
The First Workshop on Software Engineering for Parallel Systems (SEPS 2014)
Portland, Oregon, United States

October 21, 2014

Discovering Parallelization Opportunities
in Sequential Programs — A Closer-to-Complete Solution

Zhen Li, Ali Jannesari, and Felix Wolf

German Research School for Simulation Sciences, Aachen, Germany
RWTH Aachen University, Aachen, Germany

Abstract

The stagnation of single-core performance leaves application developers with software parallelism as the
only option to further benefit from Moore’s Law. However, in view of the complexity of writing parallel
programs, the parallelization of myriads of sequential legacy programs presents a serious economic challenge.
A key task in this process is the identification of suitable parallelization targets in the source code. Reversing
the idea underlying data-race detectors, we show how dependency profiling can be used to automatically
identify potential parallelism in sequential programs of realistic size. In comparison to earlier approaches,
our work combines a unique set of features that make it superior in terms of functionality: It not only (i)
detects available parallelism with high accuracy but also (ii) identifies the parts of the code that can run in
parallel—even if they are spread widely across the code, (iii) ranks paralleization opportunities according
to the speedup expected for the entire program, while (iv) maintaining competitive overhead both in terms
of time and memory.

Keywords: Program Analysis, Profiling, Data Dependency, Parallelization

1. Introduction

Although the component density of microproces-
sors is still rising according to Moores Law, single-
core performance is stagnating for more than ten
years now. As a consequence, extra transistors are
invested into the replication of cores, resulting in
the multi- and many-core architectures popular to-
day. The only way for developers to take advan-
tage of this trend if they want to speed up an indi-
vidual application is to match the replicated hard-
ware with thread-level parallelism. This, however,
is often challenging especially if the sequential ver-
sion was written by someone else. Unfortunately,
in many organizations the latter is more the rule
than the exception [1]. To find an entry point for
the parallelization of an organization’s application
portfolio and lower the barrier to sustainable per-

formance improvement, tools are needed that iden-
tify the most promising parallelization targets in
the source code. These would not only reduce the
required manual effort but also provide a psycho-
logical incentive for developers to get started and
a structure for managers along which they can or-
chestrate parallelization workflows.

In this paper, we present an approach for the
discovery of potential parallelism in sequential pro-
grams that—to the best of our knowledge—is the
first one to combine the following elements in a sin-
gle tool:

1. Detection of available parallelism with high ac-
curacy

2. Identification of code sections that can run in
parallel, supporting the definition of parallel
tasks—even if they are scattered across the
code



3. Ranking of parallelization opportunities to
draw attention to the most promising paral-
lelization targets

4. Time and memory overhead that is low enough
to deal with input programs of realistic size

Our tool, which we call DiscoPoP (= Discovery
of Potential Parallelism), reverses the idea of data-
race detectors. It profiles dependencies, but instead
of only reporting their violation it also watches out
for their absence. The use of signatures [2] to track
memory accesses, a concept borrowed from transac-
tional memory, keeps the overhead at bay without
significant loss of information, reconciling the first
with the last requirement. We use the dependency
information to represent program execution as a
graph, from which parallelization opportunities can
be easily derived or based on which their absence
can be explained. Since we track dependencies
across the entire program execution, we can find
parallel tasks even if they are widely distributed
across the program or not properly embedded in
language constructs, fulfilling the second require-
ment. To meet the third requirement, our ranking
method considers a combination of execution-time
coverage, critical-path length, and available concur-
rency. Together, these four properties bring our
approach closer to what a user needs than alter-
native methods [3, 4, 5] do. We expand on ear-
lier work [6], which introduced the algorithm for
building the dependency graph based on the no-
tion of computational units—at that time a purely
dynamic approach with significant time and mem-
ory overhead. This is why this paper concentrates
mainly on the overall workflow, including a pre-
ceding static analysis, the minimization of runtime
overhead, the ranking algorithm, and an evaluation
using realistic examples along with a demonstration
of identifying non-obvious tasks.

The remainder of the paper is structured as fol-
lows: In the next section, we review related work
and highlight the most important differences to our
own. In Section 3, we explain our approach in more
detail. In the evaluation in Section 4, we run the
NAS parallel benchmarks [7], a collection of pro-
grams derived from real CFD codes, to analyze the
accuracy at which we identify and rank parallelism
in spite of the optimizations we apply. Also, we
show how we find tasks that are not trivial to spot.
Finally, we quantify the overhead of our tool both
in terms of time and memory. Section 5 summarizes
our results and discusses further improvements.

2. Related Work

After purely static approaches including auto-
parallelizing compilers had turned out to be too
conservative for the parallelization of general-
purpose programs, a range of predominantly dy-
namic approaches emerged. As a common charac-
teristic, all of them capture dynamic dependencies
to asses the degree of potential parallelism. Since
this procedure is input sensitive, the analysis should
be repeated with a range of representative inputs
and the final validation is left to the user. Such
dynamic approaches can be broadly divided into
two categories. Tools in the first merely count de-
pendencies, whereas tools in the second, including
our own, exploit explicit dependency information
to provide detailed feedback on parallelization op-
portunities or obstacles.

Kremlin [5] belongs to the first category. Using
dependency information, it determines the length
of the critical path in a given code region. Based
on this knowledge, it calculates a metric called self-
parallelism, which quantifies the parallelism of a
code region. Kremlin ranks code regions accord-
ing to this metric. Alchemist [4] follows a simi-
lar strategy. Built on top of Valgrind, it calculates
the number of instructions and the number of vio-
lating read-after-write (RAW) dependencies across
all program constructs. If the number of instruc-
tions of a construct is high while the number of
RAW dependencies is low, it is considered to be
a good candidate for parallelization. In compar-
ison to our own approach, both Kremlin and Al-
chemist have two major disadvantages: First, they
discover parallelism only at the level of language
constructs, that is, between two predefined points
in the code, potentially ignoring parallel tasks not
well aligned with the source-code structure. Sec-
ond, they merely quantify parallelism but do nei-
ther identify the tasks to run in parallel unless it is
trivial as in loops nor do they point out paralleliza-
tion obstacles.

Like DiscoPoP, Parwiz [3] belongs to the second
category. It records data dependencies and attaches
them to the nodes of the execution tree (i.e., a gen-
eralized call tree that also includes basic blocks)
it maintains. In comparison to DiscoPoP, Parwiz
lacks a ranking mechanism and does not explicitly
identify tasks. They have to be manually derived
from the dependency graph, which is demonstrated
using small text-book examples.

Reducing the significant space overhead of trac-

2



ing memory accesses was also successfully pursued
in SD3 [8]. An essential idea that arose form there
is the dynamic compression of strided accesses us-
ing a finite state machine. Obviously, this approach
trades time for space. In contrast to SD3, DiscoPoP
leverages an acceptable approximation, sacrificing a
negligible amount of accuracy instead of time. The
work from Moseley et al [9] is a representative ex-
ample of this approach. Sampling also falls into
this category. Vanka and Tuck [10] profiled data
dependencies based on signature and compared the
accuracy under different sampling rates.

Prospector [11] is a parallelism-discovery tool
based on SD3. It tells whether a loop can be paral-
lelized, and provides a detailed dependency analysis
of the loop body. It also tries to find pipeline par-
allelism in loops. However, no evaluation result or
example is given for this feature.

3. Approach

Figure 1 shows our parallelism-discovery work-
flow. It is divided into three phases: In the first
phase, we instrument the target program and ex-
ecute it. Control flow information and data de-
pendencies are obtained in this phase. In the sec-
ond phase, we search for potential parallelism based
on the information produced during the first phase.
The output is a list of parallelization opportunities,
consisting of several code sections that may run in
parallel. Finally, we rank these opportunities and
write the result to a file.

3.1. Phase 1: Instrumentation, Control Flow Anal-
ysis, and Data Dependency Analysis

The first phase includes both static and dynamic
analyses. The static part includes:

• Instrumentation. DiscoPoP instruments every
memory access, control region, and function
in the target program after it has been con-
verted into intermediate representation (IR)
using LLVM [12].

• Static control-flow analysis, which determines
the boundaries of control regions (loop, if-else,
switch-case, etc.).

The instrumented code is then linked to libDis-
coPoP, which implements the instrumentation func-
tions, and executed. The dynamic part of this phase
then includes:

• Dynamic control flow analysis. Runtime con-
trol information such as entry and exit points
of functions and number of iterations of loops
are obtained dynamically.

• Data dependency analysis. DiscoPoP profiles
data dependencies using a signature algorithm.

• Variable lifetime analysis. DiscoPoP monitors
the lifetime of variables to improve the accu-
racy of data-dependency detection.

• Data dependency merging. An optimization to
decrease the memory overhead.

3.1.1. Hybrid Control-Flow Analysis

We perform the control-flow analysis in a hybrid
fashion. During instrumentation, the boundaries
of control structures (loop, if-else, and switch-case,
etc.) are logged while traversing the IR of the pro-
gram. The boundaries are indexed by source line
number, which allows us later to provide detailed
information to the user. At the same time, we in-
strument control structures and functions.

During execution, inserted instrumentation func-
tions log runtime control-flow information dynami-
cally. Instrumentation functions for loops count the
number of iterations, while functions for branches
remember which branch is being executed so that
data dependency information can be correctly
mapped onto control-flow information. Instrumen-
tation functions for function calls log the function
boundaries. This is done dynamically because a
function may have multiple return points and can
return from different positions during execution.

3.1.2. Signature-Based Data Dependency Analysis

To lower the memory requirements of the data
dependency analysis, we record memory accesses
based on signatures. This idea is originally intro-
duced in [10]. A signature is a data structure that
supports the approximate representation of an un-
bounded set of elements with a bounded amount of
state [2]. It is widely used in transactional memory
systems to uncover conflicts. A signature usually
supports three operations:

• Insertion: A new element is inserted into
the signature. The state of the signature is
changed after the insertion.

• Membership check: Tests whether an element
is already a member of the signature.

3



Phase 3Phase 2Phase 1

Source
Code

Co
nv

er
sio

n 
to

 IR Memory Access
& Control-flow

Instrumentation

Static Control-flow
Analysis

Data Dependency 
Analysis Depen-

dency
Graph

Control
Region

Information

Pa
ra

lle
lis

m
Di

sc
ov

er
y

Ranked
Parallel

Opportunitiesex
ec

ut
io

n
static dynamic

Ra
nk

in
g

Dynamic Control-flow 
Analysis

Variable Lifetime 
Analysis

Runtime Dependency 
Merging

Figure 1: Parallelism discovery workflow.

• Disambiguation: Intersection operation be-
tween two signatures. If an element was in-
serted in both of them, the resulting element
must be represented in the resulting intersec-
tion.

A data dependency can be regarded as a conflict
because a data dependency exists only when two or
more memory operations access the same memory
location in some order. Therefore, a signature is
also suitable for detecting data dependencies. In
our approach, we adopt the idea of signatures to
store memory accesses. A fixed-length array is com-
bined with a hash function that maps memory ad-
dresses to array indices. In each slot of the array, we
save the source line number where the memory ac-
cess occurs. Because of the fixed length of the data
structure, memory consumption can be adjusted as
needed.

To detect data dependencies, we use two signa-
tures. One for recording read operations, one for
write operations. When a memory access c at ad-
dress x is captured, we first obtain the access type
(read or write). Then, we run the membership
check to see if x exist in the signature of the cor-
respondent type. If x already exist, we update the
source line number to where c occurs and build a
data dependency. Otherwise, we insert x into the
signature. At the same time, we check whether x
exist in the other signature. If yes, a data depen-
dency has to be built as well. An alternative would
be performing membership check and disambigua-
tion whenever a write operation occurs, since read-
after-read (RAR) dependencies do not prevent par-
allelization.

Figure 2 shows an example of how our algorithm
works. The signature size in this example is four.

…
Write 3

…
Read 2

…
Read 1

…
Write 2

...

0 0 0 0

0 0 1 1

0 0 1 0

0 0 0 0

0 1 1 0

0 0 0 1

Signature Write Signature Read

Insert 3

Insert 2

Insert 2

Insert 1

Disambiguation
Are there conflicts?

Yes, WAR at 2

Figure 2: Signature algorithm example.

Four memory accesses are recorded, including two
write and two read accesses. A disambiguation of
the two signatures indicates a conflict at address 2.
In this case, a write-after-read (WAR) dependency
must be built.

We insert a function at the beginning of the tar-
get program to initialize the data structures. Ev-
ery read and write operation of the target program
is instrumented. Since disambiguation usually in-
curs a bigger overhead than the membership check
does, we build data dependencies using membership
check whenever possible.

3.1.3. Estimated False-Positive Rate

Representing an unbounded set of elements with
a bounded amount of state means adding new ele-
ments can introduce errors. A signature monitors
all memory accesses, which means it will not miss
any data dependency (no false-negative). However,

4



dependencies which do not exist in the program
may be built because of hash collisions (i.e., it may
have false positives). For this reason, we estimate
the false-positive rate as a function of the signature
size and the number of elements. Assume that we
use one hash function, which selects each array slot
with equal probability. Let m be the number of
slots in the array. Then, the probability that the
hash function does not use a slot during insertion
is:

1− 1

m

After inserting n elements, the probability that a
certain slot is still unused is:

(1− 1

m
)n

Now the estimated false-positive rate (EFPR),
i.e., the probability that a certain slot is used is
thus:

EFPR = 1− (1− 1

m
)n

Obviously, to control the false-positive rate, we
need to adjust the size of the signature m to the
number of variables n in the program. For example,
using a fixed number of slots (800,000) for the NAS
Parallel Benchmarks lets the EFPR vary between
0.01% and around 60%, wasting a lot of memory on
small programs while not having enough for the big
ones. To avoid such a scenario, the user can specify
an maximum EFPR, and DiscoPoP will choose the
size of signature accordingly. In this way, memory
can be used more efficiently and the quality of the
final suggestions can be assured.

To calculate the size of signature based on a given
EFPR, we need to know the number of variables in
the program. To avoid running the program more
than once, we estimate the number of variables
during instrumentation. The number is counted
based on the intermediate representation (IR) of the
program produced by the front-end of LLVM. Al-
though the IR is in Static Single Assignment (SSA)
form, it provides the possibility to distinguish con-
stants, global variables, named and unnamed vari-
ables. Thus it is easy to define rules that filter
out the variables that originated from the program.
The rules are relaxed so that the counted number
is always bigger than the real number of variables.
This will result in a bigger size of the signature,
leaving the actual false-positive rate usually below
the specified EFPR threshold.

3.1.4. Variable Lifetime Analysis

Although false positives are a basic property of
signatures and cannot be completely eliminated, we
apply an optimization to lower the false-positive
rate further. The main idea is to remove variables
from the signature once it is clear that they will
never be used again during the remainder of the
execution. Thus, we need a way to monitor the
lifetime of a variable. The lifetime of a variable
is the time between its allocation and deallocation.
The lifetime of variables has an impact on the cor-
rectness of the data dependency analysis because
signature slots of dead variables might be reused
for new variables. If this happens, a false depen-
dency will be built between the last access of the
dead variable and the first access of the new vari-
able.

To resolve this problem, we perform variable life-
time analysis dynamically. This means we observe
the allocation and deallocation of variables. In ad-
dition, we exploit dynamic control-flow informa-
tion, which is helpful to determine the lifetime of
local variables allocated inside a control region. Al-
though there is no explicit deallocation of local vari-
ables, they die once the program leaves the con-
trol region where they have been allocated. In this
way, signature slots for local variables can be reused
without the danger of building false dependencies.
With variable lifetime analysis, our signature algo-
rithm can support more variables with the same
amount of memory.

3.1.5. Runtime Data Dependency Merging

Recording every data dependency may consume
an excessive amount of memory. DiscoPoP per-
forms all the analyses on every instruction that is
dynamically executed. Depending on the size of
both the source code and the input data, the size
of the file containing processed data dependencies
can quickly grow to several gigabytes for some pro-
grams. However, we found that many data depen-
dencies are redundant, especially for regions like
loops and functions which will be executed many
times. Therefore, we merge identical data depen-
dencies. This approach significantly reduces the
number of data dependencies written to disk.

A data dependency is expressed as a
triple <Dependent-Line, Dependency-Type,

Depends-On-Line>. Two data dependencies are
identical if and only if each element of the triple
is identical. When a data dependency is found,
we check whether it already exists. If there is no

5



match, a new entry for the dependency is created.
Otherwise the new dependency is discarded. For a
code region that is executed more than once, we
maintain only one set of dependencies, merging the
dependencies that occur across multiple instances.
When the parallelism-discovery module reads the
dependency file, it still treats these multiple exe-
cution instances as one. For example, a loop will
always be considered as a whole and its iterations
will never be expanded.

The effect of merging data dependencies is signif-
icant. Previously, the size of the dependency file for
the on NAS Parallel Benchmarks ranged from 330
MB to about 37 GB with input class W (6.1 GB on
average). After introducing runtime data depen-
dency merging, the file size decreased to between 3
KB and 146 KB (53 KB on average), correspond-
ing to an average reduction by a factor of 120,685x.
Since the parallelism-discovery module redirects the
read pointer in the file when encountering function
calls rather than processing the file linearly, data
dependency merging drastically reduces the time
needed for parallelism discovery. The time over-
head of data dependency merging is evaluated in
Section 4.

3.2. Phase 2: Parallelism Discovery

During the second phase, we search for poten-
tial parallelism based on the output of the first
phase, which is essentially a graph of dependen-
cies between source lines. This graph is then trans-
formed into another graph, whose nodes are parts of
the code without parallelism-preventing read-after-
write (RAW) dependencies inside. We call these
nodes computational units (CUs). Based on this
CU graph, we can detect potential parallelism and
already identify tasks that can run in parallel.

3.2.1. CU Graph and Execution Tree

A CU is built for a collection of instructions fol-
lowing the read-compute-write pattern: a set of
variables (at least one) is read by a collection of
instructions (i.e., source lines) and used to perform
computation, then the result is written back to an-
other set of variables (again at least one). The two
sets do not have to be disjoint. The edges in the
CU graph are true data dependencies (RAW). The
initial concept of the CU graph is presented in [6].

The CU graph is mapped onto an execution tree,
which represents the program in tree style. It is
called execution tree because only executed code

Program 
1 - 377

Basic Block
11 - 19

Loop
21 - 36

Basic Block
22 - 27

Tree node

CU

Data
Dependency

Figure 3: CU graph mapped onto execution tree.

is included. Figure 3 shows an example execution
tree. The root of the tree is the whole program. In-
ternal nodes represent control structures, and leaves
are basic blocks—plain code with no branch in-
structions inside. To ensure that leaf nodes repre-
sent always basic blocks, internal nodes represent-
ing empty control structures (e.g. loops without
body) will have an empty child. CUs are attached
to leaf nodes, and data dependencies can exist both
inside and between leaf nodes.

3.2.2. Detecting Parallelism

DiscoPoP finds potential parallelism based on the
CU graph. It is well known that among the four
kinds of data dependencies, read-after-read (RAR)
does not affect parallelization. Write-after-read
(WAR) and write-after-write (WAW) are easy to
resolve by privatizing the affected variables. Only
read-after-write (RAW) seriously prevents paral-
lelization.

To identify tasks, we need to find the absence
of RAW dependencies. For this purpose, we con-
catenate nodes that are directly connected through
RAW dependencies and form linear chains of CUs
between fork and join nodes. We suggest task par-
allelism between independent chains of CUs, that
is, without RAW dependencies between them. Re-
call that a RAW dependency can exist both inside a
leaf node (basic block) and between two leaf nodes
(between basic blocks). Thus, a chain of CUs may
start and end anywhere in the program, without the
limitation of predefined constructs, and the code in

6



a chain of CUs does not need to be continuous. A
set of CU chains that can run in parallel is called
a parallelization opportunity. To find loop paral-
lelism, we check loop-carried data dependencies for
each sub-tree of the execution tree whose root rep-
resents a loop. Again, we focus on RAW dependen-
cies between iterations.

3.3. Phase 3: Ranking

Ranking parallelization opportunities of the tar-
get program helps users to focus on the most
promising ones. Three metrics are involved: in-
struction coverage, local speedup, and CU imbal-
ance. Currently, our ranking method still assumes
that the parallelization opportunity is confined to a
well-defined code section represented by a node of
the execution tree.

3.3.1. Instruction Coverage

The instruction coverage (IC) provides an esti-
mate of how much time will be spent in a code
section. The estimation is based on the simplify-
ing assumption that each kind of instruction costs
about the same amount of time. Given a node i
and its parent node p in the execution tree,

IC(i) =
Ninst(i)

Ninst(p)

where Ninst(i) and Ninst(p) are the number of in-
structions node i and p contain, respectively. Note
that the instruction coverage is only calculated be-
tween a node and its direct parent, andNinst always
represents the total number of instructions which
are really executed at runtime. For a loop, Ninst

is the sum of the number of instructions across all
iterations.

3.3.2. Local Speedup

The local speedup (LS) reflects the potential
speed up that would be achieved if the code section
represented by a node was parallelized according to
the suggestion. Since it refers only to a given code
section and not necessarily to the whole program it
is called local. The local speedup is based on the
critical path and Amdahl’s Law, which is why su-
per linear effects are not considered. The formula
used to calculate LS depends on the type of node:

Leaf nodes.. Leaf nodes are nodes that contain only
plain code without any control region inside. In this
way,

LS(i)leaf =
Ninst(i)

length(CP (i))

where Ninst is the total number of instructions
and length(CP) is the length of the critical path the
node i contains—again, based on the assumption
that each kind of instruction costs the same amount
of time. The formula is a direct application of the
critical path.

Internal nodes.. Internal nodes represent control
regions and may contain control regions nested in-
side. This means the local speedup of internal
nodes should represent the speedup estimated for
the whole control region. Thus,

LS(i)internal =
1∑n

c=1
IC(c)
LS(c)

where n is the number of children of the internal
node. This is a direct application of Amdahl’s Law.
The local speedup is recursively calculated from the
leaves towards the root of the execution tree.

Loops.. A special case are loops. If a loop
can be parallelized across iterations, a speedup
of min(Nthreads, Niter) could be gained, where
Nthreads is the number of threads, and Niter is the
number of iterations. In this case, the local speedup
of the loop will be min(Nthreads, Niter). If a loop
cannot be parallelized, the local speedup is calcu-
lated just as if the loop was a usual internal node.

3.3.3. CU Imbalance

The CU imbalance reflects how evenly CUs are
distributed in each stage of the critical path, which
means whether every thread has some work to do in
each step of the computation. Otherwise, some of
the threads have to wait because of data dependen-
cies, which means the suggested parallelization may
have a bottleneck. We define the CU imbalance for
a node i as

CI(i) =
σ(i)

MP (i)

where σ(i) is the standard deviation of the number
of CUs in each stage of the critical path, and MP (i)
is the number of CUs in the largest stage of the
critical path of node i. The CU imbalance is a value

7



R

(a)

G

P

(b)

Figure 4: Scenarios with different degrees of CU imbalance.

in [0,+∞). The more balanced the CU ensemble
is, the smaller the value becomes.

Figure 4 provides an example. Under the as-
sumption that each CU has the same number of
instructions, both of situations have a local speedup
of two and will complete all the tasks in two units
of time. However, the arrangement in Figure 4(a)
requires three threads while 4(b) requires only two.
The red CU (R) in 4(a) needs the results from three
CUs, constituting a bottleneck of the execution. Al-
though the purple CU (P) in 4(b) is in the same sit-
uation, the other thread still has some work to do
(green CU, G) so that it does not need to wait. The
CU imbalance values of the two situations ( 4(a):√

2/3 = 0.47, 4(b): 0/2 = 0) reflect such a differ-
ence. Note that a code section containing no par-
allelism (CUs are sequentially dependent) will also
get a CU imbalance of zero, which is consistent with
our definition.

Our ranking method now works as follows: Par-
allelization opportunities are ranked by their esti-
mated global speedup (GS) in descending order,
with

GS =
1

IC
LS + (1− IC)

.

Should two or more opportunities exhibit the
same amount of global speedup, they will be ranked
by their CU imbalance in ascending order.

4. Evaluation

We conducted a range of experiments to evalu-
ate both the accuracy and the performance of our
tool. All experiments ran on a server with 2 x 8-core
Intel Xeon E5-2650 2 GHz processors with 32 GB
memory, running Ubuntu 12.04 (64-bit server edi-
tion). We took our test cases from the NAS Parallel

Benchmarks (NPB) 3.3.1, a suite of programs de-
rived from real-world computational fluid dynam-
ics applications. The suite includes both sequential
and OpenMP-based parallel versions of each pro-
gram, facilitating a quantitative assessment of our
tool’s ability to spot potential parallelism. All the
benchmark programs were compiled with option -g

-O0 and the EFPR was always set to 1%. Whenever
possible, we tried different inputs to compensate for
the input sensitivity of the dynamic approach.

4.1. Accuracy of Parallelism Detection

The purpose of the first experiment was to see
how the approximation in data dependency profil-
ing affects the accuracy of the suggestions on par-
allelism. We searched for parallelizable loops in se-
quential NPB programs and compared the results
with the parallel versions provided by NPB. Table 1
shows the results of the experiment. The data listed
in the column set ”Executed” are obtained dynam-
ically. Column ”# loops” gives the total number of
loops which were actually executed. The number of
loops that we identified as parallelizable are listed
under ”# parallelizable”. At this stage, prior to
the ranking, DiscoPoP considers only data depen-
dencies, which is why still many loops carrying no
dependency but bearing only a negligible amount of
work are reported. The second set of columns shows
the number of annotated loops in OpenMP versions
of the programs (# OMP). Under ”# identified”
we list how many annotated loops were identified
as parallelizable by DiscoPoP.

As shown in Table 1, DiscoPoP identified 92.5%
(136/147) of the annotated loops, proving the ef-
fect of the signature approximation to be negligi-
ble. A comparison with other tools is challenging
because none of them is available for download. A
comparison based exclusively on the literature has
to account for differences in evaluation benchmarks
and methods. For Parwiz [3], the authors reported
an average of 86.5% after applying their tool to
SPEC OMP-2001. Kremlin [5], which was also eval-
uated with NPB, selects only loops whose expected
speedup is high. While Kremlin reported 55.0% of
the loops annotated in NPB, the top 30% of Dis-
coPoP’s ranked result list cover 65.3% (96/147).

4.2. Identification of Tasks

Because parallelizing non-obvious tasks usually
entails code re-factorization, finding such tasks is
harder to evaluate than finding parallel loops that

8



Table 1: Detection of parallelizable loops in NAS Parallel Benchmark programs.

Program
Executed OpenMP-annotated loops

# loops # parallelizable # OMP # identified # in top 30% # in top 10
BT 184 176 30 30 22 9
SP 252 231 34 34 26 9
LU 173 164 33 33 23 7
IS 25 20 11 8 2 2
EP 10 8 1 1 1 1
CG 32 21 16 9 5 5
MG 74 66 14 14 11 7
FT 37 34 8 7 6 5

Overall 787 720 147 136 96 45

function: 365 - 381
Parallelizable: true loop: 372 - 380

Parallelizable: false
INIT
370

CU
374 - 379

INIT
666

if-else: 667 - 678
Parallelizable: false

loop: 682 - 709
Parallelizable: true

if-else: 719
Parallelizable: false

RAW
CU

Control
Region

Blue

Yellow

Grey

Figure 5: Identifying tasks in IS.

require at most minor modifications. For this rea-
son, we demonstrate two real cases where task par-
allelism was found.

4.2.1. LibVorbis.

LibVorbis is a reference implementation of the
Ogg Vorbis codec. It provides both a standard
encoder and decoder for the Ogg Vorbis audio
format. In this study, we analyzed the encoder
part. The suggested pipeline resides in the body
of the loop that starts at file encoder example.c,
line 212, which is inside the main function of the
encoder. The pipeline contains only two stages:
vorbis analysis(), which applies some transfor-
mation on audio blocks according to the selected
encoding mode (this process is called analysis), and
the remaining part that actually encodes the audio
block. After investigating the loop of the encoding
part further, we found it to have two sub-stages:
encoding and output.

We constructed a four-stage pipeline with one
stage each for analysis, encoding, serialization, and
output, respectively. We added a serialization
stage, in which we reorder the audio blocks because

we do not force audio blocks to be processed in or-
der in the analysis and the encoding phase. We ran
the test using a set of uncompressed wave files with
different sizes, ranging from 4 MB to 47 MB. As
a result, the parallel version achieved an average
speedup of 3.62 with four threads.

4.2.2. IS.

Non-trivial tasks are also identified in a part of
IS, one of the programs in NPB. Figure 5 shows the
relevant part of the CU graph.

As visible in the figure, IS starts with three dif-
ferent paths: blue, yellow, and grey. Due to space
limitations, some CUs on the yellow and the grey
path are omitted. At some later point, data depen-
dencies force the paths to converge. Before they
converge, code on the different paths can be exe-
cuted in parallel without violating any data depen-
dencies. The code on the blue path belongs to a
function without self-dependency, which means the
function can be invoked multiple times in parallel
(i.e., it is thread safe). Note that the grey path
crosses a variety of constructs, including different
functions. The IC values of the yellow and the grey
path indicate that they consume only a small frac-
tion of the overall runtime. The loop on the yellow
path merely initializes the array based on the given
input size. The code on the grey path monitors the
time spent in each computational phase. Creat-
ing a task for such small amounts of work does not
make sense. In addition, although no data depen-
dency exists between them, the time measurements
on the grey path depend logically on the progress of
the computation on the yellow path, which is why
the two paths would still need to be synchronized
when being executed in parallel or why they would
have to be merged, still leaving two parallel paths

9



in total.
Nevertheless, the function on the blue path con-

tains a loop that produces a large set of independent
random numbers, which means that parallelizing it
would accelerate the process. Unfortunately, data
dependencies prevent straight forward loop paral-
lelization because every thread needs its own ran-
dom seed. Yet, that the function as a whole is
thread safe suggests that the work could be done
in parallel provided that each thread creates a pri-
vate seed first. The OpenMP version of IS confirms
this conclusion. The function on the blue path was
re-factored by introducing a parallel region with
#pragma omp parallel. The parallelization made
the function significantly bigger and more complex.

This example shows the power of DiscoPoP to
identify parallel tasks and support the paralleliza-
tion of non-trivial loops in spite of reported depen-
dencies. Although in this specific example no prac-
tical value could be gained from knowing about all
three paths, it could be demonstrated that parallel
tasks can even be spread across different language
constructs, including different functions, without
escaping detection. We expect that this feature will
ultimately turn out to be useful to find pipeline par-
allelism in streaming applications.

4.3. Ranking Method

We also evaluated the precision of our ranking
method. The results are shown in Table 1. Col-
umn ”# in top 30%” lists the number of suggestions
matched by actual parallelization in the OpenMP
version (# identified) that end up in the top thirty
percent after ranking. We believe that only few pro-
grammers would examine all the suggestions one by
one and that for most the first 30% would be the
upper limit. As one can see, 70.6% (96/136) of the
matched suggestions can be found in the top 30%.
This means by examining only 30% of the sugges-
tions, 70% of the actually implemented parallelism
can be explored.

We also verified whether the top 10 suggestions
for each program are really parallelized in the offi-
cial OpenMP version. The results are listed in the
column ”# in top 10”. For most of the programs,
more than a half (for some of them even 90%) of
the top 10 suggestions are parallelized, proving the
effectiveness of our ranking method.

4.4. Overhead

In the last experiment, we measured the time and
memory consumption of DiscoPoP, also comparing

Figure 6: Runtime overhead of determining vs. merging data
dependencies.

our results to other approaches. The results ob-
tained with NPB 3.3.1 with input size W and EFPR
= 1.0% are summarized in Table 2.

4.4.1. Time

In Table 2, the column ”Original time” shows
the original execution time of the programs from
the benchmark suite. The column set ”Slowdown”
lists the slowdown attributable to the instrumen-
tation phase (instrumentation), to the execution of
the instrumented code (execution), and to the de-
tection of parallelism (detection), always including
the time spent in I/O. The memory consumption is
listed in the column set ”Memory”.

The time needed to instrument a target program
is relatively low. Given that a program needs to be
instrumented only once, this overhead can be ne-
glected. Dynamic data dependency profiling typi-
cally slows the program down by a factor ranging
from 100x to 150x, where DiscoPoP has an average
slowdown of 137x. Figure 6 presents a breakdown
of the data-dependency analysis phase. About half
(73x) of the time overhead is due to runtime de-
pendency merging. However, it greatly reduces the
time needed to detect parallelism later on. With-
out dependency merging, it would not be uncom-
mon to spend several hours searching for parallelism
since the dependency-file sizes easily reach an order
of several GB. After applying dependency merging,
the time overhead of detecting parallelism (detec-
tion) is only 2.14x on average.

We compare the overhead of DiscoPoP with
overhead numbers reported for other parallelism-
discovery tools in the literature. The numbers are
summarized in Table 3. As claimed in [5], the code
instrumented by Kremlin is about 50 times slower
than gprof-instrumented code, whereas the code
instrumented by DiscoPoP experiences an average

10



Table 2: Overhead when running NAS Parallel Benchmarks.

Program
Original

time (sec)
Slowdown (x) Memory (MB)

File (KB)
instrumentation execution detection original DiscoPoP

BT 8.21 2.89 174.48 2.52 12.91 2656.59 146
SP 24.79 3.00 133.72 1.27 37.46 161.06 105
LU 23.36 4.12 139.11 1.53 25.73 105.21 108
IS 0.14 7.00 122.00 2.00 36.34 580.23 5
EP 5.96 0.02 11.27 0.02 6.94 65.58 3
CG 0.90 0.79 188.36 0.14 33.65 106.33 13
MG 1.06 12.50 143.50 9.50 229.65 289.04 29
FT 0.87 0.43 185.86 0.15 86.14 355.13 15

Average 8.16 3.84 137.29 2.14 58.60 539.90 53

slowdown of 137x compared to the original code.
Although Kremlin is faster, it lacks the ability of
identifying parallel tasks because it maintains no
dependency graph.

The slowdown reported for Alchemist when ap-
plied to gzip and bzip2 is 265x and 713x, respec-
tively. The initial design of DiscoPoP [6] suffered
a slowdown of 364x and 964x. However, the im-
proved design presented here causes a slowdown of
only 28x and 26x on gzip and bzip2, respectively,
with the same size of input, which is about 10 to
27 times faster than Alchemist.

Parwiz [3] does not share any common bench-
mark programs with us. Evaluation results re-
ported for SPEC OMP-2001 suggest that Parwiz
causes an slowdown of 120x on average. Since Dis-
coPoP is tested on a different benchmark, we can-
not directly compare the result between DiscoPoP
and Parwiz. However, the result of Parwiz can still
be a reference because the type of computations
performed by SPEC OMP-2001 and NPB are simi-
lar, and the average numbers of source lines are also
close to each other.

Another approach of dynamic data-dependency
profiling is pursued in SD3 [8]. Although its pri-
mary aim is the reduction of memory overhead,
they authors also quantified the time overhead. In
their study, bzip2 is the only benchmark program
shared with us. According to [8], the serial version
of SD3 causes a 380x slowdown on bzip2, while the
8-task parallel version causes a slowdown of 95x.
With the same constrains, the slowdown of Dis-
coPoP on bzip2 is 184x—faster than the serial ver-
sion of SD3 but slower than the 8-task parallel ver-
sion. Note that the time overhead of DiscoPoP on
bzip2 reported here is different from the result we
compared to Alchemist because the input size was

Table 3: DiscoPoP’s time overhead in comparison to other
approaches in term of slowdown (x).

Benchmark D
is

co
P

o
P

K
re

m
li

n

A
lc

h
em

is
t

P
ar

w
iz

S
D

3
(s

eq
./

p
a
r.

)

NPB 137 50∗ – – –
SPEC OMP

2001
– – – 120 –

Gzip 1.3.5 28 – 265 – –
Bzip2 1.0.2 26 – 713 – –
401.bzip2 184 – – – 380/95

* Compared to gprof-instrumented code.

different in each case.

4.4.2. Memory

To capture the memory overhead, we use the
value of ”Maximum resident set size” from the time
tool with the -v option specified. Memory con-
sumption of DiscoPoP when executed with NPB
is listed in the column set ”Memory” in Table 2.
Apparently, DiscoPoP consumes between 65.58 MB
and 2.59 GB (memory consumption of the bench-
marks themselves excluded), with an average of
only 540 MB on NPB. The memory requirements
are quite reasonable even for an ordinary computer,
mainly because DiscoPoP uses a signature structure
instead of a traditional double-layer table as in clas-
sic shadow memory.

As far as we know, none of the existing
parallelism-discovery tools reported their memory
consumption except for Parwiz. According to [3],
Parwiz consumes between 200 MB and 4.7 GB (1.55
GB on average) on SPEC OMP-2001 (memory con-
sumed by benchmark programs themselves are al-

11



ready excluded). As we mentioned, SD3 is well
known for its low memory overhead of dynamic
data dependency profiling. According to [8], the
serial version of SD3 consumes about 3 GB mem-
ory on bzip2. With the same size of input and
EFPR = 1.0%, DiscoPoP consumes 2.81 GB mem-
ory, slightly less than SD3.

5. Conclusion and Outlook

We introduced a novel dynamic tool for the dis-
covery of potential parallelism in sequential pro-
grams. Building the concept of computational units
(CUs) and embedding it in a framework of com-
bined static and dynamic analysis, we can recon-
cile the identification of parallel tasks in the form
of CU chains with efficiency both in terms of time
and memory. CU chains are not confined to prede-
fined language constructs but can spread across the
whole program. Our approach found 92.5% of the
parallel loops in NAS Parallel Benchmark (NPB)
programs and successfully identified tasks spanning
several language constructs. It also helped paral-
lelizing a loop in spite of initial dependencies. Fur-
thermore, we provide an effective ranking method,
selecting the most appropriate parallel opportuni-
ties for the user. Our results show that 70% of the
implemented parallelism in NPB can be explored
by examining only the top 30% of our suggestions.

In the future, we want to extend our static
analyses to reduce the number of instrumented
functions—with the aim of further lowering the
time and space overhead. Most important, we want
to analyze CU graphs of more application examples,
in particular data-intensive streaming applications,
to identify patterns such as pipelining and support
their implementation.

[1] R. E. Johnson, Software development is program trans-
formation, in: Proceedings of the FSE/SDP Workshop
on Future of Software Engineering Research, FoSER
’10, ACM, New York, NY, USA, 2010, pp. 177–180.
doi:10.1145/1882362.1882400.

[2] D. Sanchez, L. Yen, M. D. Hill, K. Sankaralingam,
Implementing signatures for transactional memory, in:
Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 40,
IEEE Computer Society, Washington, DC, USA, 2007,
pp. 123–133. doi:10.1109/MICRO.2007.24.

[3] A. Ketterlin, P. Clauss, Profiling data-dependence to
assist parallelization: Framework, scope, and optimiza-
tion, in: Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, MI-
CRO 45, IEEE Computer Society, Washington, DC,
USA, 2012, pp. 437–448. doi:10.1109/MICRO.2012.47.

[4] X. Zhang, A. Navabi, S. Jagannathan, Alchemist: A
transparent dependence distance profiling infrastruc-
ture, in: Proceedings of the 7th Annual IEEE/ACM
International Symposium on Code Generation and Op-
timization, CGO ’09, IEEE Computer Society, Wash-
ington, DC, USA, 2009, pp. 47–58. doi:10.1109/CGO.

2009.15.
[5] S. Garcia, D. Jeon, C. M. Louie, M. B. Taylor, Kremlin:

Rethinking and rebooting gprof for the multicore age,
in: Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, PLDI ’11, ACM, New York, NY, USA, 2011, pp.
458–469. doi:10.1145/1993498.1993553.

[6] Z. Li, A. Jannesari, F. Wolf, Discovery of potential par-
allelism in sequential programs, in: Proceedings of the
42nd International Conference on Parallel Processing,
PSTI ’13, IEEE Computer Society, Washington, DC,
USA, 2013, pp. 1004–1013.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Brown-
ing, R. L. Carter, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, H. D. Simon, V. Venkatakrishnan, S. K.
Weeratunga, The NAS parallel benchmarks, The Inter-
national Journal of Supercomputer Applications.

[8] M. Kim, H. Kim, C.-K. Luk, SD3: A scalable approach
to dynamic data-dependence profiling, in: Proceedings
of the 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 43, IEEE Com-
puter Society, Washington, DC, USA, 2010, pp. 535–
546. doi:10.1109/MICRO.2010.49.

[9] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, R. Peri,
Shadow profiling: Hiding instrumentation costs with
parallelism, in: Proceedings of the 5th International
Symposium on Code Generation and Optimization,
CGO ’07, IEEE Computer Society, Washington, DC,
USA, 2007, pp. 198–208. doi:10.1109/CGO.2007.35.

[10] R. Vanka, J. Tuck, Efficient and accurate data depen-
dence profiling using software signatures, in: Proceed-
ings of the 10th International Symposium on Code Gen-
eration and Optimization, CGO ’12, ACM, New York,
NY, USA, 2012, pp. 186–195. doi:10.1145/2259016.

2259041.
[11] M. Kim, H. Kim, C.-K. Luk, Prospector: Discovering

parallelism via dynamic data-dependence profiling, in:
Proceedings of the 2nd USENIX Workshop on Hot Top-
ics in Parallelism, HOTPAR ’10, 2010.

[12] C. Lattner, V. Adve, LLVM: A compilation framework
for lifelong program analysis & transformation, in: Pro-
ceedings of the 2nd International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization, CGO ’04, IEEE Computer So-
ciety, Washington, DC, USA, 2004, pp. 75–.

12

http://dx.doi.org/10.1145/1882362.1882400
http://dx.doi.org/10.1109/MICRO.2007.24
http://dx.doi.org/10.1109/MICRO.2012.47
http://dx.doi.org/10.1109/CGO.2009.15
http://dx.doi.org/10.1109/CGO.2009.15
http://dx.doi.org/10.1145/1993498.1993553
http://dx.doi.org/10.1109/MICRO.2010.49
http://dx.doi.org/10.1109/CGO.2007.35
http://dx.doi.org/10.1145/2259016.2259041
http://dx.doi.org/10.1145/2259016.2259041

	coverpage.pdf
	blankpage
	Contents
	keynote1
	blankpage
	keynote2
	blankpage
	keynote3
	blankpage
	seps2014_submission_13
	Introduction
	Background
	Lighthouse Design
	Software Classification
	Search Capabilities and User Interface
	Code Template Generation
	Autotuning

	HPC Libraries
	Lighthouse for LAPACK
	Lighthouse for PETSc
	PETSc Search Interface
	Solver Selection

	Lighthouse for SLEPc

	Conclusion and Future Work

	seps2014_submission_6
	blankpage
	DiscoPoP-LLVM
	Introduction
	Related Work
	Approach
	Phase 1: Instrumentation, Control Flow Analysis, and Data Dependency Analysis
	Hybrid Control-Flow Analysis
	Signature-Based Data Dependency Analysis
	Estimated False-Positive Rate
	Variable Lifetime Analysis
	Runtime Data Dependency Merging

	Phase 2: Parallelism Discovery
	CU Graph and Execution Tree
	Detecting Parallelism

	Phase 3: Ranking
	Instruction Coverage
	Local Speedup
	CU Imbalance


	Evaluation
	Accuracy of Parallelism Detection
	Identification of Tasks
	LibVorbis.
	IS.

	Ranking Method
	Overhead
	Time
	Memory


	Conclusion and Outlook

	seps2014_submission_3
	blankpage
	seps2014_submission_2
	Introduction
	Related Work
	Parallelization for Embedded Systems
	Framework
	PICO API
	Parallel Sections
	Parallel Loops

	Use Case Study
	Source Modifications
	Simulator-based Evaluation

	Conclusion

	seps2014_submission_12
	Introduction
	Syntax and semantics of Nebo
	Basic Nebo Expressions
	Assignment
	Conditional expressions
	Stencil operations
	Reductions

	Implementation of Nebo
	Template meta-programming
	Backends
	Single-thread implementation
	Multi-thread implementation
	Many-core (GPU) implementation
	Reduction implementation


	Results
	Scalar right-hand side term
	Task graph results
	Code to code comparisons

	Related Work
	Future work
	Conclusion

	seps2014_submission_14
	Introduction
	Related Work
	Study Setup
	Research Questions
	Benchmarks
	Experimental Environment

	Study Results
	Threat to Validity
	Conclusions
	Acknowledgments

	seps2014_submission_1
	Introduction
	Background
	Related Work
	Hybrid HTM-STM
	RSTM

	Methodology
	MRLock
	Wrapper for RTM Instructions

	Performance Evaluation
	Micro-benchmark
	K-means

	Conclusion

	seps2014_submission_15
	blankpage



