable is data
dependent on each read variable. Data dependent values are in a logical relationship,
since we generated one value from the other. Therefore, a data dependency and thus
a variable assignment also indicates a correlation between the written and the read
variable. We call this correlation a vertical correlation. In Fig. 4a we can observe the
vertical correlation pattern between Euro and Yen. Since the first assignment does not
contain any read variable we do not detect any correlation in it.

Control pattern: Variables written inside a control flow branch become control
dependent on the variables read inside the branching condition. Just like a data depen-
dency, a control dependency also infers a correlation between the corresponding
variables: Their values become logically related to each other. Therefore, we search
the code for write accesses inside control flow branches with branching conditions
reading variables. Each written variable becomes correlated with the read variable,
analogous to a variable assignment. Figure 4b shows an example of a control pattern.
Here we see that the value of Street is dependent on the evaluation of the isPrivate
value.

Parental pattern: In the context of classes and their field variables (OOP), we
recognize data dependencies. Naturally, a variable is data dependent on the class (or

123

652 Int J Parallel Prog (2016) 44:644–662

Fig. 4 Examples for correlation
patterns. a Vertical pattern
between Yen and Euro. b Control
pattern between isPrivate and
Street. c Parental pattern
between Street and StreetNo.
d Horizontal pattern between
Minutes and Hours. e Chain
pattern between Euro and Dollar

Euro=300;
Yen=Euro ∗ 107;

if isPrivate == true then
Street=”PrivateStreet”;

end

Person.Street=”PrivateStr.”;
Person.StreetNo=107;

Minutes=Seconds /60;
Hours=Seconds /3600;

Euro=300;
Yen=Euro ∗ 107;
Dollar=Yen ∗ 0.012;

(a)

(b)

(c)

(d)

(e)

object for non-static variables) it belongs to. If a program writes two variables sharing
the same parent subsequently, without any write access in between, we can expect
variables belonging to the same class to have something in common, like forming the
address of a person. Therefore, we consider them to be parentally correlated. However,
not all field variables are really correlated, as for example a person’s hair color and
size. We consider the chances of a real correlation to be higher if the two variables
are written subsequently, as they tend to belong to the same computation. Figure 4c
shows the variables Street and StreetNo as correlated by a parental pattern.

Horizontal patterns infer implicit data dependencies frommultiple variable assign-
ments. If two variables are data dependent on the same variable at the same time, we
consider these two variable’s values to be in a logical relationship which is inde-
pendent of the variable they data depend on directly. Therefore, we search for two
subsequent assignments on two different variables which share a same read variable.
Figure 4d shows an example of a horizontal pattern. Note that each horizontal pattern
also includes two vertical patterns. Therefore, we do not only recognize a correlation
betweenMinutes andHours but also between Seconds andMinutes as well as Seconds
and Hours.

The chain pattern considers transitive data dependencies through identifying chain
assignments. For the sake of simplicity, we consider the chain pattern as a secondary
pattern to the vertical one. Chain assignments are assignments in which the assigned
variable is used as a read variable in the subsequent assignment. A chain assignment

123

Int J Parallel Prog (2016) 44:644–662 653

Function A

P.Yen=P.Euro ∗ 107;

end

Function B

P.Yen=0;

end

Function C
P.Euro=1;
P.Yen=107;

end

Fig. 5 Function A and C indicate a correlation between Euro and Yen, function B does not

Thread A
Acquire Lock

Euro = 300;
end
Acquire Lock

Yen=Euro ∗ 107;
end

end

Thread B

Acquire Lock
Euro = 0;

end
end

Fig. 6 A violated correlation between the shared variable Euro and the local variable Yen

indicates that an assigned variable is correlated to the previously assigned variables as
well as the subsequently assigned variables in the chain. Figure 4e depicts an example
of a chain assignment. The transitive data dependency recognized through the chain
assignment indicates a correlation between Euro and Dollar.

The probability of a correlation between two variables being real is the ratio of
write accesses inside a correlation pattern, indicating such a correlation, to the total
amountwrite accesses on the variables being considered.When a variable gains a value
which is logical dependent on another variable’s value, this write access supports the
claim that the two variables are correlated. However, if the value has no such logical
dependency it opposes this claim. For example in Fig. 5, a vertical pattern in Function
A indicates a correlation between Euro and Yen. Furthermore, function C contains a
parental pattern indicating the same correlation. However, there is a write access on
Yen in function B which does not support this claim. Therefore, the probability that
Euro and Yen are correlated is about 67%: Two out of three write accesses on Yen
belong to a correlation pattern.

We only have to identify correlations which involve at least one shared variable.
Trivially, a correlation consisting only of local variables cannot be violated by atomic-
ity violations: There is just one thread accessing the participating variables. Of course,
two correlated variables which are shared can potentially be involved in an atomicity
violation. But this also counts for a correlation between a shared and a local variable.
When another thread changes the value of the shared variable inappropriately, the val-
ues of the correlated variables loose their logical relationship. As a result, the program
may behave unexpectedly. Figure 6 shows the execution of two threads where thread
B violates the correlation between the shared variable Euro and the local variable Yen.
On the assumption that Euro and Yen are correlated we expect that thread A stores in
Euro an amount of money in the currency of Euro and subsequently stores in Yen the
same amount in the currency of Yen. When the scheduler executes thread B between
the two assignments this logical relationship is lost.

123

654 Int J Parallel Prog (2016) 44:644–662

Fig. 7 A function containing
four accesses to the correlation
between Euro and Yen

Function A
Output(Euro);
Output(Yen);

...

Euro = 300;
Yen = Euro ∗ 107;

end

In order to solve the issue with the violated correlation, we can execute the two
logically related operations of thread A under one continuous lock. This will remove
the possibility of thread B executing between the two assignments so that the final
results remain correct.

4.3 Correlation Accesses

After we have identified the correlation patterns inside the program, we analyze for
a method pair for which correlations may be violated when the two methods are exe-
cuted in parallel. We firstly consider the accessed variables inside the methods. For
further analysis, we only regard accesses to variables which indeed are accessed by
several threads and by the method pair, where at least one of the methods must write
the variable. In other words: We only consider accesses to shared and strongly par-
allel dependent variables for each method. We take the information about the shared
variables from the formerly executed dynamic parallelism analysis. For obtaining
strongly parallel dependent variables for one method m1 we statically compare all
accesses of that method with the write accesses inside the other method m2 of the
pair. The set of variables which both methods access in this way are the strongly
parallel dependent variables of m1. Analogously, we identify the strongly parallel
dependent variables of m2. Furthermore, we filter the accesses on variables which
are not correlated to other variables. In this way, we gain the accesses on correlated
variables which can potentially be violated during the parallel execution of the two
methods.

For each method of the pair we determine the accessed correlations. A method
accesses a correlation if and only if it contains accesses to both variables of
the correlation. This means one access to a correlated variable is not enough to
count as an access to a correlation. Henceforth, one variable access may belong to
more than one correlation access. On the assumption that Euro and Yen are cor-
related Fig. 7 contains four correlation accesses. The two read accesses (1), the
two write accesses (2), the write access on Euro and the read access on Yen (3)
as well as the read access on Euro and the write access on Yen (4) are correlation
accesses.

We determine the correlation accesses for both methods in the method pair sep-
arately. The set of correlation accesses of the method pair equals the union of the
correlation accesses of both methods. We consider these the accesses to the correla-
tions which can potentially be violated during parallel execution of the pair.

123

Int J Parallel Prog (2016) 44:644–662 655

Thread A
Output(Euro);
Output(Yen);

end

Thread B
Acquire Lock

Output(Euro);
Output(Yen);

end
end

Thread C
Acquire Lock

Output(Euro);
end
Acquire Lock

Output(Yen);
end

end

Thread D
Acquire Lock

Yen=107;
Euro=1;

end
end

Fig. 8 Three parallel reading threads and one parallel writing thread: only the correlation between Euro
and Yen in thread B is not violated

4.4 Endangered Correlations

For each correlation access determined in the previous step, we further investigate
how endangered the corresponding correlation is. Therefore, we consider the syn-
chronization instructions inside the methods of the pair. Correlated variables should
be accessed in atomic regions. Therefore, if we encounter accesses to a correlation
which are separated by a synchronization instruction, the accessed correlation is espe-
cially endangered. If we do not detect any synchronization instruction in between the
correlation access, we can assume that the accesses on the variable are either fully pro-
tected or not protected at all. This means we either do not have a correlation violation
or we encounter a low-level race condition instead of an atomicity violation. Figure 8
illustrates this reasoning. Thread A does not execute a synchronization in between
the accesses on the correlated variables Euro and Yen. The accesses are in fact not
synchronized in any form. Therefore, we have a low-level race condition with the
execution of threadD. Also thread B does not execute any synchronization instruction
in between the access on the correlation. We can see that the correlation is not violated
in B since a lock continuously protects the read accesses to Euro and Yen. Finally,
only the parallel execution of thread C and D yield a high-level data race excluding a
low-level data race.

4.5 Correlation Rank

The correlation rank is a metric for our approach to decide whether a method pair
should be used for unit test generation. Therefore, it is important not only to consider
the number of correlation accesses but also to regard the probability of a correlation
violation. The number of endangered correlation accesses gives a quantitative as well
as a qualitative statement about the accesses to correlations inside the method pair. In
the following we will refer to the sum of the number of endangered correlations as the
correlation amount of a method pair.

Weconsider the correlation amount relative to the accesses onuncorrelatedvariables
and variables, whose correlations cannot be affected by the parallel execution of the

123

656 Int J Parallel Prog (2016) 44:644–662

Function SetMins()
Acquire Lock

Mins=Secs /60;
end

end

Function SetHours()
Acquire Lock

Hours=Secs /3600;
end

end

Function SetTime()
SetMins();
SetHours();

end

Function RefreshSecs()
Acquire Lock

Milisecs=SysTime();
Secs=Milisecs /1000;

end
end

Fig. 9 Four methods accessing three shared variables. SysTime() constitutes a system internal method
whose body is not visible

method pair. We call these accesses the uncorrelated amount of the method pair. If a
method pair consists of an uncorrelated amount to a great degree in comparison to the
correlated amount, we should not consider the method pair to be suitable for a unit
test for correlated variables: The method pair is more likely to contain concurrency
bugs, which do not involve correlated variables. Due to this reasoning we defined the
following metric for the correlation rank RC , with CA as the correlation amount and
UA as the uncorrelated amount:

RC = CA

CA +UA

A high rank indicates a high number of accessed correlations and/or especially
endangered correlations. When the correlation amount of a method pair is zero, the
correlation rank equals 0%. Analogously, an uncorrelated amount of zero equals a
correlation rank of 100%. Thus, amethod pair with a high correlation rank has a higher
probability of containing high-level data races resulting from correlation violations.

After we have ranked all method pairs we pass only those with a high correlation
rank to the dynamic object recording. For these pairs we generate unit tests in which
we reconstruct the recorded object states and invoke both methods in parallel.

4.6 Example

For a better understanding of our concepts, we present an example of our presented
approach on a small program. The parallelism analysis and the parallel dependency
analysis have identified four functions used as parallel unit test candidates (shown in
Fig. 9). Furthermore, we identified the method RefreshSecs to be parallel to the three
other methods SetMins, SetHours and SetTime, as you see in Table 2. The variables
Hours,Mins, Secs andMilisecs are shared.We perform the correlation pattern analysis
on the control flow of the program. We identify a vertical pattern between Hours and
Secs inside the method SetHours. Analogously, we detect a vertical pattern between
Mins and Secs inside SetMins. Also inside the method RefreshSecs, we can identify
a vertical pattern between Milisecs and Secs. Moreover, inside the method SetTime,
we can identify a horizontal pattern between Mins and Hours. The horizontal pattern

123

Int J Parallel Prog (2016) 44:644–662 657

Table 2 List of the correlated method pairs and their correlation rank

Method Variables Pattern Pairing method Correlation rank (%)

SetMins Mins, Secs Vertical RefreshSecs 0
SetHours Hours, Secs Vertical RefreshSecs 0
SetTime Mins, Hours Horizontal RefreshSecs 25

spans both invoked methods SetMins and SetHours. Since there are no other write
accesses to the given variables inside the program, we calculate a 100% certainty for
each indicated correlation.

In the next step, we determine the correlation accesses and the endangered correla-
tions for eachof the fourmethods. For this reason,we consider the parallelmethodpairs
(SetMins, RefreshSecs), (SetHours, RefreshSecs) and (SetTime, RefreshSecs). SetMins
contains exactly one correlation access, but since there is a continuous lock surround-
ing the considered variable accesses the correlation is not endangered. The same holds
for the method SetHours. RefreshSecs also contains one correlation access, which due
to the continuous lock is not endangered. However, SetTime includes three correlation
accesses: The previously mentioned correlation accesses inside both invoked methods
and the access to the correlation between Mins and Hours. Furthermore, this correla-
tion is also endangered since there is no continuous lock protecting the variable access
to Mins and Hours. After applying the formula from the previous subsection, we can
calculate that (SetTime, RefreshSecs) acquires a correlation rank of 25% while each
of the other pairs have a correlation rank of 0%, due to the fact that their correlation
amount is equal to zero. Therefore, we can only consider (SetTime, RefreshSecs) for
parallel unit test creation and dismiss the other method pairs. While AutoRT would
have generated unit tests for all four method pairs, our approach was able to reduce
the candidate set to only one method pair. That is, the only method pair containing a
(high-level) data race for correlated variables. By this approach, we have eliminated
redundant unit tests which do not contain potential data races, particularly unit tests
which do not contain data races on correlated variables.

5 Implementation

We implemented the approach in the managed environment .NET C#. For data and
control flow analysis as well as the code instrumentation we employed the Common
Compiler Infrastructure (CCI) framework. Therefore the presented analysis works on
the Common Intermediate Language (CIL) which underlies every .NET program.

The dynamic shared variable analysis monitors the encountered field variable
accesses. We identify each field variable by its unique field identifier (acquired from
the CCI framework) and the hash code of its parent object.

For the correlation pattern detection we need to identify assignments and control
flowbranches. CCI already provides analysis data structures for detecting assignments.
However, control flow branch analysis is not supported by the framework. Therefore,

123

658 Int J Parallel Prog (2016) 44:644–662

we identify the scope of control flow branches via post dominator analysis and apply
a simple and efficient algorithm, which was presented in [14].

Detecting endangered correlation accesses requires the identification of synchro-
nization instructions. In .NET synchronization instructions are method calls to the
.NET core library which communicate with the operating system.We are able to detect
these method calls inside the CIL code of the program by their distinctive namespace:
System.Threading. All methods belonging to that namespace manage synchronization
operations between threads. Sincewe only need to compute a conservative approxima-
tion of endangered correlations, our analysis does not need to distinguish the different
kinds of synchronization. It is, therefore, able to identify synchronization instructions
in general.

In our implementation we consider variable correlations with a probability of 50%
and above to be true. Furthermore, we only generate unit tests for method pairs with
a correlation rank above 30%.

6 Evaluation

In this section we introduce our test environment, including our evaluation metrics.
Subsequently, we present our evaluation results.

6.1 Test Environment

We use sample programs as well as real-world applications for our evaluation pur-
poses. The race detector CHESS [15,16] provides small program examples containing
high-level data races. For our evaluation we used the programs Bank Account, Bound-
edQueue and Dekker from the CHESS examples. MSDN Code Gallery [17] contains
applications which demonstrate the functionality of parallel programming in .NET.
We chose an order-system simulation (a master thread manages many worker threads
executed concurrently) fromMSDN.We additionally implemented an alternative ver-
sion of it containing correlated variables for each correlation pattern. Furthermore, we
evaluated the open source programs PetriDish [18], the program library of KeyPass
[19] and SmartThreadPool (STP) [20]. The programs are listed in Table 3.

We evaluate our unit test generation approach according to three metrics: The
efficiency for the race detection, the performance and the search space reduction of
all possible unit test candidates.

For the efficiency of the race detection we take the number of detected high-level
data races in relation to the total number of high-level data races inside the program
into account. We expect that our test cases are especially suited for high-level data
races only and therefore do not contain many low-level data races. Hence, we compare
the ratio of found low-level data races with the ratio of high-level data races. For these
purpose we use Microsoft Research CHESS and HCorr as race detectors. HCorr is
able to detect race conditions on correlated variables automatically. For CHESS the
user has to specify correlations inside the given program. We did not provide CHESS
with any information about the variable correlations, hence it can only detect low-
level race conditions. By this, we ensure that the race conditions involving correlated

123

Int J Parallel Prog (2016) 44:644–662 659

Table 3 Evaluation results of CorrRT

Program B. Account B. Queue Dekker Order sys. Corr sys. Petri-Dish Key pass STP Sum

LOCs 25 31 15 360 480 1070 1240 1120 –
Methods 4 6 3 7 18 35 58 46 –
Depth call
stack

3 2 2 4 5 16 8 12 –

Heap
objects

1 24 2 56 59 371 98 73 –

Threads 2 3 3 5 5 7 16 4 –
Parallel
methods

4 6 3 5 10 35 58 37 –

Parallel
method
pairs

4 14 5 15 27 230 478 315 –

Detected
corrs

3 4 1 5 5 16 13 9 46

Low-level
races

1 3 0 20 10 3 5 11 63

High-level
races

1 2 2 25 5 2 5 4 46

CHESS 0 0 0 0 0 2 2 6 10
HCorr 1 2 2 21 5 2 3 3 39

variables inside the programs cannot be found by race detectors considering low-level
race conditions only.

Besides the race detection, the search space reduction is one of the main metrics
of our evaluation. Filtering out unit test candidates without potentially violated cor-
relations is a major purpose of the presented approach. By comparing the number of
generated unit tests by AutoRT and CorrRT, we can directly measure the effectiveness
of our method.

For the performance, we consider the overall unit test generation time of our
approach and qualify it to the unit test generation time of AutoRT.

6.2 Race Detection Efficiency

Our unit test generator created 81 parallel unit tests for the eight evaluation programs.
The programs contained 46 race conditions on correlated variables, of which HCorr

found a total of 39when applied to our generated unit tests.We observed that this num-
ber of missed data races was caused by the inaccuracy of HCorr itself: The generated
unit tests contained all race conditions on correlated variables but the race detector
was not able to detect all of them inside the tests. The reason for this behavior is
the detection of computational units which the race detector identified as too short.
As a result HCorr missed some correlations between the variables and did not detect
the corresponding high-level races. Still, HCorr was able to overall detect more race
conditions of the programs when analyzing the unit tests than analyzing each program
as a whole. From the 46 races HCorr could only detect 31 when applied directly to
the programs (instead of the 39 it detected when applied to the generated unit tests).

123

660 Int J Parallel Prog (2016) 44:644–662

(a) (b)

Fig. 10 Comparison between AutoRT and CorrRT. a Number of generated unit tests. b Total generation
time

We observed that HCorr is generally more precise on small programs. In this case,
our parallel unit tests for correlated variables even resulted in an increased precision
of 11%.

CHESS detected a total of 10 data races when analyzing the unit tests. This means
our generated unit tests are indeed specialized on correlated variables. From the total
of 46 low-level race conditions inside the programs only 10 were captured by our
generator. These low-level races resided in method pairs which also contain race
conditions on correlated variables. In the generated unit tests for the corresponding
method pairs they, therefore, appear as a by-product.

6.3 Test Case Reduction

Figure 10a shows the number of generated unit tests by AutoRT and CorrRT. Com-
pared to the original AutoRT we observed a reduction of generated unit tests up to
50%. On average, we were able to reduce the number of redundant unit tests about
20% compared to the number of generated parallel unit tests by AutoRT. Whether
our approach is able to reduce the search space depends highly on the distribution of
accesses on correlated and uncorrelated variables inside the program as well as the
number of endangered correlations of course. We observed the best reduction on pro-
grams in which methods either access only uncorrelated or only correlated variables.
This is because our approach can safely exclude method pairs which do not contain
accesses to correlated variables. Otherwise, the intersection of method pairs which
potentially contain race conditions on correlated variables and method pairs which
contain data races in general is higher.

6.4 Time Overhead

The time for unit test generation as seen in Fig. 10b is a sum of different partial
times including the static parallel dependency analysis, the static correlation analysis,
the dynamic parallelism analysis and the dynamic object state recording. We have
experienced that the most critical performance impact lies in the dynamic analysis.
Multiple executions of the same program code and expensive object recording cause

123

Int J Parallel Prog (2016) 44:644–662 661

a major slow down. The ratio between the overall unit test generation time and the
execution time of the program varies wildly between a factor of 16 and 266. Big
programs with many objects like PetriDish cause a high state recording time. The
static correlation analysis, only takes a small part of the overall generation time. On
average our additional analysis took about 15% of the total generation time. The
analysis time varies from 25 to <5% depending on the execution of the program.
Though we perform an additional analysis on the code and the method pairs, the
generation time of our implementation is negligible compared to the whole generation
time. Additionally, because of the unit test candidate reduction we partially experience
an overall less generation time on comparatively large programs such as PetriDish,
KeyPass and STP.

7 Conclusion

In this paper, we introduced an approach that enhances the automatic generation of
parallel unit test by adding support for correlated variables. Our approach is able
to identify highly correlated regions, which are especially vulnerable to concurrency
bugs. This reduces the search space in unit test generation and uncovers code suited for
our test analysis approach. During our evaluation, the parallel unit tests we generated
helped detect more than 85% of the race conditions involving correlated variables
inside eight different applications.

In the future, we want to optimize the static correlation analysis. We may apply
heuristics for identifying correlated variables to increase the coverage even further.
We may use data mining approaches to infer correlations in addition to data or control
dependencies. Moreover, the region hypothesis established in [21] and advanced in
[3] can supply correlations between more than two variables.

Also, we want to pass the results of our correlation detection to the race detectors
executing the generated parallel unit tests. This would be especially useful for detec-
tors that normally rely on user-specified correlations such as [15,22]. Moreover, race
detectors with automatic correlation detection may profit from our preceding correla-
tion analysis in terms of reduced performance overhead and increased precision.

Finally, we see further research directions in the area of preparatory code analysis.
Generally, race detectors may vary in their effectiveness of detecting specific kinds of
concurrency bugs. Even detectors for correlated variables vary in precision depending
on the structure of the code. Therefore, as a next step, we want to provide analyses
and metrics that tell which race detectors are most suitable for which method pairs in
the code. With this information, we do not have to restrict ourselves to correlated vari-
ables but may also consider detectors for low-level data races or high-level atomicity
violations. As a result, we would be able to tell which race detector is most suited for
executing a parallel unit test.

References

1. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. In: ASPLOS XIII: Proceedings of the 13th International Conference

123

662 Int J Parallel Prog (2016) 44:644–662

on Architectural Support for Programming Languages and Operating Systems, pp. 329–339. ACM,
New York, NY (2008)

2. Schimmel, J., Molitorisz, K., Jannesari, A., Tichy, W.F.: Automatic generation of parallel unit tests.
In: 8th IEEE/ACM International Workshop on Automation of Software Test (AST) (2013)

3. Jannesari, A., Westphal-Furuya, M., Tichy, W.F.: Dynamic data race detection for correlated variables.
In: Proceedings of the 11th International Conference on Algorithms and Architectures for Parallel
Processing, vol. Part I. ICA3PP’11, pp. 14–26. Springer, Berlin (2011)

4. Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R.A., Zhou, Y.: MUVI: automatically inferring
multi-variable access correlations and detecting related semantic and concurrency bugs. In: SOSP
’07: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, pp.
103–116. ACM, New York, NY (2007)

5. Jannesari, A., Tichy, W.F.: Library-independent data race detection. IEEE Transactions on Parallel and
Distributed Systems (TPDS), pp. 1–11 (2013)

6. Jannesari, A., Tichy, W.F.: Identifying ad-hoc synchronization for enhanced race detection. In: IEEE
International Symposium on Parallel Distributed Processing (IPDPS), pp. 1–10 (2010)

7. Jannesari, A., Bao, K., Pankratius, V., Tichy, W.F.: Helgrind+: an efficient dynamic race detector. In:
IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp. 1–13 (2009)

8. Jannesari, A., Tichy, W.F.: On-the-fly race detection in multi-threaded programs. In: Proceedings of
the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging. PADTAD
’08, pp. 6:1–6:10. ACM, New York, NY (2008)

9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation.
Sigplan Not. 42, 89–100 (2007)

10. Luo, Q., Zhang, S., Zhao, J., Hu,M.: A lightweight and portable approach tomaking concurrent failures
reproducible. In: Proceedings of the 13th International Conference on Fundamental Approaches to
Software Engineering. FASE’10, pp. 323–337. Springer, Berlin (2010)

11. Katayama, T., Itoh, E., Ushijima, K., Furukawa, Z.: Test-case generation for concurrent programs with
the testing criteria using interaction sequences. In: Proceedings of the Sixth Asia Pacific Software
Engineering Conference (APSEC ’99). IEEE Computer Society, Washington, DC (1999)

12. Wong, W.E., Lei, Y., Ma, Y.: Effective generation of test sequences for structural testing of concurrent
programs. In: 10th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS 2005), pp. 539–548. IEEE Computer Society, Richardson, TX (2005)

13. Nistor, A., Luo, Q., Pradel, M., Gross, T.R., Marinov, D.: Ballerina: automatic generation and clus-
tering of efficient random unit tests for multithreaded code. In: Proceedings of the 2012 International
Conference on Software Engineering (ICSE 2012), pp. 727–737. IEEE Press, Piscataway, NJ (2012)

14. Cooper, K.D., Harvey, T.J., Kennedy, K.: A Simple, Fast Dominance Algorithm. Technical Report
TR06-38870, Computer Science Department, Rice University, Houston, TX (2006)

15. Musuvathi, M., Qadeer, S.: Chess: systematic stress testing of concurrent software. In: Puebla, G. (ed.)
Logic-Based Program Synthesis and Transformation. Lecture Notes in Computer Science, vol. 4407,
pp. 15–16. Springer, Berlin (2007)

16. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding and reproducing
heisenbugs in concurrent programs. In: Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation. OSDI’08, pp. 267–280. USENIX Association, Berkeley, CA
(2008)

17. Microsoft Code gallery for parallel programs. http://code.msdn.microsoft.com/Samples-for-
Parallel-b4b76364

18. Butler, N.: Petridish: multi-threading for performance in c#. http://www.codeproject.com/Articles/
26453/

19. Reichl, D.: Keepass password safe. http://keepass.info/
20. Smart thread pool. http://smartthreadpool.codeplex.com/
21. Xu, M., Bodík, R., Hill, M.D.: A serializability violation detector for shared-memory server programs.

Sigplan Not. 40, 1–14 (2005)
22. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in an object-oriented

language. In: POPL ’06: Conference Record of the 33rd ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages, pp. 334–345. ACM, New York, NY (2006)

123

http://code.msdn.microsoft.com/Samples-for-Parallel-b4b76364
http://code.msdn.microsoft.com/Samples-for-Parallel-b4b76364
http://www.codeproject.com/Articles/26453/
http://www.codeproject.com/Articles/26453/
http://keepass.info/
http://smartthreadpool.codeplex.com/

	Automatic Generation of Unit Tests for Correlated Variables in Parallel Programs
	Abstract
	1 Introduction
	2 Background
	2.1 High-Level Data Races
	2.2 Variable Correlations
	2.3 Parallel Unit Tests

	3 Related Work
	4 Approach
	4.1 CorrRT in Relation to AutoRT
	4.2 Correlation Patterns
	4.3 Correlation Accesses
	4.4 Endangered Correlations
	4.5 Correlation Rank
	4.6 Example

	5 Implementation
	6 Evaluation
	6.1 Test Environment
	6.2 Race Detection Efficiency
	6.3 Test Case Reduction
	6.4 Time Overhead

	7 Conclusion
	References

