
Modern Scientific Software Management Using
EasyBuild and Lmod

Markus Geimer
Jülich Supercomputing Centre (JSC)
Forschungszentrum Jülich GmbH

52425 Jülich, Germany
m.geimer@fz-juelich.de

Kenneth Hoste
HPC-UGent, DICT
Ghent University

Krijgslaan 281, S9
B-9000 Gent, Belgium

kenneth.hoste@ugent.be

Robert McLay
Texas Advanced Computing Center (TACC)

University of Texas
10100 Burnet Rd

Austin (TX) 78758, USA
mclay@tacc.utexas.edu

Abstract—HPC user support teams invest a lot of time and
effort in installing scientific software for their users. A well-
established practice is providing environment modules to make
it easy for users to set up their working environment. Several
problems remain, however: user support teams lack appropriate
tools to manage a scientific software stack easily and consistently,
and users still struggle to set up their working environment cor-
rectly. In this paper, we present a modern approach to installing
(scientific) software that provides a solution to these common
issues. We show how EasyBuild, a software build and installation
framework, can be used to automatically install software and
generate environment modules. By using a hierarchical module
naming scheme to offer environment modules to users in a more
structured way, and providing Lmod, a modern tool for working
with environment modules, we help typical users avoid common
mistakes while giving power users the flexibility they demand.

I. INTRODUCTION

In a typical desktop environment, it is usually sufficient
to have a single version of a software package installed to
fulfill a particular purpose. HPC systems, on the other hand,
are normally used by a large user community with widely
varying demands. In particular, there is often the need to
make multiple versions of software packages available. These
sometimes include competing packages that provide either
identical or significantly overlapping functionality. Examples
include different implementations of the MPI standard (e.g.,
Open MPI vs. MVAPICH2) and linear algebra packages (e.g.,
OpenBLAS vs. Intel MKL).

A simple yet powerful solution to this issue are envi-
ronment modules [1]–[4], which allow users to easily load,
unload, and switch between software packages by modifying
the user’s environment. This is done by adjusting environment
variables like $PATH and/or setting additional package-specific
variables, for example, to specify a license server. However,
while environment modules are used by many HPC sites
around the world this approach is not without its challenges, a
common one being managing large numbers of modules in a
way that allows individual users to easily control their working
environment.

Providing users an easy way to access the (scientific)
software available on an HPC system is certainly a challenge,
but installing large collections of scientific software packages
is a non-trivial task in its own right. These packages are often
written by domain scientists who are comfortable only with
their own hardware and software environment; the developers
are often not interested in providing a robust build and instal-
lation procedure based on portable build tools [5]. As a result,
system administrators of different HPC sites may find they
have to reinvent the wheel to get a particular software package
installed on their local system. Moreover, this kind of hard-
won experience typically is not shared between HPC sites. In

addition, the required modifications and the exact installation
steps are often poorly—if at all—documented, which signifi-
cantly impedes maintainability and reproducibility of software
installations.

In this paper, we address these issues by introducing
an automated approach to installing scientific software and
organizing the corresponding modules in a hierarchical way.
This is achieved by leveraging the functionality provided by
the two community-driven tools EasyBuild [6] and Lmod [7].
EasyBuild provides a framework for automating software
installations with a particular focus on scientific software
packages—with the intention to collect and share the knowl-
edge that is currently distributed in the HPC community. Lmod
is a significantly enhanced but (largely) backward-compatible
implementation of environment modules including specific
features targeting a hierarchical module organization.

The remainder of this paper is structured as follows. In
Section II, we describe the traditional approach to installing
scientific software stacks on HPC systems, highlighting the
common problems experienced by user support staff and
end users. Section III proposes hierarchical module naming
schemes as a promising alternative, and outlines the associated
implications and issues. In Sections IV and V, we argue
that EasyBuild and Lmod are well suited for dealing with
hierarchical module naming schemes, and describe how these
tools enhance both the user experience and the efficiency
of user support teams. The community-oriented aspect of
both tools, and the synergy between them, is the subject of
Section VI. We discuss future and related work in Sections VII
and VIII respectively, and conclude in Section IX.

II. TRADITIONAL APPROACH

In this section, we describe common approaches that are
traditionally used at HPC sites to install and manage scientific
software over the lifetime of an HPC system. We start by
describing traditional module tools used by many sites, then
introduce the concept of module files and various module
naming schemes in common use today. Next, we review
typical workflows for installing scientific software. Finally,
we highlight the lack of collaboration among HPC sites with
regard to these topics.

A. Providing access to software using environment modules

For software not installed in standard system locations, a
user’s $PATH environment variable is often modified to include
the install location of the binaries it provides, in order to make
them easily accessible. Other environment variables may also
need to be changed: $LD_LIBRARY_PATH for libraries required
at runtime, $CPATH for paths to include directories, etc. One
approach is to provide a shell script for each software package

that users can source to modify their working environment, for
each of the supported shells.

The environment modules system extends this technique by
managing this sourcing step “under the hood.” This approach
has several major advantages. The first is that all users con-
figure their environment in the same way; there is no need for
a separate approach for each type of shell. There are several
popular implementations all sharing a similar user interface
based on a command named module:

% module [options] <subcmd>

Typical subcommands (among many) include load, unload,
list (to list all loaded modules), and avail (to print the
modules that are currently available for loading).

To access a particular software package named ‘foo’, the
user simply ‘loads’ the corresponding module file:

% module load foo

The second major advantage is that users can unload a
previously loaded module, to undo changes in the environment
and restore their environment to the one they had before they
loaded a particular module. This means that users maintain
control of their working environment as they switch between
different versions of the applications, libraries, compilers,
or MPI stacks. These features explain why the environment
module system has become ubiquitous on HPC systems since
the late 1990s.

In all implementations, the module command is imple-
mented as a simple shell function (for Bourne-compatible
shells) or alias (for csh-compatible shells) which evaluates
the commands printed to standard output by a helper tool
(e.g., modulecmd). This helper tool does the heavy lifting:
identifying the specified subcommand, locating and parsing
the corresponding module files, and generating the commands
necessary to modify the user’s environment.

Over time, multiple implementations of the helper tool
have been developed. The original implementation [1] was a
collection of shell scripts. Today, the most commonly used
version is written in C, using the Tcl scripting language to
parse and evaluate module files [8]. A second implementation,
never packaged as a release and still marked as experimental
by the authors, is implemented using only Tcl [8]. For the
most part, these two implementations offer identical func-
tionality, but subtle differences sometimes lead to surprises
when switching between them. A third product, a fork of
the Tcl-only implementation, has been heavily adjusted to
meet the requirements of the DEISA (Distributed European
Infrastructure for Supercomputing Applications) project [9].
In 1997, a C-only implementation named cmod [10] made its
debut, but this product has not been updated since 1998.

While these implementations provide the desired basic
functionality, support has been uneven at best. In all cases,
development progresses slowly. For example, there has been
no activity in (the publicly accessible version of) the Tcl-only
implementation for about two years. It is therefore reasonable
to assume that new features (e.g., improved support for hier-
archical schemes, see below) are unlikely to happen any time
soon. In the case of the Tcl/C implementation there are active
discussions on the modules-interest mailing list, but changes
or improvements are infrequent as well. At the time of writing,
the latest available version (3.2.10) was released Dec. 2012,
which was over one year after the previous release.

In 2009, a radically new implementation of the module
system called Lmod [7] emerged. Implemented from the
ground up in Lua, it is largely compatible with the Tcl-based

implementations. Lmod is actively developed and maintained,
and has an active and thriving community. We discuss Lmod
in detail in Section V.

B. Module files

In essence, module files are shell-independent text descrip-
tions of the changes to a user’s environment required to support
a particular software package. Such changes may include ad-
justing common environment variables such as $PATH, $CPATH
and $LIBRARY_PATH, respectively pointing to the locations
for binaries, header files and libraries, or setting additional
package-specific variables. In addition, module files typically
include a brief one-line description of the package displayed
by module whatis, as well as a longer help text printed
by module help to describe basic usage, where to find the
package documentation, and whom to contact in case of usage
problems.

Module files are searched in directories specified by the
environment variable $MODULEPATH. The name of a module
is defined as the path to the corresponding module file in one
of the directories that are part of $MODULEPATH. For example,
the module file located in <prefix>/GCC/4.8.2 provides
a module for version 4.8.2 of the GNU Compiler Collection
(GCC) with the name GCC/4.8.2, with <prefix> being one
of the $MODULEPATH entries.

C. Module naming schemes

When the environment module system was invented, HPC
sites typically provided a single version of a single compiler on
each of their systems. Today, HPC systems provide multiple
compilers (GCC, Intel, Clang, PGI, . . .), each available in
multiple versions.

In most cases (there are some exceptions for programs
written in pure C), programs compiled with one version of a
compiler cannot safely link to libraries compiled with another.
This means that multiple builds of libraries (e.g., Boost) need
to be provided, one for each compiler and version. Moreover,
since packages such as MPI implementations are inherently
tied to a particular compiler and most often to a particular
version, disambiguating module names can be a daunting
task. For example, modules corresponding to version 1.7.3 of
the Open MPI library built with different compilers might be
named as follows:

% module avail OpenMPI
OpenMPI/1.7.3-GCC-4.8.2
OpenMPI/1.7.3-Intel-14.0

The situation becomes even more complicated for scientific
software packages like WRF [11] compiled with a particular
compiler and linked against a particular MPI library, e.g.:

% module avail WRF
WRF/3.5-GCC-4.8.2-OpenMPI-1.7.3
WRF/3.5-Intel-14.0-MVAPICH2-1.9

Note that such packages in many cases also depend on a set
of mathematical libraries, such as Intel MKL vs. ACML vs.
OpenBLAS+(Sca)LAPACK+FFTW, which complicates mat-
ters even further.

A possible solution to this issue is to define so-called
toolchain modules, packaging together a compiler, an MPI
library, and one or more packages providing linear algebra
and FFT functionality. For example, a goolf toolchain module
may combine (i.e., implicitly load modules for) a compatible
combination of specific versions of GCC, Open MPI, Open-
BLAS, (Sca)LAPACK and FFTW. In this approach, the first
WRF module shown above could instead be installed on top

of such a toolchain, and might take the, slightly shorter, name
WRF/3.5-goolf-1.6.10. One downside of using toolchains
with terse naming conventions, however, is clear: toolchain
names can be cryptic, and the toolchain version generally
has no direct relationship to the versions of the encapsulated
packages, so users lack top-level insight into this information.

One common attempt to manage the potentially over-
whelming set of available module files is to group them in
different subdirectories. This makes it possible to list the
subdirectories separately in the $MODULEPATH, resulting in
clearer, more useful module names that are nicely separated
in the output of module avail, for example:

% module avail
----- <prefix>/compiler -----
GCC/4.8.2 Intel/14.0 Clang/3.4
-------- <prefix>/mpi --------
OpenMPI/1.7.3-GCC-4.8.2
OpenMPI/1.7.3-Intel-14.0

However, this involves picking a single category for each
software package to install, which may become cumbersome
with scientific software that crosses multiple research domains.
The toolchain concept also offers the possibility to categorize
modules by toolchain, but if a software package is available
for multiple toolchains, it will show up in multiple sections of
the module avail output, which is not desirable.

Although all these approaches aim to improve the overall
organization of the available modules, a typical module listing
on an HPC system can still be overwhelming, as the total
number of modules can easily be in the order of several
hundreds. Moreover, none of these approaches prevent (espe-
cially novice) users shooting themselves in the foot by loading
modules which are incompatible to each other. While there are
ways to prevent this, they require identifying and explicitly
listing all conflicting modules. For example, the Open MPI
module may specify that it is incompatible with modules
that load other MPI libraries like Intel MPI or MVAPICH2.
However, this means that these conflict specifications have to
be adjusted every time an additional MPI library is installed
on the system, which is clearly a maintenance nightmare for
system administrators.

The ‘flat’ module naming scheme discussed here is com-
mon, but it places a significant burden on users. If a user
requires only a single application like WRF, picking a module
is fairly straightforward. But when multiple software packages
are required at the same time, e.g., when an application
developer is using multiple libraries to build a parallel ap-
plication, he or she must pick modules for a compiler, MPI
stack and other required libraries that are compatible with
each other. After loading a mismatched set of modules the
user might get lucky: the application might fail to run or die
immediately. However, the application may also fail in subtle
and mysterious ways, and can thus consume a great deal of
time from both users and system staff in trying to resolve the
problem. Section III outlines another approach to remove this
burden from users and staff.

D. Building and installing scientific software

HPC sites around the world use a wide variety of methods
and tools to install scientific software. In this section, we
provide a brief overview of these techniques, highlighting
the associated issues and problems. These observations are
supported by the results of a recent poll concerning these
topics [12].

1) Manual installation: Commonly, sites rely heavily on
the manpower of (a part of) the user support team, and simply
manually install software packages following the install guides

developed internally over time or provided by the respective
software development teams (if the latter are available, current,
and sufficiently detailed).

2) Scripting: Frequently, sites cobble together a collection
of scripts to automate the often repetitive and error-prone tasks
of configuring, building and installing the software packages,
using any of a variety of scripting languages. Typically, this
quickly results in a pile of loosely coupled, hard-to-maintain
scripts, often understood by just a small fraction or even a
single member of the user support team [13]. On top of this,
these scripts tend to encode site-specific software installation
policies, making reuse by other sites difficult (assuming the
scripts are made available to others).

3) Package managers: Yet another approach is to rely on
the package managing tools used by the operating system,
e.g., RPMs and yum for RedHat-based systems, apt-get
and Debian packages for Debian-like systems, Portage for
Gentoo, etc. Package managers provide adequate support for
some aspects of installing large software stacks, including
dependency tracking/resolution, software updates, uninstalling
software, etc. However, they are ill-suited for dealing with
certain peculiarities that come into play when installing sci-
entific software on HPC systems. These include supporting
multiple builds/versions of the same software package to be
installed at the same time, and heavily customized install
procedures involving non-standard techniques beyond the com-
mon configure – make – make install paradigm. In
addition, the package specification formats (e.g., .spec files
for RPMs) tend to provide little support for factoring out
common patterns in install procedures, leading to copy-pasted,
hard-to-maintain package specifications.

Several of the larger HPC sites in the world take this
approach, since they are able to dedicate large amounts of
manpower to the task of installing scientific software, but
this is typically infeasible for smaller HPC sites. Besides
these concerns, the effort spent on shoe-horning the install
procedures of scientific software into package specifications
are unlikely to benefit other HPC sites: site-specific installation
policies require labor-intensive modifications, and redistribu-
tion of packaged builds is sometimes prohibited for licensed
software.

Examples include LosF [14] developed by the Texas Ad-
vanced Computing Center (TACC) to leverage RPMs devel-
oped in-house (encapsulating both the software itself and the
accompanying module file), the XSEDE Compatible Basic
Cluster (XCBC) [15] which provides a collection of RPMs that
allow for making an HPC system ‘XSEDE-compatible’, and
CernVM-FS [16], a read-only distributed file system based on
HTTP which is optimized to distribute readily built software
applications.

4) Custom tools: Other solutions include custom-made
tools for installing scientific software on HPC systems. We
briefly discuss a number of these in Section VIII. Typically,
these tools begin as a collection of scripts and mature as the
complexity of the local operation increases; they often reach
a point where they may prove useful for other sites. Unfortu-
nately, these projects typically die a silent death as quickly
as they surfaced: the sole original developer is no longer
available, the documentation is inadequate, or the infrastructure
is not sufficiently flexible or feature-rich to support the needs
of multiple sites. In Section IV we discuss in detail one notable
exception, EasyBuild [6].

5) Creating module files: It is tempting to deem module
files “simple enough” to create manually, and in fact this is
common practice. However, this significantly impedes the goal
of maintaining a consistent set of module files. Moreover, the
burden of doing this work often falls on a small number of

intrepid staff members (if not a single person). This is clearly
a major concern on production systems, where continuity of
support is a high priority.

E. Lack of collaboration

Even though these problems are well recognized, there is
an abundant lack of available tools and practices for address-
ing them. Moreover, there has been very little collaboration
between HPC sites on these issues, despite the significant
burden they present for support staff. This is especially true at
smaller sites. Even though HPC sites around the world all face
these problems, the duplication of effort and associated labor
cost is alarming. There is a tremendous opportunity here: we
all stand to benefit from collaborative initiatives that leverage
the immensely valuable expertise available across HPC sites
worldwide.

In the remainder of this paper we seek to help resolve
these problems by describing a modern, robust, and flexible
alternative to these traditional approaches.

III. HIERARCHICAL MODULE NAMING SCHEME

Using a hierarchical module naming scheme is an excellent
way to help users avoid the pitfalls described earlier. This
approach makes it possible to organize environment modules in
a more structured way. The key idea is to make modules avail-
able in a step-by-step fashion as their dependencies become
part of the user environment. Initially only a small number of
so-called core modules are available to the user. Core modules
are those that do not depend on software choices available to
the user; they are either completely self-contained or depend
only on basic system software. Examples include modules for
compilers, and statically linked software like debuggers.

These core modules extend the module search path
($MODULEPATH) when loaded to make additional modules
visible, for example the ones which are built with—and
therefore depend on—the compiler being loaded. Separate
sub-directories for each version of each compiler store the
software and module files that depend on that compiler. For
the Open MPI example presented in Section II-C, this means
that the user only sees the module for Open MPI 1.7.3 that
depends on the current compiler of choice:

% module avail
------------ <prefix>/Core ------------
GCC/4.8.2 Intel/14.0 Clang/3.4
% module load GCC/4.8.2
% module avail
------------ <prefix>/Core ------------
GCC/4.8.2 Intel/14.0 Clang/3.4
----- <prefix>/Compiler/GCC/4.8.2 -----
OpenMPI/1.7.3

Such a module hierarchy is not limited to a single level. The
module files for each MPI implementation, for example, can
further extend $MODULEPATH to make visible the modules that
depend on the currently loaded compiler and MPI stack.

A. Advantages over traditional module naming schemes

Using a hierarchical module naming scheme has a number
of important advantages. First, at any point in time, users see
only the modules which are meaningful in the current context.
That is, the list of available modules is much shorter and
grouped by level of the hierarchy. This is easier for users
to process when hundreds of modules are provided (which
is generally the case on large HPC systems).

Second, encoding the dependency chain in the module
name is no longer necessary. This leads to significantly shorter

and more intuitive module names, usually consisting of the
software name and version, e.g., WRF/3.5 instead of the long
and cryptic module names shown in Section II-C.

Third, loading incompatible modules is much more diffi-
cult, which eliminates a broad class of subtle errors that are
difficult to debug. This not only dramatically improves the user
experience; it also significantly reduces the time a user support
team needs to spend on related problems.

Finally, this structured organization of module files pro-
vides a number of new opportunities to enhance the user ex-
perience. One significant example is module swapping: when
the user chooses a new compiler or MPI stack by executing a
command like module swap GCC Intel, the module system
could (and should) automatically replace higher-level modules
with new versions compatible with the user’s new lower-level
selections. We strongly believe that this capability should be
part of any robust module system; see Section III-B.

B. Using a hierarchical module naming scheme
In theory, the commonly used Tcl/C and Tcl-only environ-

ment modules tools both support the concept of hierarchical
modules. This is because these tools function in a way that is
essentially independent of any particular choice in organizing
the module files. In practice however, some difficulties when
using these tools with a module hierarchy come forward.

1) Visibility of modules: In the hierarchical scheme we
describe above, a module is not available (visible) to the user
until its lower-level modules are loaded. This is by design, and
has great advantages. But a module system should not leave
to the user the burden of locating modules of interest in a
complicated directory structure. Instead, the module system
should provide a built-in, natural mechanism for exposing
hierarchies and dependencies, and make it possible for users to
load required modules without resorting to raw searches of the
system’s directory structure. In particular, the module system
must provide a means for displaying relevant information about
modules that are outside of the current module search path.

2) Awareness of $MODULEPATH extensions: The modules
tool should be aware of the changes to the module search path
that occur when loading modules in a hierarchical scheme.
This is what makes automatic module swapping possible.
When the user executes module swap to replace one module
with another, the tool needs to i) detect that a particular module
depends on the module being swapped out (this requires
an awareness of the hierarchical structure); ii) unload the
dependent modules and iii) afterwards automatically (try to)
replace them with equivalent compatible modules, taking into
account the correct order in which to (re)load those.

3) Module availability on different paths in the hierarchy:
The modules tool also needs to take into account that it may
not always be possible to reload all dependent modules after
swapping modules. When swapping one compiler for another
for example, it is possible that no compatible version of a
higher-level module is available. Unless the modules tool deals
with this issue appropriately, the user could end up stuck with
a broken environment somewhere between the original state
(before the swap) and the intended end state (in which all
dependent modules are reloaded). Ideally, the modules tool
should notify the user when dependent modules cannot be
reloaded. Moreover, if the modules tool can keep track of
which modules failed to reload it can also support the ability to
revert the swap, and restore the original set of loaded modules.

The existing Tcl/C and Tcl-only modules tools currently do
not provide any of this functionality. At one point, the Tcl-only
tool did briefly support reloading dependent modules after a
module swap, but this capability later disappeared because of
incompatibility with the Tcl/C version.

C. Maintaining a module hierarchy

Next to the important issues related to using a module
hierarchy discussed in the previous section, an additional
consideration is the potential impact on the user support staff
maintaining the modules.

In particular, a great deal of care must be exercised in
constructing module files for a hierarchical software stack; fail-
ing to do so can produce unexpected results and inconsistent
environments. One must think carefully about the necessary
module search path extensions required at different levels of
the hierarchy, take dependencies into account, and consider
the order in which users should load modules. Addition-
ally, the module files must be designed such that they use
the short name visible to users (e.g., WRF/3.5) rather than
the ‘full’ name relative to the top of the hierarchy (e.g.,
MPI/GCC/4.8.2/OpenMPI/1.7.3/WRF/3.5).

Creating module files manually is already a tedious task;
doing so by hand in a hierarchical context only further compli-
cates this. It should be clear that a modern HPC environment
requires powerful, flexible, and reliable tools and techniques
that truly automate the task of installing scientific software.

In the sections that follow we describe how two
community-driven tools work together to achieve this task:
EasyBuild, a software build and installation framework, and
Lmod, a modern alternative to the Tcl-based environment
modules tools. Because our experience confirms the substantial
benefits of a hierarchical module naming scheme, and because
we strongly believe that the HPC community is ready to (and
should) move in this direction, we focus primarily on the
aspects of these tools that support this approach.

IV. EASYBUILD: AUTOMATED SOFTWARE INSTALLATION

EasyBuild [6] is a software build and installation frame-
work written in Python. Its primary goal is to alleviate the ubiq-
uitous burden of building and installing scientific software [5].

The EasyBuild project was started in 2009 by the HPC
team of Ghent University (Belgium), out of frustration over
the lack of appropriate tools for dealing with the installation
of scientific software. The first public release of EasyBuild
(version 0.5) occurred in April 2012 under an open source
license (GPLv2), after 2.5 years of in-house development.
In November 2012, EasyBuild v1.0 was released featuring a
stable API. Under a ‘release early, release often’ strategy with
a new major release every 4 to 6 weeks, the development team
has a strong focus on continuous, high quality maintenance,
support, and improvement. At the time of writing, the latest re-
lease is EasyBuild v1.15.2 (Oct’14). This version only supports
x86-based Linux systems, however support for other platforms
(Linux/POWER, Cray, . . .) is being developed.

Under the motto “building software with ease”, EasyBuild
aims to provide an easy yet powerful way to automatically
install (scientific) software stacks, in a robust, consistent and
reproducible way. Its design is deliberately made very flexible
and modular (see Sections IV-C2 and IV-C3) making it a
well suited platform for collaboration across HPC sites, as is
confirmed by the steadily growing EasyBuild community (see
Section VI-A).

A. Concepts and design

EasyBuild consists of a collection of Python modules and
packages that interact with each other, dynamically pick-
ing up additional Python modules as needed for building
and installing a (stack of) software package(s) specified via
simple specification files. Or, in EasyBuild terminology: the
EasyBuild framework leverages easyblocks to automatically

build and install software using a particular compiler toolchain,
as specified by one or multiple easyconfig files.

1) EasyBuild framework: The EasyBuild framework em-
bodies the core of the tool, providing functionality commonly
needed when installing scientific software on HPC systems.
For example, it deals with downloading, unpacking, and patch-
ing of sources, loading module files for dependencies, setting
up the build environment, autonomously running (interactive)
shell commands, creating module files that match the specifi-
cation files, etc.

Included in the framework is an ‘abstract’ implementation
of a software build and install procedure, which is split up
into different steps: unpacking sources, configuration, build,
installation, module generation, etc. Most of these steps, i.e.,
the ones that are generally more-or-less analogous across
different software packages, have appropriate (default) imple-
mentations. The only exceptions are the configuration, build
and installation steps that are purposely left unimplemented
(since there is no common procedure for them). Each of the
steps can be tweaked and steered via different parameters
known to the framework, for which values are either obtained
from the provided specification files (see Section IV-A4) or set
to reasonable default values.

In EasyBuild v1.15.2 the framework source code consists
of about 19 000 lines of code, organized across about 125
Python modules in roughly a dozen Python package directo-
ries, next to almost 7 000 lines of code for tests. This provides
some notion of the size of the EasyBuild framework and the
amount of supporting functionality it has to offer.

2) Easyblocks: The implementation of a particular software
build and install procedure is done in a Python module, which
is aptly referred to as an ‘easyblock’. Each easyblock ties in
with the framework API by defining (or extending/replacing)
one or more of the step functions that are part of the abstract
procedure used by the EasyBuild framework. Easyblocks typ-
ically heavily rely on the supporting functionality provided by
the framework, for example for (autonomously) executing (in-
teractive) shell commands and obtaining the command output
and exit code.

A distinction is made between software-specific and
generic easyblocks. Software-specific easyblocks implement
a build and install procedure which is entirely custom to
one particular software package (e.g., WRF), while generic
easyblocks implement a procedure using standard tools (e.g.,
CMake). Since easyblocks are implemented in an object-
oriented scheme, the step methods implemented by a particular
easyblock can be reused in others via inheritance, enabling
code reuse across build procedure implementations. This is a
major advantage over a script-based approach which typically
involves lots of copy-pasting of code.

For each software package being built, the EasyBuild
framework will determine which easyblock should be used,
based on the name of the software package or the value of
the easyblock specification parameter. In case an easyblock
specification is not provided and no (software-specific) easy-
block matching the software name could be found, a fallback
mechanism will resort to using the generic ConfigureMake
easyblock, which implements the common configure – make
– make install procedure.

At the time of writing, the most recent release of EasyBuild
(v1.15.2) includes 139 software-specific easyblocks and 20
generic easyblocks, providing support for automatically in-
stalling a wide range of software packages. Examples range
from fairly easy-to-build programs like gzip, over basic tools
like compilers, various MPI stacks and commonly used li-
braries, to large scientific software packages that are notorious

for their involved and tedious install procedures, such as CP2K,
NWChem, OpenFOAM, QuantumESPRESSO, and WRF.

3) Compiler toolchains: EasyBuild also employs so-called
‘compiler toolchains’ (or simply ‘toolchains’ for short), which
were already mentioned in Section II-C. A toolchain consists
of a (set of) compiler(s), usually together with some libraries
for specific functionality, e.g., for using an MPI stack for
distributed computing, or which provide optimized routines
for commonly used math operations, e.g., the well-known
BLAS/LAPACK APIs for linear algebra routines. For each
software package being built, the toolchain to be used must
be specified (see Section IV-A4).

The EasyBuild framework prepares the build environment
for the different toolchain components, by loading their respec-
tive modules and defining environment variables to specify
compiler commands (e.g., via $F90), compiler and linker
options (e.g., via $CFLAGS and $LDFLAGS), the list of library
names to supply to the linker (via $LIBS), etc. This enables
making easyblocks largely toolchain-agnostic since they can
simply rely on these environment variables; that is, unless they
need to be aware of, for example, the particular compiler being
used to determine the build configuration options.

Recent releases of EasyBuild include out-of-the-box
toolchain support for: various compilers, including GCC, Intel,
Clang, and CUDA; common MPI libraries such as Intel MPI,
MPICH2, MVAPICH2, and Open MPI; various numerical li-
braries including ATLAS, Intel MKL, OpenBLAS, and ScaLA-
PACK; and libraries providing FFT routines like FFTW.

4) Easyconfig files: The specification files that are supplied
to EasyBuild are referred to as ‘easyconfig files’ (or simply
‘easyconfigs’), which are basically plain text files containing
(mostly) only key-value assignments for build parameters
supported by the framework, also referred to as ‘easycon-
fig parameters’. Some parameters are mandatory, like name
and version to specify which software (version) should be
installed, toolchain to indicate which compiler toolchain
should be used, etc. Others are optional, and have appropriate
defaults set for them in the EasyBuild framework; examples
include buildopts to specify options for the build command,
and dependencies to list the software dependencies that
should be taken into account. Note that easyconfig files only
provide the bits of information required to determine the cor-
responding module name; the module name itself is computed
by EasyBuild framework by querying the module naming
scheme being used, see also Section IV-D. The complete list
of supported easyconfig parameters can be easily obtained via
the EasyBuild command line.

As such, each easyconfig file provides a complete specifica-
tion of which particular software package should be installed,
and which settings should be used for building it. After com-
pleting an installation, EasyBuild copies the used easyconfig
file to the install directory, and also supports maintaining an
easyconfig archive which is updated on every successful instal-
lation. Therefore, reproducing installations becomes trivial.

EasyBuild v1.15.2 includes over 2 800 easyconfig files, for
511 different software packages.

B. Basic usage

As the name suggests, EasyBuild is intended to be par-
ticularly easy to use. A script aptly named eb is provided to
interact with the EasyBuild framework. Launching eb with
an easyconfig file as an argument triggers a series of events.
First, the easyconfig file will be parsed by the EasyBuild
framework to determine which software package needs to be
installed, and which easyblock and build parameters should
be used. Afterwards, the environment is prepared by loading

the modules for the specified toolchain and dependencies—if
those are available—and the toolchain support in the frame-
work defines additional environment variables as discussed in
Section IV-A3. In case the required modules are not available
an appropriate error message is shown, unless the automatic
dependency resolution mechanism is enabled via the command
line option --robot (see Section IV-C1 for more details).
Next, the appropriate build and install procedure is executed
step by step, as defined by the framework and the selected
easyblock. Finally, if the installation was successful, a module
file is generated that matches the used specifications in terms
of module name and contents.

For example, the following command line instructs
EasyBuild to install WRF v3.5 and its missing dependencies
with the goolf toolchain v1.6.10, as specified by the provided
easyconfig file:

% eb WRF-3.5-goolf-1.6.10.eb --robot

Further details on using eb are beyond the scope of this paper;
we refer to eb --help and the EasyBuild wiki pages [17] for
extensive documentation.

C. Feature highlights

We now briefly highlight the key features of EasyBuild that
are relevant to the topic of this paper, including automatically
resolving dependencies and the flexibility of the EasyBuild
framework. Other interesting features which are not discussed
here include, but are not limited to, thorough logging of
the build and install process, support for tweaking provided
easyconfig files directly from the eb command line, and off-
loading individual installations to a cluster resource manager
like PBS.

1) Automatic dependency resolution: EasyBuild supports
installing an entire software stack, including the required
toolchain if needed, with a single eb invocation. By enabling
the --robot command line option, the dependency resolution
mechanism will construct a full dependency graph for the
software package(s) being installed, after which a list of
dependencies is composed for which no module is available
yet. Each of the retained dependencies will then be built and
installed, in the required order as indicated by the dependency
graph. This is particularly useful for software packages that
have an extensive list of dependencies, or when reinstalling
software using a different compiler toolchain.

2) Configurability: Allowing users to modify EasyBuild’s
default behavior to their needs is another important feature.
EasyBuild can be configured in three different ways: via one
or more configuration files, via environment variables prefixed
with EASYBUILD_, and via command line options. For each
command line option, a matching environment variable can be
set or matching setting can be defined in a configuration file.
Command-line options overrule environment variables, while
they in turn take precedence over configuration files, resulting
in a flexible way of controlling EasyBuild’s behavior. Con-
figuration parameters are available for straightforward aspects
such as the installation prefix for software and module files,
but also, for example, for the log level, the modules tool, and
the module naming scheme that should be used.

3) Dynamic extensibility: Another key feature is that
EasyBuild can be extended dynamically, i.e., the framework
is designed such that additional functionality can be easily
plugged in: additional easyblocks, support for more compil-
ers and libraries to be part of a toolchain, custom module
naming schemes, etc. Extending EasyBuild is done by im-
plementing a Python module in the required namespace (e.g.,
easybuild.easyblocks), and modifying the $PYTHONPATH

environment variable to make sure that it is available in the
Python search path at runtime. Every time eb is used, the
framework will ‘scan’ the Python search path to determine
the available options for each of the dynamically extendable
aspects. This provides EasyBuild users the freedom to exper-
iment with functionality which is not (yet) available in the
particular version they are using, or to extend the supported
options for different aspects of EasyBuild with additional
site-specific options, e.g., easyblocks for in-house software
packages or a custom module naming scheme.

D. Support for hierarchical module naming schemes

Since EasyBuild v1.14.0, sufficiently fine-grained con-
trol of the active module naming scheme is available
to support custom hierarchical module naming schemes.
As discussed in Section IV-C, it suffices to imple-
ment the specific details of the hierarchical module nam-
ing scheme in a Python module, which must live in
the easybuild.tools.module_naming_scheme names-
pace. In particular, the Python module must provide a Python
class that derives from the ‘abstract’ ModuleNamingScheme
class provided by the EasyBuild framework, and de-
fines a number of methods that cover different as-
pects of the module naming scheme. For example, the
det_modpath_extensions method must return a list of
strings representing $MODULEPATH extensions, given a parsed
easyconfig file as an argument. This is a simple yet powerful
approach, providing full control over all particular aspects of
the module naming scheme. With this in place, EasyBuild must
be configured to use this particular module naming scheme, see
also Section IV-C2.

Letting EasyBuild automatically generate module files un-
der a specified (hierarchical) module naming scheme stands in
stark contrast with the practice of manually creating module
files while trying to consistently apply site policies. It avoids
the various issues involved with manually creating module
files with respect to consistency and correctness which were
discussed in Section II, and as such mostly relieves user
support teams from another tedious task related to installing
scientific software.

V. LMOD: A MODERN MODULES TOOL

Lmod [7], [18], [19] is a Lua-based [20], modern alterna-
tive to the traditional environment modules implementations. It
is a drop-in replacement for the Tcl/C and Tcl-only implemen-
tations, except for a few corner cases, and can consume module
files written in both Tcl and Lua. Its primary design goals are
to empower users to control their working environment and
improve the user experience without hindering experts.

Lmod began as a prototype designed to test ideas on how
to manage a hierarchical module system. Early on, it became
clear that existing tools were inadequate; the developers began
a complete rewrite based on the clean and powerful constructs
of the Lua programming language. Lua also fills the same
niche for which Tcl was originally designed: both languages
embed and extend easily into other programs. Lmod’s pre-
release versions proved to be fast, flexible, and robust; the
system quickly moved from a prototype to a worthy replace-
ment for the other, established modules tools.

October 2008 marked the first public release of Lmod; it
has been under active development ever since. TACC adopted
Lmod for its production systems in October 2009. Since
February 2011, there have been 153 tagged versions and 30+
official releases. At the time of writing, the latest available
version is 5.7.5.

A. Support for hierarchical module naming schemes

The key to Lmod’s support for a module hierarchy is
the fact that it monitors changes to $MODULEPATH. Doing
so enables it to support the advanced notion of swapping
hierarchical modules from the ground up, resolving the issues
described in Section III-B.

Swapping one (core) compiler module for another using
Lmod triggers a chain of events. The loaded compiler module
is unloaded, causing the matching paths to be removed from
$MODULEPATH. Subsequently, any loaded modules for MPI and
other packages that depend on it are unloaded as well, because
the respective module files are no longer available in the active
module search path. These modules are marked inactive. Next,
the new compiler module is loaded, causing new entries to
be added to the $MODULEPATH. This triggers a search for a
compatible module in the new module search path for each of
the inactive modules.

For example, swapping a loaded GCC compiler module for
the Clang module results in reloading the modules that depend
on it, e.g., FFTW (a parallel FFT library) and MPICH (an MPI
library):

% module list
Currently loaded modules:
1) GCC/4.8.2 2) MPICH/3.1.1 3) FFTW/3.3.2
% module swap GCC Clang
The following have been reloaded:
1) FFTW/3.3.2 2) MPICH/3.1.1
% module list
Currently loaded modules:
1) Clang/3.4 2) MPICH/3.1.1 3) FFTW/3.3.2

Lmod lists reloaded modules alphabetically after a module
swap, while the output of the module list command lists
them in the order in which they were loaded.

Another key issue with a hierarchical layout of modules
is that not all existing modules are visible through module
avail (see Section III-B1). Lmod includes a new command,
module spider, to search for modules across the entire
module tree and report all existing modules. The semantics
of module avail is the same as it is with other module tools
to ensure compatibility; this command reports all modules
that can be loaded in the current context (determined by
$MODULEPATH).

The ability to maintain a consistent set of hierarchical
modules and navigate the module tree outside of the current
$MODULEPATH are among the key strengths of Lmod. There
are however a number of other interesting features, many of
which have been implemented in response to requests by the
members of the vibrant and demanding Lmod community.

B. The ml command and unload/swap shortcut

Lmod provides a additional command named ml for those
who tend to misspell the moduel, mdoule, err module com-
mand, which focuses on commonly used subcommands. With-
out arguments ml is a synonym for module list, while using
it with an argument that is not recognized as a subcommand
(e.g., ml foo) corresponds to loading the specified module
(e.g., module load foo). ml accepts other subcommands
associated with module; for example ml avail and module
avail are equivalent. In the unlikely case that a module name
is the same as a subcommand supported by Lmod, some care
must taken when using ml. For example, loading a module
named spider should be written as ml load spider.

Another shortcut supported by the Lmod command line is
unloading modules by prefixing module names with a minus

sign (‘-’). This also allows users to swap both the compiler
and MPI stack with a single command, for example:

% ml -GCC -MPICH Clang OpenMPI

which is equivalent to:

% module swap GCC Clang
% module swap MPICH OpenMPI

C. Properties
Lmod also makes it possible to assign properties to mod-

ules, indicating that a package has some particular capability
or characteristic. This is particularly useful on modern su-
percomputers that include one or more types of accelerators,
e.g., GPUs or Intel Xeon Phi coprocessors. To designate that
libraries or applications support execution on (one of) these
accelerators, one can assign properties in the corresponding
module files using the add_property function. Module prop-
erties are reported in the output of module subcommands,
making them visible to users:

% module list
Currently Loaded Modules:

1) Intel/14.0.2 3) MPICH/3.1.2
2) imkl/11.1.3.174 (*) 4) Boost/1.55.0 (P)

Where:
(*): supports host, native and offload
(P): built for host and native Phi

Another use of this feature is marking modules as ‘alpha’
or ‘beta’ to characterize the maturity and stability of the
associated software. Sites can easily add properties of their
own.

D. Caching

Support for module properties does add a complication,
however. Without properties, the avail subcommand only
requires the names of available module files, not their contents.
However, to support properties Lmod must parse the contents
of all module files, whether or not these files include properties.
On some file systems this can be slow. To mitigate this,
Lmod supports caching of module files, as reading one single
(possibly large) file is faster than walking a directory tree
and reading lots of small files. Caching also makes other
subcommands, e.g., module spider, significantly faster. An
Lmod module file cache is also referred to as ‘spider cache’;
both system-level and user-level caches are supported.

Lmod contains hooks to check whether a cache is up-
to-date and will update a user-level cache when deemed
necessary, i.e., when executing a particular subcommand is
taking too long. System cache files can be recomputed after
(re)installing software and/or periodically via a dedicated cron
job. Usually, the presence of a system-level cache eliminates
the need for a user-level cache. Lmod trusts existing cache files
in all cases except for the load subcommand, that is, modules
can be loaded even if the cache is slightly out-of-date (e.g.,
immediately after installing a new software package).

E. Module families

Another Lmod enhancement is support for module families
via calls to the family function in module files. Families are
an alternative approach to managing module conflicts; only one
module of a particular family can be loaded at any given time.
While conflicts can only be defined based on module names,
module family ‘labels’ can be chosen freely and are easy to
maintain: a new family member does not require changes to
existing module files.

For example, one might define a compiler family, by
simply including family("compiler") in each compiler
module file. This would result in the following meaningful
error message when a user tries to load two compiler modules
at the same time:

% module load Clang
% module load GCC
Lmod has detected the following error:
You can only have one compiler module loaded.
To correct this, please do the following:

module swap Clang GCC

The constraint of only allowing to load one module per family
can be disabled by using Lmod in ‘expert mode’, by defining
the $LMOD_EXPERT environment variable.

F. Customizing Lmod behavior and hooks

Another key Lmod feature is support for site-specific
customizations via a file named SitePackage.lua. Lmod
provides several hook functions, allowing sites to plug in
additional functionality. For example, using the available hook
for the load subcommand, a site can add a new accompanying
action. A typical example is a message logger: by adding this
action to the load subcommand, a site can collect and analyze
module usage across the entire system.

G. pushenv: stack-based setting of environment variables

Environment module systems support the setenv function
for defining environment variables via module files. When a
module file is unloaded, any environment variables that were
defined by that module are cleared. In some cases, however,
this can be problematic: the environment variable may have
had a meaningful value before the module was loaded.

Lmod enables a more sophisticated approach by support-
ing a stack-based alternative via the pushenv function. For
environment variables defined in this way, Lmod maintains a
hidden stack in the environment so that previous values can
be recovered. For example, consider a module for the GCC
compiler that defines $CC to be gcc, while a module for
the Open MPI library sets $CC to mpicc. The following table
shows the value of $CC for a series of module commands,
depending on whether setenv or pushenv is used:

command setenv pushenv
export CC=icc icc icc
module load GCC gcc gcc
module load OpenMPI mpicc mpicc
module unload OpenMPI (none) gcc
module unload GCC (none) icc

Note that modules using pushenv properly restore the previ-
ous value for $CC when they are unloaded.

H. Module collections

One final feature of Lmod worth mentioning is the support
for user-defined collections of modules. Collections allow
users to define and name sets of module files that can be loaded
with a single command, or automatically on startup. Users only
need to load the desired modules and then execute module
save with an optional name specified as an argument; omitting
the name defines the default collection. Users can list the
available collections via module savelist or the shorthand
ml sl. A collection can be restored by specifying its name to
the restore subcommand. The module restore command
without an argument (or starting a new login session) reloads
the default module collection. This is a powerful, popular way
to efficiently manage working environments.

VI. OTHER ASPECTS TO EASYBUILD & LMOD

A. Communities

Active development and vibrant communities characterize
both EasyBuild and Lmod. Requests and suggestions from
their respective community lead to new features implemented
by the core development teams. The users themselves also
significantly contribute by reporting bugs, sharing patches, and
even implementing new features that make their way into the
public baselines. This effectively makes both tools platforms
for collaboration, letting all users benefit from enhancements.

Estimating the size of these communities is difficult.
Roughly a dozen different HPC sites actively contribute to
EasyBuild, with several others using it. The EasyBuild mailing
list has about 70 subscribers to date, so an estimate of over
one hundred users is plausible. The EasyBuild IRC channel,
one of the other main community hubs, has about a dozen
of daily active users. HPC sites all over the world are using
EasyBuild, including various sites in Europe (e.g., Jülich Su-
percomputing Centre in Germany), Idaho National Laboratory
(US), University of Auckland (New Zealand), etc., as well as
some commercial companies (e.g., Bayer).

The Lmod mailing list has about 50 subscribers, which is
no more than 20% of the Lmod community. Since a couple of
hundred HPC sites already deploy Lmod, the actual number of
Lmod users is certainly many thousands. TACC, with 15 000–
20 000 users on three major systems, provides only Lmod as
a modules tool. Lmod downloads from the SourceForge code
repository number several thousand, across all versions. Lmod
is deployed at numerous HPC sites world-wide, including
North America (TACC, Stanford, Harvard, etc.) and Europe
(University of Warwick (UK), Arctic University of Norway,
etc.), and also has commercial users, including Total.

B. Synergy

Recently, the EasyBuild and Lmod teams have developed
a strong and mutually beneficial synergy. Both projects have a
community-oriented vision and highly value flexibility, which
appeals to users from both communities. Since EasyBuild
makes installing scientific software significantly easier, user
support teams can quickly generate many environment mod-
ules, which could become overwhelming for users. This
strengthens the need for a modern modules tool that can
efficiently deal with large collections of available modules,
which led to the EasyBuild community reaching out to the
Lmod community. Since then, support for using Lmod as a
modules tool and hierarchical module naming schemes has
been integrated into EasyBuild, and further enhancements are
planned (see also Section VII).

Similarly, Lmod has benefited greatly from feedback by
EasyBuild users. For example, support for pushenv (see
Section V-G) grew out of discussions on the Lmod mailing list
by EasyBuild stakeholders. Recent versions of Lmod have also
included significant speed improvements triggered by issues
uncovered through EasyBuild. A particular example is the
fact that the module --terse avail command, which
provides machine-readable output and is used by EasyBuild, no
longer parses module files to obtain module properties, since
this is not necessary to compose the terse output text.

The synergy between EasyBuild and Lmod results in
improved tools on both sides, and is driving the state of the
practice in directions that we hope will have major impact.

VII. FUTURE WORK

Although the latest versions of both EasyBuild and Lmod
already provide flexible support for hierarchical module nam-
ing schemes, further enhancements to extend the capabilities

and improve the user experience are planned. Here we outline
several promising possibilities.

The latest public version of EasyBuild is still unaware
of Lmod-specific concepts that can be included in mod-
ule files, like properties and families. Additionally, other
concepts including non-strict version specifications, e.g.,
load(atleast("GCC","4.8")), in load statements can
only be included in Lua module files. Integrating these capa-
bilities into EasyBuild will greatly enhance the value of both
products, since it would allow HPC sites to maintain module
families and properties with little effort.

Although the required support is available, a deeper mod-
ule hierarchy that better matches the toolchain concept in
EasyBuild is worth working out. Usually only the Compiler
and MPI hierarchy levels are used, while EasyBuild toolchains
typically also include math libraries. Extending the two-level
hierarchy to capture this level of flexibility is not straight-
forward however; BLAS/LAPACK/FFT functionality can be
provided by one single library (e.g., Intel MKL), or by multiple
distinct libraries (e.g., OpenBLAS, LAPACK and FFTW). This
complicates the design of a deeper hierarchy that supports
swapping one math library for one or more alternatives.

Related to this is the more generic concept of a ‘multi-
dimensional’ module hierarchy, also referred to as a module
‘matrix’, which is currently an area of active research. In such a
multi-dimensional module hierarchy, the goal is that a module
would only become available when multiple other modules
are loaded together. This is useful for software packages that
provide support for multiple libraries that incorporate some
particular functionality, like the parallel solver library PETSc
which supports different LAPACK/FFT libraries. In such a
module hierarchy a module for PETSc, for example, would
not be available until modules for both, e.g., OpenBLAS and
FFTW have been loaded. On top of this, the system should
also support swapping out the loaded modules for OpenBLAS
and FFTW for one single module providing equivalent func-
tionality (e.g., an Intel MKL module), and trigger a reload
of the PETSc module. Supporting this would be particularly
useful for application developers and benchmarking studies.

Another improvement to EasyBuild would be a dependency
resolution mechanism that is aware of subtoolchains. When the
EasyBuild framework checks the availability of modules that
match the required dependencies, it only uses the toolchain
selected for the software being installed (unless this is overrid-
den specifically on a per-dependency basis). This may require
that modules which are, for example, only dependent on a
compiler are built and installed multiple times with different
toolchains, even though they are providing the same software
builds. This yields more modules than required and consumes
additional disk space. Checking for modules that were installed
with a compatible subtoolchain (providing for example only
the compiler) would ensure that these tools only need to be
installed once.

Mixing environment modules installed with different nam-
ing schemes leads to problems, especially when both flat
and hierarchical module naming schemes are in place. As a
result, migrating to a hierarchically organized set of modules
can be painful. To enable a smooth transition, a separate
module tree with a different layout would allow users to opt
out of the old layout gradually. This requires that EasyBuild
supports generating multiple module files for a single software
installation under different naming schemes. It should also be
possible to (re-)generate only a module file for an existing
software installation, so that an alternative module stack can
be populated without having to re-install the software itself.

VIII. RELATED WORK

We are aware of a number of projects similar to EasyBuild.

SWTools [21], [22] is an “infrastructure for software
management” which was developed by National Center for
Computational Sciences (NCCS) and Oak Ridge National
Lab (ORNL). It defines a structure for organizing a set of
(bash) scripts per supported software package, one per major
installation step (configuration, build, test, installation, etc.),
allowing for easily reproducing software installations. It also
takes care of generating module files, and is able to update
documentation listing the available software packages. Only
one version is publicly available, SWTools v1.0, which was
released Jan. 1st 2011.

Smithy [23] is a follow-up to SWTools, and is also be-
ing developed at NCCS/ORNL. It is compatible with the
SWTools infrastructure and hence can be used as a drop-
in replacement, but also supports an alternative approach
using formulas following the well-established Homebrew [24]
package management system for Mac OS X. As such, it
provides supporting functionality readily available to be used
in these formulas, and enables code reuse across formulas.
Smithy is publicly available alongside detailed documentation.
The development activity has slowed down significantly since
Sept. 2013, with occasional changes mostly focusing on bug
fixes. Smithy formulas are available for about 80 software
packages.

Another related project is the iVEC Build System (iBS),
which is developed by iVEC in Australia. Similarly to
EasyBuild it consists of a framework providing (some) com-
monly needed functionality, which picks up so-called “iBS
files” that implement the install procedure for a particular
software package. Both the main command (aptly named ibs)
and the iBS files are bash scripts, the latter being sourced by
the former as needed. At the time of writing iBS was not
publicly available yet, but the developers are known to be
working towards a public release.

Finally, Spack (Supercomputing PACKage Manager) [25]
is another tool, written in Python, that is similar to EasyBuild
with respect to functionality and goals. It provides a pow-
erful and well-documented command line interface giving
control over which dependencies, software versions, com-
piler, architecture and various options should be used for
installing a particular software package. Spack also supports
some particularly useful options like automatically determining
whether an update for a particular software package is available
(by scraping the project’s website), automatically completing
incomplete build specifications, optional/virtual dependencies,
etc. Like EasyBuild, the Python codebase is object-oriented,
enabling code reuse and efficient maintainability; the packages
concept in it is quite similar to easyblocks in EasyBuild. At the
time of writing, Spack included support for about 50 different
software packages.

EasyBuild differs from these tools in a number of ways.
First and foremost, it is more configurable than any of the other
tools. Although they provide some support for configuring their
behavior, there is no control over certain aspects like, for ex-
ample, the module naming scheme being used. Second, several
useful more advanced features are missing in most of them,
like automatic dependency resolution (Spack being the excep-
tion here). Third, exactly reproducing previous installations is
more difficult since most of these tools do not employ separate
specification files (again, except for Spack); through easyconfig
files this is particularly easy with EasyBuild however. Fourth,
none of these tools has been able to get a sizable community
going, which has significant implications with respect to user
contributions and the number of supported software packages.
Other issues only apply to some of them, e.g., limited code

maintainability and reuse of code (SWTools and iBS), public
availability of recent versions (SWTools and iBS), and a lack
of active development (SWTools and Smithy).

To the best of our knowledge, no recent module tools other
than Lmod and the commonly used Tcl-based tools discussed
in Section II-A are available. There are some alternative tools
with comparable functionality, however. Dotkit [26] is a tool
that supports loading and unloading package description files
in a similar fashion to modules. Softenv [27] also provides
similar functionality, but uses a monolithic database to provide
the package description data. Both tools use a flat layout,
however, making them incompatible with the concept of a
hierarchical naming scheme. Neither tool is widely used at
HPC sites as opposed to the environment modules system. On
top of this, both projects are no longer actively developed,
with latest versions being made available in Aug. 2008 and
Mar. 2007, respectively.

Several HPC sites have been using a hierarchical module
naming scheme for years, including TACC [14], the Arctic
University of Norway, the University of Michigan, Calcul
Québec, and the University of Florida. Most of these also
provide Lmod to their users, but we are unaware of any
sites using both EasyBuild and Lmod for efficiently handling
software installations in a hierarchical context on production
systems. However, some sites are actively looking into poten-
tially applying such a methodology in the foreseeable future,
including HPC-UGent, the Jülich Supercomputing Centre, and
Stanford University.

IX. CONCLUSION

Despite the well-established environment modules system,
users of HPC systems still run into problems managing their
working environments. The reasons are numerous; key issues
include an overwhelming number of modules on modern sys-
tems, avoiding incompatibilities between some modules, and
module tools that cannot meet users’ needs and expectations.
Additionally, HPC user support teams struggle to maintain a
consistent set of module files, not to mention the ubiquitous
problem of installing (scientific) software correctly and repeat-
ably. Although these issues are widely recognized, suitable
practices and tools have been lacking.

In this paper, we have presented a modern approach to
installing scientific software that deals with these problems.
We have explained the advantages of using a module hierarchy,
and highlighted the need for more advanced tools to efficiently
support this in a user-friendly way. We discussed in detail
two actively developed and community-driven open-source
projects that provide the necessary features to address this
need, EasyBuild and Lmod. EasyBuild not only automates
the tedious and time-consuming process of installing scientific
software and the accompanying module files, it also provides
full control over important aspects such as the module naming
scheme being used. EasyBuild acts as a platform for collabo-
ration between HPC sites worldwide. Lmod on the other hand
allows end-users to easily navigate a hierarchically organized
module stack, and delivers a variety of other useful features
missing in the commonly used Tcl-based module tools.

Together, EasyBuild and Lmod allow HPC user support
teams to efficiently implement and tailor a hierarchical module
naming scheme that truly meets their requirements, and offers
end users the simple and robust interface they deserve for
managing their working environments.

REFERENCES

[1] J. L. Furlani, “Providing a Flexible User Environment,” in Proceeding
of the Fifth Large Installation System Administration (LISA V, 1991,
pp. 141–152.

[2] J. L. Furlani and P. W. Osel, “Abstract yourself with Modules,” in
Proceeding of the Tenth Large Installation System Administration (LISA
’96, 1996, pp. 193–204.

[3] D. Eadline, “Keeping It Straight: Environment Modules,” Ad-
min HPC, http://www.admin-magazine.com/HPC/Articles/Managing-
the-Build-Environment-with-Environment-Modules.

[4] J. Layton, “Environment Modules – A Great Tool for Clus-
ters,” Admin HPC, http://www.admin-magazine.com/HPC/Articles/
Environment-Module.

[5] P. F. Dubois, T. Epperly, and G. Kumfert, “Why Johnny Can’t Build,”
Computing in Science and Engineering, vol. 5, pp. 83–88, 2003.

[6] K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt, “EasyBuild:
Building Software With Ease,” in Workshop on Python for High
Performance and Scientific Computing (PyHPC), 2012.

[7] R. McLay, “Lmod: Environmental Modules System,” http://www.tacc.
utexas.edu/tacc-projects/lmod.

[8] “Environment Modules Project,” http://modules.sourceforge.net.
[9] “Distributed European Infrastructure for Supercomputing Applications,”

http://en.wikipedia.org/wiki/DEISA.
[10] P. Cederqvist, K. Engtröm, H. Rindlöw, and D. Kågedal, “Cmod -

Modules Done Right,” 1997, http://www.lysator.liu.se/cmod/.
[11] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,

M. G. Duda, X. Huang, W. Wang, and J. G. Powers, “A description
of the advanced research WRF version 3,” National Center for Atmo-
spheric Research (NCAR), Tech. Rep. NCAR/TN-475+STR, 2008.

[12] K. Hoste and J. Timmerman, “Poll results of the ISC’14 birds-
of-a-feather sesstion Getting Scientific Software Installed: Tools &
Best Practices,” http://hpcugent.github.io/easybuild/files/ISC14 BoF
show-of-hands-results.pdf.

[13] O. Widder, “Geek & Poke: How To Become Invaluable,”

http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-
become-invaluable.html.

[14] R. McLay, K. W. Schultz, W. L. Barth, and T. Minyard, “Best Practices
for the Deployment and Management of Production HPC Clusters,” in
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2011.

[15] J. Fischer, R. Knepper, M. Standish, C. A. Stewart, R. Alvord, D. Lifka,
B. Hallock, and V. Hazlewood, “Methods For Creating XSEDE Com-
patible Clusters,” in Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment, 2014, pp.
74:1–74:5.

[16] C. Condurache and I. Collier, “CernVM-FS – beyond LHC computing,”
Journal of Physics: Conference Series, vol. 513, no. 3, p. 032020, 2014.

[17] EasyBuild, “EasyBuild documentation wiki,” https://github.com/
hpcugent/easybuild/wiki.

[18] J. Layton, “Lmod – Alternative Environment Modules,” Admin HPC,
http://www.admin-magazine.com/HPC/Articles/Lmod-Alternative-
Environment-Modules.

[19] A. Dubrow, “Lmod: The “Secret Sauce” Behind Module Management
at TACC,” http://www.tacc.utexas.edu/news/feature-stories/2012/lmod.

[20] R. Ierusalimschy, Programming in Lua, 3rd ed. Self-Published, 2013.
[21] “SWTools,” 2011, https://www.olcf.ornl.gov/center-projects/swtools.
[22] N. Jones and M. R. Fahey, “Design, Implementation, and Experiences

of Third-Party Software Administration at the ORNL NCCS,” in Pro-
ceedings of the 50th Cray User Group (CUG08), 2008.

[23] Anthony Di Girolamo, “Smithy,” http://anthonydigirolamo.github.io/
smithy/.

[24] “Homebrew – The missing package manager for OS X,” http://brew.sh.
[25] Todd Gamblin, “Spack,” http://scalability-llnl.github.io/spack/.
[26] L. Busby, “Dotkit,” https://computing.llnl.gov/?set=jobs&page=dotkit.
[27] R. Evard and A. Bailey, “SoftEnv,” http://www.lcrc.anl.gov/info/

Software/Softenv.

http://www.admin-magazine.com/HPC/Articles/Managing-the-Build-Environment-with-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Managing-the-Build-Environment-with-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Environment-Module
http://www.admin-magazine.com/HPC/Articles/Environment-Module
http://www.tacc.utexas.edu/tacc-projects/lmod
http://www.tacc.utexas.edu/tacc-projects/lmod
http://modules.sourceforge.net
http://en.wikipedia.org/wiki/DEISA
http://www.lysator.liu.se/cmod/
http://hpcugent.github.io/easybuild/files/ISC14_BoF_show-of-hands-results.pdf
http://hpcugent.github.io/easybuild/files/ISC14_BoF_show-of-hands-results.pdf
http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html
http://geekandpoke.typepad.com/geekandpoke/2010/05/how-to-become-invaluable.html
https://github.com/hpcugent/easybuild/wiki
https://github.com/hpcugent/easybuild/wiki
http://www.admin-magazine.com/HPC/Articles/Lmod-Alternative-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Lmod-Alternative-Environment-Modules
http://www.tacc.utexas.edu/news/feature-stories/2012/lmod
https://www.olcf.ornl.gov/center-projects/swtools
http://anthonydigirolamo.github.io/smithy/
http://anthonydigirolamo.github.io/smithy/
http://brew.sh
http://scalability-llnl.github.io/spack/
https://computing.llnl.gov/?set=jobs&page=dotkit
http://www.lcrc.anl.gov/info/Software/Softenv
http://www.lcrc.anl.gov/info/Software/Softenv

	Introduction
	Traditional approach
	Providing access to software using environment modules
	Module files
	Module naming schemes
	Building and installing scientific software
	Manual installation
	Scripting
	Package managers
	Custom tools
	Creating module files

	Lack of collaboration

	Hierarchical module naming scheme
	Advantages over traditional module naming schemes
	Using a hierarchical module naming scheme
	Visibility of modules
	Awareness of $MODULEPATH extensions
	Module availability on different paths in the hierarchy

	Maintaining a module hierarchy

	EasyBuild: Automated software installation
	Concepts and design
	EasyBuild framework
	Easyblocks
	Compiler toolchains
	Easyconfig files

	Basic usage
	Feature highlights
	Automatic dependency resolution
	Configurability
	Dynamic extensibility

	Support for hierarchical module naming schemes

	Lmod: a modern modules tool
	Support for hierarchical module naming schemes
	The ml command and unload/swap shortcut
	Properties
	Caching
	Module families
	Customizing Lmod behavior and hooks
	pushenv: stack-based setting of environment variables
	Module collections

	Other aspects to EasyBuild & Lmod
	Communities
	Synergy

	Future work
	Related work
	Conclusion
	References

