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Abstract. The core count of modern processors is steadily increasing,
forcing programmers to use more concurrent threads or tasks to effec-
tively use the available hardware. This in turn makes it increasingly
challenging to achieve correct and efficient thread synchronization. To
support the programmer in this task, IBM introduced hardware trans-
actional memory (TM) and speculative execution (SE) in their Blue
Gene/Q system with its 16-core processor, which permits to run 64 si-
multaneous hardware threads in SMT mode. TM and SE allow for par-
allelization when race conditions may happen, however upon their detec-
tion the respective parts of the execution are rolled back and re-executed
serially. This incurs some overhead and therefore usage must be well jus-
tified. In this paper, we describe extensions to the community instrumen-
tation and measurement infrastructure Score-P, allowing developers to
instrument, measure, and analyze applications. To our knowledge, this
is the first integrated performance tool framework allowing to analyze
TM/SE programs. We demonstrate its usefulness and effectiveness by
describing experiments with benchmarks and a real-world application.

Keywords: Parallel Programming, Performance Analysis, Transactional
Memory, Speculative Execution, Blue Gene/Q

1 Introduction

The number of cores available in modern processors as well as the number of
processors inside cache-coherent shared-memory nodes is steadily increasing, es-
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pecially in high-end servers and HPC cluster systems. This forces parallel pro-
gram developers to use more concurrent threads or tasks to effectively use the
available hardware, in turn making it increasingly challenging to achieve correct
and efficient thread synchronization.

IBM’s latest HPC architecture, the Blue Gene/Q), is based on a 16-core Pow-
erPC A2 processor, running up to 64 simultaneous hardware threads in symmet-
ric multi-threading (SMT) mode [1]. To alleviate the implementation of correct
and efficient thread synchronization, IBM introduced hardware transactional
memory (TM) and speculative execution (SE). The interface to the TM and SE
hardware features of the Blue Gene/Q memory subsystem is based on C/C++
pragmas and Fortran directives® similar to the ones in the OpenMP specification.
The TM programming model is based on an abstraction called a transaction. It
is a single-entry and single-exit code block enclosed by a “tm_atomic” directive.
It can be used for atomic or critical regions in the code where data access race
conditions are expected to be rare and thus the locking overhead in the race-free
instances of the region can be avoided. For SE, the corresponding directive has
similar semantics as an OpenMP loop work-sharing construct. For example, the
“speculative for” directive mimics an “omp parallel for” directive with
the additional guarantee to maintain sequential semantics of the code, i.e., the
result corresponds to the result of an execution by a single thread. So, TM and
SE both allow for parallelization even when race conditions may happen, however
upon their detection the respective parts of the execution are rolled back and
re-executed serially. However, the benefit of the parallel execution must outweigh
the extra management overhead. To help application developers to evaluate the
effectiveness of using TM and SE constructs in their codes, the IBM compiler
runtime provides a TM/SE monitoring API which allows to collect executions
statistics for TM and SE constructs.

In this paper, we describe extensions to the parallel program performance
analysis framework Score-P [2], which allows developers to instrument, mea-
sure, and analyze MPI, OpenMP, or hybrid MPI/OpenMP parallel applications
which also use TM and SE constructs. This integration allows the user to an-
alyze all aspects of parallel performance in one tool environment and to study
dependencies and relationships between parallel constructs from the different
programming paradigms. For the instrumentation of directive-based parallel pro-
gramming paradigms, Score-P uses the Open Pragma And Region Instrumenter
(OPARI2) tool, which was enhanced to handle IBM TM and SE directives.
Measurement results are stored as summary profiles which can be analyzed and
viewed by the Cube [3] performance report viewer.

The main contributions of the work described in this paper are:

— A generic extensible tool for automatic instrumentation of directive-based
parallel programming paradigms including OpenMP and IBM TM/SE.

— An integrated performance tool framework allowing to analyze MPI, OpenMP,
or hybrid MPI/OpenMP parallel programs using TM and SE constructs. To
our knowledge, this is the only tool set providing this capability.

3 As in the OpenMP specification, in this paper we will use the term directive for both
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The rest of the paper is organized as follows: Section 2 gives a brief overview
on related work. Section 3 introduces the performance tool components which
were used, adapted, and enhanced, including the IBM TM /SE monitoring API,
OPARI, Score-P and Cube. The experiments to evaluate the usefulness and
effectiveness of the introduced extensions to our tool infrastructure are described
in Section 4. Finally, conclusions and a description of future work close the

paper.

2 Related Work

Research on Transactional Memory (TM) has a long history, being first intro-
duced by Herlihy and Moss [4] in 1993 as a theoretical extension to micropro-
cessors. Subsequent research shifted towards Software Transactional Memory
(STM) [5], i.e. software ensures the atomicity of the transactions and organizes
the rollbacks. Today, STM implementations are available for many program-
ming languages, either as language feature (e.g. Closure) or as a library (e.g. for
C/CH++, C#, Java).

Several research groups proposed analysis techniques for software transac-
tional memory using different methods. Ansari et al. [6] extended an STM frame-
work to obtain profiling data while Zyulkyarov et al. [7] track data structures
that conflict in transactions and determine their influence on the performance of
the application. Tracing of transactional memory applications was introduced by
Lourencco et al. [8], using a similar approach like the group of Ansari. However,
due to the relatively high overhead of STM, this approach is of minor relevance
to real-world applications in the field of high-performance computing [9].

IBM presented the first commercially available hardware transactional mem-
ory (HTM) system in the Blue Gene/Q (BG/Q) supercomputer [1]. Wang et
al. [10] and Schindewolf et al. [11] evaluated the HTM implementation on BG/Q
using various benchmarks to determine which applications may benefit from TM.
Scientific application developers begin to embrace HTM; performance studies
have been performed by Kunaseth et al. [12] for molecular dynamics applica-
tions and by Schindewolf et al. [13] for the conjugate gradients method.

On the other hand, the Speculative Execution (SE) functionality of BG/Q
has not yet been so well investigated. To the best of our knowledge, no extensive
performance study for SE has been performed.

Bihari et al. [14] made a case for adding directives for transactional memory
to the OpenMP specification. The importance of a standard way to express TM
constructs became visible with the work of Yoo et al. [15], who evaluated the per-
formance of the recently introduced Transactional Synchronization Extensions
of Intel’s Core architecture processors.

3 Tool Implementation

To gain insight into the behavior and especially into the impact on performance
of the new transactional memory and speculative execution features on IBM’s
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TM record SE record

typedef struct TmReport_s { typedef struct SeReport_s {

unsigned long hwThreadId; unsigned long totalNONSpecCommitted;
unsigned long totalTransactions; unsigned long totalSpecCommitted;
unsigned long totalRollbacks; unsigned long totalRollbacks;
unsigned long totalSerializedJMV; unsigned long totalSerializedJMV;
unsigned long totalSerializedMAXRB;| unsigned long totalSerializedMAXRB;
unsigned long totalSerializedOTHER;| unsigned long totalSerializedOTHER;
} TmReport_t; } SeReport_t;

Table 1. Structure used by reporting functions for TM counters

BlueGene/Q architecture, we added support into OPARI2 and to the perfor-
mance measurement framework Score-P. Source-to-source translation is used to
insert probe functions into the application code to instrument the regions of the
code that make use of TM and SE. These probe functions are implemented in
one of the measurement libraries of Score-P, the so-called TM/SE adapter, and
process the data provided by IBM’s TM/SE monitoring API to make it usable
by the measurement system. The data is recorded and stored in profiles which
can be examined with Cube.

This section introduces the IBM TM/SE monitoring API and presents the
extensions to OPARI2 that were necessary to perform the instrumentation of
the TM/SE directives. Next, the measurement system Score-P and the newly
implemented adapter for TM/SE are briefly described. Finally, this section con-
cludes with a detailed description of the newly developed analysis possibilities
for transactional memory and speculative execution.

3.1 IBM TM/SE Monitoring API

The SMPRT runtime system on IBM BlueGene/Q provides several intrinsics for
application programmers and tool developers to collect accumulative statistic
for TM/SE regions.

tm_get_stats(TmReport_t * stats) collects the relevant accumulative statis-
tics for all TM regions that a particular hardware thread has executed up to
the point of the call, and stores it in a record of type TmReport_t as shown in
Table 1, left. The main fields of this record include the hardware thread ID,
the total number of transactions, the total number of rollbacks, and the total
number of serialized executions (instead of successful speculative executions),
caused either by JMV* conflicts, the maximum number of rollbacks reached, or
other reasons. This function can be called both at the beginning and the end of a
transaction, the difference reflecting the contribution of the enclosed region. To
get thread-specific values, it should be used inside parallel regions (like OpenMP
parallel regions).

* Jail Mode Violations occur in case of irrevocable actions, e.g. 1/0O.
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tm_get_all_stats(TmReport_t * stats) behaves similarly, but it provides the
accumulative statistics of all the TM regions that all hardware threads have
executed up to the point of the call. This function should be used outside of
parallel regions.

se_get_all_stats(SeReport_t * stats) updates the provided record (see Ta-
ble 1, right) with the sum of the statistics of all the SE regions that all hardware
threads have executed up to the call. The statistic counters for speculative execu-
tion include the total number of chunks committed by none speculative threads,
the total number of chunks committed by speculative threads, the total number
of rollbacks for speculative threads, the total numbers of serializations (caused
by JMV conflicts, due to reaching the maximum number of rollbacks, and due
to other reasons like buffer overflows, hardware races, etc.).

3.2 Instrumenting TM/SE Programs

We use the TM/SE monitoring API described above for collecting runtime ac-
cumulative statistics about the execution of TM/SE regions in the application.
The necessary instrumentation can be done in various ways; we use source-code
based instrumentation to be able to attribute performance data to user-level
constructs easily and in a portable way.

The Open Pragma And Region Instrumenter (OPARI2) is a source-to-
source instrumentation tool that inserts probe functions and code segments into
an application’s source code. OPARI2 is developed based on OPARI from the
Scalasca performance analysis tool set [16]. The original version was designed
to detect and instrument OpenMP directives in C/C++ and Fortran programs.
It reads the source file line by line, detects OpenMP directives and runtime
functions ignoring strings and comments, and instruments OpenMP constructs
by inserting functions as defined by the POMP2 interface [17].

All directives that are to be instrumented are stored in an internal table.
While parsing the source code, OPARI2 checks the table whenever a directive
is detected. If the directive is to be instrumented, this is done at the beginning
and at the end of the source-code region associated with the directive.

Support for TM/SE program instrumentation was integrated into OPARI2
under the precondition of enhancing OPARI2 to have a more modular archi-
tecture. The goal was to support different directive-based parallel programming
paradigms, starting with OpenMP and IBM’s TM/SE, but also keeping Ope-
nACC and Intel MIC LEO (language extensions for offload) in mind. OPARI2
now maintains an internal table of all supported paradigms and directives. Each
entry of the table includes the paradigm type, directive name, a flag indicating
whether this specific directive should be instrumented, as well as two pointers to
functions which perform the necessary instrumentation at the beginning and at
the end of the associated source-code region. These directive-specific definitions
form the basis of the modularized OPARI2, which makes it straightforward to
support new paradigms and directives in the future.



6 Jie Jiang, Peter Philippen, Michael Knobloch, and Bernd Mohr

Original code Instrumented code
PTLS_Speculativefor_enter( int* id,
const char context_infol[] );

#pragma speculative for #pragma speculative for
{ {
3 }

PTLS_Speculativefor_exit( int* id );
PTLS_Speculativesections_enter(

int* id, const char context_info[] );
#pragma speculative sections |#pragma speculative sections

{ {
#pragma speculative section |#pragma speculative section

{ {

PTLS_Speculativesection_begin(
int* id, const char context_infol[] );

PTLS_Speculativesection_end( int* id );

} }

PTLS_Speculativesections_exit( int* id );

} }

PTLS_Tm_atomic_enter( int* id,
const char context_info[] );

#pragma tm_atomic #pragma tm_atomic
{ {
} }

PTLS_Tm_atomic_exit( int* id );
Table 2. Exemplary instrumentation of TM and SE directives for C/C++

The instrumentation of IBM’s transactional memory and speculative execu-
tion directives was enabled by defining and adding definitions for all TM/SE
directives. That is, new table entries have been created for the tm_atomic,
speculative for, speculative do, speculative sections and speculative
section directives. The instrumentation is carried out according to the trans-
formation rules as shown in Table 2.

3.3 Measuring TM and SE Programs

To actually measure programs employing the TM/SE techniques the instru-
mented executable needs to be linked to a measurement library which imple-
ments the inserted probe functions. Therefore, we extended the Score-P mea-
surement framework accordingly.

The Score-P Instrumentation and Measurement Infrastructure is a
community-driven software framework for recording profiles and traces of paral-
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lel program execution [2]. The application under investigation is automatically
instrumented, by means of a number of different techniques, and linked to a
set of libraries that implement the respective probe functions. Each invocation
of a probe function is translated into measurement events such as enter/exit of
code regions, or acquire/release of locks. Different metrics like number of vis-
its, time spent in a region, bytes transferred over a network are associated with
these events. Furthermore hardware counters providing information about cache
misses or floating point operations can be recorded.

There are two main modes of recording and storing data in Score-P: profiling
and tracing. In a profile, summarized data is recorded for each callpath executed
by the program. Times and number of visits are aggregated; minimum, maxi-
mum and average values are stored. The values of performance counters are also
recorded. In contrast, in a trace every single instance of an event is recorded.
This yields a very detailed view of the program run but comes at the cost of
high memory demands during measurement and for storing the trace file itself.

Different methods for performing the instrumentation of an application are
available. Many compilers allow for automatic instrumentation of user functions.
Here, the compiler inserts probe functions at entries and exits of functions and
supplies source-code information. To instrument directive-based parallel pro-
gramming paradigms, we use OPARI2 as described in Section 3.2. To record
MPI-specific events and metrics, PMPI interposition wrappers are used. For an-
alyzing programs that run on GPUs, the CUDA Profiling and Tools Interface
(CUPTI) is supported as well.

Each of the aforementioned instrumentation techniques inserts different types
of probe functions which provide different types of information to the actual
measurement system. To provide the measurement core that records profiles
or traces with consistent data, Score-P contains a number of adapters, each
taking care of implementing the probe or wrapper functions for a specific kind
of instrumentation.

A TM/SE adapter was added in Score-P to enable the measurement of code
regions making use of the transactional memory and speculative execution func-
tionality provided by the IBM compilers. These regions, which are instrumented
with OPARI2, are first registered with the measurement system. During regis-
tration, the type of TM/SE directive is stored together with source code infor-
mation, consisting of file name and line numbers. Furthermore, the measurement
system provides a unique numerical id, which is passed as parameter to the probe
function calls surrounding the corresponding TM/SE regions (see Table 2). This
allows quick access to the respective region information.

When a region is entered, interface functions provided by the TM/SE runtime
are used to obtain data about the number of transactions and rollbacks as well as
information about how much of the execution needed to be serialized due to JMV
conflicts, too many rollbacks, and other causes, such as buffer overflows, race
conditions and concurrent TM/SE regions. These values are passed as custom
metrics to the measurement system. The measurement core takes care of keeping
count of the number of visits to each region as well as the time spent inside.
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4 Experimental Evaluation

In this section, we evaluate our approach with two examples. The first is a
quasi-random field update kernel that occurs in similar form in many scien-
tific applications. The second is MP2C, a molecular dynamics application that
scales up to the whole JUQUEEN, a 28-rack Blue Gene/Q system at the Jiilich
Supercomputing Centre.

4.1 Update Kernel

A kernel found in many scientific applications, especially in the area of plasma
physics, is an update of charge and power densities of large arrays of particles,
in total 6 entries per volume cell. First the values are interpolated and then a
reduction on the arrays is performed. Here, multiple threads may concurrently
access the same location.

!$OMP PARALLEL DO private(xa, i, jl, j2, fl1, f2, ci)
do i=1,5000000

xa = x(1)*oodx
jl = aint(xa)
i2 = j141

2 = xa—jl

f1 = 1.0—1f2

ci = charge(i)
I'TM$ TM_ATOMIC SAFE MODE
rho(jl,ci) = rho(jl,ci) + rexfl
rho(j2,ci) = rho(j2,ci) + rexf2
I'TM$ END TM_ATOMIC

end do

!$OMP END PARALLEL DO

Listing 1. Update Kernel — TM version

Listing 1 shows an example of such a kernel, although in a very simplified
form. In each iteration, it performs a quasi-random update of two entries of an
array of about 19 MB, which gives a conflict probability of ~8e-7, so it seems a
good candidate for TM.

Figure 1 shows a Cube screenshot of an execution of this kernel on one node
of BG/Q with one process and eight threads. Cube’s main window consists of
three coupled tree-browsers. These show, from left to right, the metric tree, call
tree and system tree. A selection of an item in one tree shows the distribution of
the value associated with this item in the tree(s) to the right. In this example,
the total number of transactions is selected in the metric tree, and we see the
expected five million transactions. The call tree in the middle pane shows that
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Fig. 1. Cube screenshot of the TM implementation of the update kernel showing five
million total transactions distributed homogeneously among the threads.

they all originate from one TM region. The right pane, the system tree, shows
that each thread completed 625,000 transactions.

While this seems to be a perfect kernel for TM, with hardly any rollbacks
(6 in this example), it has to be noted that the uninstrumented TM implemen-
tation is 2 times slower than an implementation with OpenMP atomics and 3
times slower than an implementation with OpenMP reduction. This can also be
easily investigated with our toolset. This shows that the tool gives correct infor-
mation, but a baseline comparison to evaluate TM/SE benefits is still necessary.
A detailed performance analysis of this kernel can be found in [18], where tuning
opportunities are also shown which are not reflected in our measurements.

4.2 MP2C

MP2C [19] - Massively Parallel Multi-Particle Collision Dynamics - implements
a hybrid representation of solvated particles in a fluid. Solutes are simulated
atomistically by classical molecular dynamics (MD) which is coupled to the sol-
vent, described by the Multi-Particle-Collision-Dynamics method (MPC). In this
work we focus on the MPC part, which can be used as stand-alone implementa-
tion for particle-based hydrodynamics. The application is written in Fortran 90
and parallelized with MPI and OpenMP, which are used throughout the code.
We investigated the cell collision kernel containing an OpenMP loop counting
the particles in a cell and updating a list. In the initial version, this update is
guarded with an OpenMP critical directive. We investigated alternative imple-
mentations with both TM and SE for this critical section. In the TM case, the
OpenMP critical was replaced by an TM atomic, in the SE case the whole loop
was executed speculatively.

Figure 2 shows a Cube screenshot of the TM version of the code. We see
that 800 million transactions were issued and 560 million rollbacks occurred, i.e.
a rollback ratio of 70%. And even worse, more than 3.5 million iterations were
serialized because the maximum number of rollbacks was reached. So TM is not
a good choice to replace the OpenMP critical in this case.
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Fig. 2. Cube screenshot of the TM implementation of MP2C. It shows a high variation
of serializations due to max. rollbacks among the threads.

A much better result was achieved with SE as shown in Figure 3. Here the
rollback ratio is only 7% and no serializations occurred. In the system pane this
screenshot shows a boxplot of the distribution of rollbacks among the processes,
with a lower quartile of 3110, an upper quartile of 4410 and a median of 3660,
which seems a reasonable distribution.

This example shows that our enhanced tool set easily allows to investigate
TM/SE-related performance issues in parallel applications. Furthermore it also
allows to compare these results with other implementations like plain OpenMP
within the same environment.

5 Conclusion and Future Work

In this paper we presented a unique integrated performance tools framework to
measure and analyze applications using IBM TM/SE directives. To this end, we
modularized the OPARI2 source-to-source instrumenter to be easily extendable
to directive-based programming paradigms other than OpenMP. A respective
adapter was added to the measurement infrastructure Score-P. This adapter
uses the existing TM/SE monitoring API to query information about the exe-
cution of single TM/SE regions. The resulting profile reports can be visualized
and analyzed with the Cube performance report viewer. With two examples we
proved the applicability of the tool and showed the added value to performance
analysis of parallel applications.

One disadvantage of our approach is that TM instrumentation may add sig-
nificant overhead, especially for regions with small workload, as tm_get_stats ()
gets called twice per region. We will investigate methods to reduce that overhead,
e.g. by minimizing the number of calls to the IBM monitoring API. However,
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Fig. 3. Cube screenshot of the SE implementation of MP2C, showing the distribution
of rollbacks among the processes as a boxplot.

this needs to be carefully balanced against the more limited information avail-
able for analysis. Our tool set will be continuously adapted to changes in the
existing directive-based programming paradigms, in particular possible TM/SE
support in the OpenMP specification. We further plan to integrate other mod-
els like OpenACC and Intel LEO. Adding support for tracing of TM/SE events
— to be able to visualize these with Vampir [20] — will lead to deeper insights
on specific instances of TM/SE regions. In addition, we will work on more so-
phisticated analysis for TM/SE, both for profiling and tracing. For example, it
could be possible to color conflicting transactions in Vampir to see directly where
rollbacks originate.

References

1. Ohmacht, M., Wang, A., Gooding, T., Nathanson, B., Nair, 1., Janssen, G., Schaal,
M., Steinmacher-Burow, B.: IBM Blue Gene/Q memory subsystem with specula-
tive execution and transactional memory. IBM Journal of Research and Develop-
ment 57(1/2) (2013) 7-1

2. Kniipfer, A., et al.: Score-P — A Joint Performance Measurement Run-Time In-
frastructure for Periscope, Scalasca, TAU, and Vampir. In: Proc. of 5th Parallel
Tools Workshop, 2011, Dresden, Germany, Springer (Sep 2012) 79-91

3. Geimer, M., Kuhlmann, B., Pulatova, F., Wolf, F., Wylie, B.J.N.: Scalable Col-
lation and Presentation of Call-Path Profile Data with CUBE. In: Proc. of the
Conference on Parallel Computing (ParCo), Aachen/Jilich, Germany. (Sep 2007)
645-652 Minisymposium Scalability and Usability of HPC Programming Tools.

4. Herlihy, M., Moss, J.E.B.: Transactional Memory: Architectural Support for Lock-
free Data Structures. In: Proc. of the 20th Annual Intl. Symposium on Computer
Architecture. ISCA 93, New York, NY, USA, ACM (1993) 289-300

5. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing
10(2) (1997) 99-116



12

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

Jie Jiang, Peter Philippen, Michael Knobloch, and Bernd Mohr

Ansari, M., Jarvis, K., Kotselidis, C., Lujan, M., Kirkham, C., Watson, I.: Profiling
transactional memory applications. In: Parallel, Distributed and Network-based
Processing, 2009 17th Euromicro International Conference on, IEEE (2009) 11-20
Zyulkyarov, F., Stipic, S., Harris, T., Unsal, O.S., Cristal, A., Hur, 1., Valero, M.:
Profiling and Optimizing Transactional Memory Applications. Intl. Journal of
Parallel Programming 40(1) (2012) 25-56

Lourenco, J., Dias, R., Luis, J., Rebelo, M., Pessanha, V.: Understanding the
behavior of transactional memory applications. In: Proc. 7th Workshop on Parallel
and Distributed Systems: Testing, Analysis, and Debugging, ACM (2009) 3
Cascaval, C., Blundell, C., Michael, M., Cain, H.W., Wu, P., Chiras, S., Chatterjee,
S.: Software Transactional Memory: Why Is It Only a Research Toy? Queue 6(5)
(Sep 2008) 40:46-40:58

Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera,
R., Michael, M.: Evaluation of Blue Gene/Q hardware support for transactional
memories. In: Proc. of the 21st international conference on Parallel architectures
and compilation techniques, ACM (2012) 127-136

Schindewolf, M., Biliari, B., Gyllenhaal, J., Schulz, M., Wang, A., Karl, W.: What
scientific applications can benefit from hardware transactional memory? In: High
Performance Computing, Networking, Storage and Analysis (SC), 2012 Interna-
tional Conference for, IEEE (2012) 1-11

Kunaseth, M., Kalia, R.K., Nakano, A., Vashishta, P., Richards, D.F., Glosli, J.N.:
Performance Characteristics of Hardware Transactional Memory for Molecular Dy-
namics Application on BlueGene/Q: Toward Efficient Multithreading Strategies
for Large-Scale Scientific Applications. In: Proc. of Intl. Workshop on Parallel and
Distributed Scientific and Engineering Computing. (2013)

Schindewolf, M., Rocker, B., Karl, W., Heuveline, V.: Evaluation of Two Formula-
tions of the Conjugate Gradients Method with Transactional Memory. In: Euro-Par
2013 Parallel Processing. Volume 8097 of LNCS. Springer (2013) 508-520

Bihari, B.L., Wong, M., Wang, A., Supinski, B.R., Chen, W.: A case for including
transactions in openmp ii: Hardware transactional memory. In: OpenMP in a
Heterogeneous World. Volume 7312 of LNCS. Springer (2012) 44-58

Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of Intel®
transactional synchronization extensions for high-performance computing. In:
Proc. of SC13: Intl. Conference for High Performance Computing, Networking,
Storage and Analysis, ACM (2013) 19

http://wuw.scalasca.org

Mohr, B., Malony, A.D., Hoppe, H.C., Schlimbach, F., Haab, G., Hoeflinger, J.,
Shah, S.: A Performance Monitoring Interface for OpenMP. In: Proc. of Fourth
European Workshop on OpenMP (EWOMP), Rome, Italy. (Sep 2002)

Maurer, T.: BG/Q Application Tuning — memory hierarchy, transactional memory,
speculative execution. http://www.fz-juelich.de/SharedDocs/Downloads/IAS/
JSC/EN/slides/juqueenpt13/juqueenptl3-applicationtuningl.pdf

Sutmann, G., Westphal, L., Bolten, M.: Particle based simulations of complex
systems with mp2c: hydrodynamics and electrostatics. In: ICNAAM 2010: Inter-
national Conference of Numerical Analysis and Applied Mathematics 2010. Volume
1281., AIP Publishing (2010) 1768-1772

Brunst, H., Mohr, B.: Performance Analysis of Large-Scale OpenMP and Hy-
brid MPI/OpenMP Applications with Vampir NG . In: OpenMP Shared Memory
Parallel Programming. Volume 4315 of LNCS. Springer (2008) 5-14



