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Abstract The stagnation of single-core performance leaves application developers
with software parallelism as the only option to further benefit from Moore’s Law.
However, in view of the complexity of writing parallel programs, the parallelization
of myriads of sequential legacy programs presents a serious economic challenge.
A key task in this process is the identification of suitable parallelization targets in
the source code. We developed a tool called DiscoPoP showing how dependency
profiling can be used to automatically identify potential parallelism in sequential
programs. Our method is based on the notion of computational units, which are
small sections of code following the read-compute-write pattern that can form the
atoms of concurrent scheduling. DiscoPoP covers both loop and task parallelism.
Experimental results show that reasonable speedups can be achieved by parallelizing
sequential programs manually according to our findings. By comparing our findings
to known parallel implementations of sequential programs, we demonstrate that we
are able to detect the most important code locations to be parallelized.

1 Introduction

Although the component density of microprocessors is still rising according to
Moores Law, single-core performance is stagnating for more than ten years now.
As a consequence, extra transistors are invested into the replication of cores, re-
sulting in the multi- and many-core architectures popular today. The only way for
developers to take advantage of this trend if they want to speed up an individual
application is to match the replicated hardware with thread-level parallelism. This,
however, is often challenging especially if the sequential version was written by
someone else. Unfortunately, in many organizations the latter is more the rule than
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the exception [1]. To find an entry point for the parallelization of an organization’s
application portfolio and lower the barrier to sustainable performance improvement,
tools are needed that identify the most promising parallelization targets in the source
code. These would not only reduce the required manual effort but also provide a psy-
chological incentive for developers to get started and a structure for managers along
which they can orchestrate parallelization workflows.

In this paper, we present an approach for the discovery of potential parallelism in
sequential programs that—to the best of our knowledge—is the first one to combine
the following elements in a single tool:

1. Detection of available parallelism with high accuracy
2. Identification of code sections that can run in parallel, supporting the definition

of parallel tasks—even if they are scattered across the code
3. Ranking of parallelization opportunities to draw attention to the most promising

parallelization targets
4. Time and memory overhead that is low enough to deal with input programs of

realistic size

Our tool, which we call DiscoPoP (= Discovery of Potential Parallelism), re-
verses the idea of data-race detectors. It profiles dependencies, but instead of only
reporting their violation it also watches out for their absence. We use the depen-
dency information to represent program execution as a graph, from which paral-
lelization opportunities can be easily derived or based on which their absence can be
explained. Since we track dependencies across the entire program execution, we can
find parallel tasks even if they are widely distributed across the program or not prop-
erly embedded in language constructs, fulfilling the second requirement. To meet
the third requirement, our ranking method considers a combination of execution-
time coverage, critical-path length, and available concurrency. Together, these four
properties bring our approach closer to what a user needs than alternative meth-
ods [2, 3, 4] do. We expand on earlier work [5], which introduced the algorithm for
building the dependency graph based on the notion of computational units—at that
time a purely dynamic approach with significant time and memory overhead. This is
why this paper concentrates mainly on the overall workflow, including a preceding
static analysis, the minimization of runtime overhead, the ranking algorithm, and
an evaluation using realistic examples along with a demonstration of identifying
non-obvious tasks.

The remainder of the paper is structured as follows: In the next section, we re-
view related work and highlight the most important differences to our own. In Sec-
tion 3, we explain our approach in more detail. In the evaluation in Section 4, we run
the NAS parallel benchmarks [6], a collection of programs derived from real CFD
codes, to analyze the accuracy at which we identify and rank parallelism in spite of
the optimizations we apply. Also, we show how we find parallel tasks and pipeline
patterns that are not trivial to spot. Finally, we quantify the overhead of our tool
both in terms of time and memory. Section 5 summarizes our results and discusses
further improvements.
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2 Related Work

After purely static approaches including auto-parallelizing compilers had turned out
to be too conservative for the parallelization of general-purpose programs, a range
of predominantly dynamic approaches emerged. Such dynamic approaches can be
broadly divided into two categories. Tools in the first merely count dependencies,
whereas tools in the second, including our own, exploit explicit dependency infor-
mation to provide detailed feedback on parallelization opportunities or obstacles.

Kremlin [4] belongs to the first category. Using dependency information, it de-
termines the length of the critical path in a given code region. Based on this knowl-
edge, it calculates a metric called self-parallelism, which quantifies the parallelism
of a code region. Kremlin ranks code regions according to this metric. Alchemist [3]
follows a similar strategy. Built on top of Valgrind, it calculates the number of in-
structions and the number of violating read-after-write (RAW) dependencies across
all program constructs. If the number of instructions of a construct is high while the
number of RAW dependencies is low, it is considered to be a good candidate for
parallelization. In comparison to our own approach, both Kremlin and Alchemist
have two major disadvantages: First, they discover parallelism only at the level of
language constructs, that is, between two predefined points in the code, potentially
ignoring parallel tasks not well aligned with the source-code structure. Second, they
merely quantify parallelism but do neither identify the tasks to run in parallel unless
it is trivial as in loops nor do they point out parallelization obstacles.

Like DiscoPoP, Parwiz [2] belongs to the second category. It records data depen-
dencies and attaches them to the nodes of the execution tree (i.e., a generalized call
tree that also includes basic blocks) it maintains. In comparison to DiscoPoP, Parwiz
lacks a ranking mechanism and does not explicitly identify tasks. They have to be
manually derived from the dependency graph, which is demonstrated using small
text-book examples.

Reducing the significant space overhead of tracing memory accesses was also
successfully pursued in SD3 [7]. An essential idea that arose form there is the dy-
namic compression of strided accesses using a finite state machine. Obviously, this
approach trades time for space. In contrast to SD3, DiscoPoP leverages an accept-
able approximation, sacrificing a negligible amount of accuracy instead of time. The
work from Moseley et al [8] is a representative example of this approach. Sampling
also falls into this category.

Prospector [9] is a parallelism-discovery tool based on SD3. It tells whether a
loop can be parallelized, and provides a detailed dependency analysis of the loop
body. It also tries to find pipeline parallelism in loops. However, no evaluation result
or example is given for this feature.
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Fig. 1 The work flow of DiscoPoP.

3 Approach

Figure 1 shows the work flow of DiscoPoP. The work flow of DiscoPoP is divided
into two phases: In the first phase, we instrument the target program and execute
it. Control flow information and data dependencies are obtained in this phase. In
the second phase, we build computational units (CUs) for the target program, and
search for potential parallelism based on the CUs and dependence among them. The
output is a list of parallelization opportunities, consisting of several code sections
that may run in parallel. These opportunities are also ranked to allow the users focus
on the most interesting opportunities.

3.1 Dependence profiling

Data dependences can be obtained in two major ways: static and dynamic analy-
sis. Static approaches determine data dependences without executing the program.
Although they are fast and even allow fully automatic parallelization in some re-
stricted cases [10, 11], they lack the ability to track dynamically allocated memory,
pointers, and dynamically calculated array indices, which usually makes their as-
sessment too pessimistic for practical purposes. In contrast, dynamic dependence
profiling captures only those dependences that actually occur at runtime. Although
dependence profiling is inherently input sensitive, the results are still useful in many
situations, which is why such profiling forms the basis of many program analysis
tools [4, 9, 2]. Besides, input sensitivity can be addressed by running the target pro-
gram with changing inputs and computing the union of all collected dependences.

Dependence profiling component severs as the foundation of our tool. The pro-
filer produces the following information:

• pair-wise data dependencies
• source code locations of dependencies and the names of the variables involved
• runtime control-flow information
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1 1:60 BGN loop
2 1:60 NOM {RAW 1:vim} {WAR 1:60|i} {INIT *}
3 1:63 NOM {RAW 1:59|temp1} {RAW 1:67|temp1}
4 1:64 NOM {RAW 1:60|i}
5 1:65 NOM {RAW 1:59|temp1} {RAW 1:67|temp1} {WAR 1:67|temp2}

{INIT *}
6 1:66 NOM {RAW 1:59|temp1} {RAW 1:65|temp2} {RAW 1:67|temp1}

{INIT *}
7 1:67 NOM {RAW 1:65|temp2} {WAR 1:66|temp1}
8 1:70 NOM {RAW 1:67|temp1} {INIT *}
9 1:74 NOM {RAW 1:41|block}

10 1:74 END loop 1200

Fig. 2 A fragment of profiled data dependencies in a sequential program.

We profile detailed pair-wise data dependencies because we do not want to lose
the chance to report root causes that preventing parallelism. If detailed information
is not required by a certain analysis, dependencies can be easily merged into coarser
grain with the help of control-flow and variable name information, for example,
dependencies between loops, between functions, or between objects. Control-flow
information is necessary for building computational units.

A fragment of profiled data is shown in Figure 2. A data dependency is rep-
resented as a triple <sink, type, source>. type is the dependency type
(RAW, WAR or WAW). Note that a special type INIT represents the first write
operation to a memory address. In this case, source of the dependency is empty,
which is represented as *.

sink and source are the source code locations of the latter and
the former memory accesses, respectively. sink is further represented as
a pair <fileID:lineID>, while source is represented as a triple
<fileID:lineID|variableName>. As it is shown in Figure 2, data depen-
dences with the same sink are aggregated together.

Identifier NOM (short for ”NORMAL”) means that the source line specified by
aggregated sink has no control-flow information. Otherwise, BGN and END rep-
resent the entry and exit point of a control region, respectively. In Figure 2, a loop
starts at source line 1:60 and ends at source line 1:74. The number following END
loop shows the actual number of iterations executed, which is 1200 in this case.

In order to get pair-wise data dependencies dynamically, every load and store
instruction is instrumented. Entry and exit points of control regions are determined
statically, but loops are still instrumented so that the number of executed iterations
can be recorded. Source code location and variable names are obtained with the
help of debug symbols, thus the compiler option -g must be specified to compile
the program.
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1 void netlist:: (netlist_elem** a, netlist_elem** b, Rng* rng)
2 {
3 //get a random element
4 long id_a = rng->rand(_chip_size);
5 netlist_elem* elem_a = &(_elements[id_a]);
6

7 //now do the same for b
8 long id_b = rng->rand(_chip_size);
9 netlist_elem* elem_b = &(_elements[id_b]);

10

11 while (id_b == id_a)
12 {
13 id_b = rng->rand(_chip_size);
14 elem_b = &(_elements[id_b]);
15 }
16 *a = elem_a;
17 *b = elem_b;
18 return;
19 }

Fig. 3 Function netlist::get random pair of parsec.canneal that contains two CUs.

3.2 Computational unit

During the second phase, we search for potential parallelism based on the output of
the first phase, which is essentially a graph of dependencies between source lines.
This graph is then transformed into another graph, whose nodes are parts of the
code without parallelism-preventing read-after-write (RAW) dependencies inside.
We call these nodes computational units (CUs). Based on this CU graph, we can
detect potential parallelism and already identify tasks that can run in parallel.

A Computational Unit (CU) is defined as a set of instructions that form a read-
compute-write pattern. A CU differs from the basic block such that a basic block
contains operations that are consecutive and has only one entry and one exit point.
A CU however, is a group of instructions that are not necessarily consecutive but
perform a computation and is based on the use of a set of variables. A single CU or
a group of CUs merged together can provide the code sections that perform a task.
These code sections can be examined to see if they can be run concurrently with
other code sections or themselves to exploit the available parallelism.

To understand what a CU is, consider the example in the listing 3. The source
lines 4 and 8 perform the initialization of variables id a and id b with a random
value. Lines 5 and 9 perform the task of calculating elem a and elem b by using the
value of id a and id b respectively. These two operations are performed indepen-
dent of one another. The while loop in the function is responsible for checking if
the two random values are equal and reassigning id b if it is true. Finally, the lines
16 and 17 are responsible for writing the final computation back to *a and *b. In
essence, the group of LLVM-IR instructions corresponding to the lines {4, 5, 16}
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Fig. 4 The two CUs contained in Function netlist::get random pair of parsec.canneal.

perform one computation and the ones corresponding to the lines {8, 9, 13, 14, 17}
perform another computation and these tasks are independent of each other except
for the equality check condition of the while loop. In case of the while loop, identify-
ing code sections that that require synchronization or replication across concurrent
threads will part of our future work.

The two computations mentioned above follow a basic rule where a variable or
a group of variables are read and then they are used to perform another calculation.
This is followed by the final state being written to another variable as a store op-
eration. Hence, these two computations can be said to follow a read-compute-write
pattern. The two computations can be visualized as seen in the figure 4. The final
store instruction that writes a value to *a uses all the instructions that correspond
to the lines {4, 5, 16} to perform that write operation. Similarly, the group of in-
structions that correspond to the lines {8, 9, 13, 14, 17} are used for the final store
instruction that writes *b. These two sets of instructions can individually be defined
as CUs. These CUs form the building blocks of the tasks which can be created for
exploiting parallelism in the sequential programs.

Using the common instructions and the RAW dependencies between the CUs, a
CU graph is constructed. The nodes of this graph are CU IDs. The CU graph has
two types of edges. First type of edge between any two CU nodes signifies RAW
dependence between them and is a directed edge. The weight of an RAW edge is
the number of RAW dependencies between the two CUs. The second type of edge
signifies that there are common instructions between the two CUs. This is an undi-
rected edge and its weight is the number of common instructions between the two
CUs. Figure 5(a) shows a CU graph with red edges as RAW dependencies between
the CUs and blue edges as the CUs connected because of the common instructions
between them. A CU graph is generally a disconnected graph with several connected
components.
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Fig. 5 Example of a CU Graph and Task Formation.

3.3 Detecting parallelism

DiscoPoP finds potential parallelism based on the CU graph. It is well known that
among the four kinds of data dependencies, read-after-read (RAR) does not affect
parallelization. Write-after-read (WAR) and write-after-write (WAW) are easy to
resolve by privatizing the affected variables. Only read-after-write (RAW) seriously
prevents parallelization.

3.3.1 DOALL loops

A loop can be parallelized according to the do-all pattern if there are no loop-carried
or inter-iteration dependences. A forward or self-dependence is always loop-carried,
as the control flow within a loop iteration moves in a forward direction, which is why
dependences within the same iteration must point backward. Note that inner loops
in loop nests, which may reverse the control flow direction whenever a new inner
iteration starts, are treated separately. The absence of forward or self-dependences
is easy to verify based on the graph matrix, whose upper triangle shows all forward
and self-edges.

Of course, there may also exist loop-carried dependences in backward edges of
the graph matrix. However, to reliably distinguish them from intra-iteration depen-
dences, our dependence profiler would have to record the iteration number along
with each memory access, substantially increasing its memory overhead. On the
other hand, loop-carried dependences in a backward direction that are not accompa-
nied by dependences in a forward direction in the same loop are very rare. Basically,
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Fig. 6 Forming tasks in a code section of fluidanimate.

the absence of forward and self-dependences in a loop is a good indicator of the ab-
sence of loop-carried dependences. For this reason, we decided to refrain from the
costly classification of backward dependences into loop-carried or not loop-carried.

3.3.2 Tasking

To identify potential parallel tasks, we firstly merge CUs contained in strongly con-
nected components (SCCs) or in chains. In graph theory, an SCC is a subgraph in
which every vertex is reachable from every other vertex. Thus, every CU in an SCC
of the CU graph depends on every other CU either directly or indirectly, forming a
complex knot of dependences that is likely to defy internal parallelization. Identify-
ing SCCs is important for two reasons:

1. Algorithm design. Complex dependences are usually the result of highly opti-
mized sequential algorithm design oblivious of potential parallelization. In this
case, breaking such dependence requires a parallel algorithm, which is beyond
the scope of our method.

2. Coding effort. Even if such complex dependences are not created by design,
breaking them is usually time-consuming, error-prone, and may cause signifi-
cant synchronization overhead that may outweigh the benefit of parallelization.

Hence, we hide complex dependences inside SSCs, exposing parallelization oppor-
tunities outside, where only a few dependences need to be considered. Figure 6
shows the task-forming process for a code section (starting from serial.c: 341) in
function RebuildGrid() of fluidanimate, a program from the PARSEC Bench-
mark Suite [12]. In step 1, CU F , G and H are grouped into SCCFGH . After con-
tracting each SCC to a single vertex, the graph becomes a directed acyclic graph.
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Moreover, we group CUs that are connected in a row without a branching or
joining point in between into a chain of CU. Although they do not form an SCC, we
still group them together since each CU contains only a few instructions, and there
is no benefit in considering each CU as a separate task. In step 2 of Figure 6, CU
C, D and E are grouped into the chainCDE . Finally, we declare each SCC or chain
a potential task and derive a parallelization plan from the dependences that exist
between them.

After the process of forming chains and SCCs, we can suggest some task paral-
lelism between independent chains and SCCs, that is, without RAW dependencies
between them. Note that a chain of CUs may start and end anywhere in the program,
without the limitation of predefined constructs, and the code in a chain of CUs does
not need to be continuous.

However, some task parallelism can also be utilized with a small amount of refac-
toring effort, that is, dependences between potential tasks exist but are weak. We
cover these parallelism by applying minimum cut on CU graph. In CU graph, a high
value of weight on the edges of any two vertices indicates that those two CUs either
share large amount of computation or they are strongly dependent on one another.
Using these two metrics, we calculate a value called affinity for every pair of CU
nodes in the graph. The affinity between any two CU nodes hence indicates how
tightly coupled the two CUs are. A low value of affinity between two CUs signifies
that it’s logical to separate the two CUs while forming tasks. The two types of edges
in the graph are replaced by a single undirected edge. The weight of this edge is the
affinity between the two CUs. Figure 5(b) demonstrates the graph with the two types
of edges between the vertices replaced by single edge with affinity as the weight.

The next step is to calculate the minimum cut of a connected component using
Stoer-Wagner’s algorithm [13]. In graph theory, a cut of a graph is a partition of
the vertices of a graph into two disjoint subsets that are joined by at least one edge.
A minimum cut is a set of edges that has the smallest number of edges (for an
unweighted graph) or smallest sum of weights possible (for a weighted graph). A
minimum cut creates a disconnected graph with two connected components, each of
which is further analyzed for finding relevant tasks. Figure 5(c) shows the CU graph
with a minimum cut.

Identifying the minimum cut of a graph divides the graph into two components
that were weakly linked. This indicates that we are separating our code with mini-
mum number of dependences and common instructions affected. For each compo-
nent, the minimum cut is calculated further to divide it into two more components.
The process is repeated recursively over all the components of the CU graph until
the components available are CUs themselves.

3.3.3 Pipeline

To detect pipeline pattern, we use template-matching [14] technique. There, both
template and target program are represented by vectors. Cross-correlation between
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two vectors is used to determine how similar they are. We adapt this concept for the
detection of parallel patterns in CU graphs.

tree = getExecutionTree(serialProgram)
Hotspots = f indHotspots(tree)
for each h in Hotspots do

CUGraph = getCUGraph(h)
n = getNumberO fCUs(CUGraph)
for each p in ParallelPatterns do

p = getPatternVector(p,n)
g = getGraphVector(p,CUGraph)
CorrCoe f [h, p] =CorrCoe f (p,g)

end
end
return CorrCoe f

Algorithm 1: Parallel pattern detection.

Algorithm 1 shows the overall work flow of our approach. We first look for
hotspots in the input program—sections such as loops or functions that have to
shoulder most of the workload. For each hotspot and pattern, we then create a pat-
tern vector p, whose length is equal to the number n of CUs in the hotspot. The
pattern vector plays the role of the template to be matched to the program. After
that, we create the pattern-specific graph vector g of the hotspot’s CU subgraph,
which represents the part of the program to which the pattern vector is matched.
Vectors p and g are derived from adjacency matrices reflecting dependences in the
pattern and in the CU graph, respectively. As a next step, we compute the correlation
coefficient of the two vectors using the following formula:

CorrCoe f =
p ·g
‖p‖ ‖g‖

The correlation coefficient of the pattern vector and the graph vector of the selected
section tells us whether the pattern exists in the selected section or not. The value
of the coefficient is always in the range of [0,1]. A 1 indicates that the pattern exists
fully, whereas a 0 indicates that it does not exist at all. A value in between shows
the pattern can exist but with some limitations which we need to work around. Our
tool points out to the dependences, which cause the value of correlation coefficient
of a pattern to be less than 1. This helps the programmer to resolve these specific
dependences, if he wants to implement that pattern.

Implementing a pipeline only makes sense if its stages are executed many times.
For this reason, we restrict our search for pipelines to loops, functions with multi-
ple loops, and recursions. In order to find a pipeline, we first let DiscoPoP deliver
the CU graphs of all hotspots. Because DiscoPoP counts the number of read and
write instructions executed in each loop or function, we currently use this readily
available metric as an approximation of the workload when searching for hotspots.
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Table 1 Detection of parallelizable loops in NAS Parallel Benchmark programs.

Program Executed OpenMP-annotated loops
# loops # parallelizable # OMP # identified # in top 30% # in top 10

BT 184 176 30 30 22 9
SP 252 231 34 34 26 9
LU 173 164 33 33 23 7
IS 25 20 11 8 2 2
EP 10 8 1 1 1 1
CG 32 21 16 9 5 5
MG 74 66 14 14 11 7
FT 37 34 8 7 6 5

Overall 787 720 147 136 96 45

A more comprehensive criterion, including execution times and workload, will be
implemented in the future. We then compute an adjacency matrix for each hotspot
graph, which we call the graph matrix. For each graph matrix, we create a corre-
sponding pipeline pattern matrix of the same size, which we call the pipeline matrix.
Pipeline matrices encode a very specific arrangement of dependences expected be-
tween CUs. For example, there must be a dependence chain running through all CUs
in the graph because a pipeline consists of a chain of dependent stages. This specific
property helps us to derive the pipeline pattern vector from the matrix.

4 Evaluation and Results

We conducted a range of experiments to evaluate the ability of DiscoPoP to detect
DOALL loops, potential parallel tasks and pipeline patterns. The performance of
DiscoPoP is also analyzed. Test cases are the NAS Parallel Benchmarks 3.3.1 [6]
(NAS), a suite of programs derived from real-world computational fluid-dynamics
applications, the Starbench parallel benchmark suite [15] (Starbench), which covers
programs from diverse domains, including image processing, information security,
machine learning and so on, benchmarks from PARSEC Benchmark Suite 3.0 [12],
and a few real-world applications. Whenever possible, we tried different inputs to
compensate for the input sensitivity of dynamic dependence profiling.

4.1 DOALL loops

To evaluate the ability of DiscoPoP to detect DOALL loops, we searched for par-
allelizable loops in sequential NPB programs and compared the results with the
parallel versions provided by NPB. Table 1 shows the results of the experiment.
The data listed in the column set ”Executed” are obtained dynamically. Column ”#
loops” gives the total number of loops which were actually executed. The number of
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Table 2 Parallel tasks identified in Starbench compared to existing parallel implementations.

Program Task suggestion Execution time (%)
Matched in parallel

implementations # CUs used

c-ray render scanlines() 100.0 yes 4
k-means cluster() 99.6 yes 3

md5 MD5 Update() 93.5 yes 7
rotate RotateEngine::run() 90.3 yes 6

rgbyuv processImage() 100.0 yes 7
ray-rot render scanlines() 97.2 yes 10
rot-cc RotateEngine::run() 54.7 yes 13

loops that we identified as parallelizable are listed under ”# parallelizable”. At this
stage, prior to the ranking, DiscoPoP considers only data dependencies, which is
why still many loops carrying no dependency but bearing only a negligible amount
of work are reported. The second set of columns shows the number of annotated
loops in OpenMP versions of the programs (# OMP). Under ”# identified” we list
how many annotated loops were identified as parallelizable by DiscoPoP.

As shown in Table 1, DiscoPoP identified 92.5% (136/147) of the annotated
loops. A comparison with other tools is challenging because none of them is avail-
able for download. A comparison based exclusively on the literature has to account
for differences in evaluation benchmarks and methods. For Parwiz [2], the authors
reported an average of 86.5% after applying their tool to SPEC OMP-2001. Krem-
lin [4], which was also evaluated with NPB, selects only loops whose expected
speedup is high. While Kremlin reported 55.0% of the loops annotated in NPB, the
top 30% of DiscoPoP’s ranked result list cover 65.3% (96/147).

4.2 Tasking

We have applied two separate strategies to evaluate the ability of DiscoPoP to detect
parallel tasks. Firstly, we compare the parallel implementations of the applications
from the Starbench benchmark suite with the tasks identified by our analysis. In this
case, our goal is to verify if the approach identifies valuable and logical homoge-
neous tasks. Secondly, we use some of the programs from the PARSEC benchmark
and parallelize these applications based on the heterogeneous tasks which are iden-
tified as potential candidates for parallelism.

4.2.1 Comparison with existing parallel implementations.

Our first evaluation strategy involves providing a comparison of the identified tasks
with the existing parallel versions of the applications for Starbench parallel bench-
mark suite. The table 2 shows the overview of the evaluation performed. Column
”Task suggestion” shows the location where parallel tasks are identified using our
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approach and column ”Matched in parallel implementations” shows whether the
identified tasks exist in the official parallel implementations from Starbench. The
tasks were identified by prioritizing the main algorithm functions and the functions
that consumed the majority of the total execution time of the program as shown in
column ”Execution time (%)”.

CU-102 [72,73,79]

for(i < numObjs){
index = find_nearest_cluster(

objects[i]);
membership[i] = index;}

CU-105 [72,73,82,83]

for(i < numObjs){
index = find_nearest_cluster(

objects[i]);
for(j < numCoords){

local_newClusters[index*numCoords+j]
 += objects[i][j];}}

CU-107 [73,81]

index = find_nearest_cluster(objects[i]);
local_newClusterSize[index]++;

Fig. 7 Connected Component of the CU Graph of k-means corresponding to function
cluster().

As an example, we show the tasks identified in k-means, a clustering algorithm
widely used in the domains of data-mining and artificial intelligence. The applica-
tion consists of two iteratively repeated phases. One is a clustering phase and the
other is a reduction phase that computes new clusters. In the sequential version, the
function kmeans() calls the function cluster() which performs the cluster-
ing phase. The remaining body of the function kmeans() performs the reduction
phase. The function cluster() takes 99.6% of the total execution time of the
program. This makes it a good candidate for analysis of the tasks from the list of the
tasks identified for the program.

The analysis identifies both of the aforementioned phases individually as tasks.
The cluster() function is identified as a task by grouping 3 CUs from the
CU graph. Figure 7 shows the connected component of the graph for the function
cluster(). As for the reduction phase, only the part of the function kmeans()
that performs this phase is identified as task by the analysis. In the pthreads version
of the program, every thread executes the function work(), which contains the
same code as the sequential version of cluster(). The reduction phase is run by
the main thread thereafter.

4.2.2 Parallelization based on the suggested heterogeneous tasks.

In this section we investigate some applications of PARSEC benchmark suite. We
parallelized these applications based on the tasks formed by using CUs or by di-
rectly considering CUs as tasks. We assigned these tasks to separate threads and
calculated the speedup obtained. We parallelized these cases mainly using OpenMP
section and task directives. Table 3 shows the results of the applications paral-
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Table 3 Speedups obtained by parallelizing identified tasks in PARSEC benchmarks.

Program Function Code refactoring # Threads Local speedup
Fluidanimate RebuildGrid() Yes 2 1.60
Fluidanimate ProcessCollisions() No 4 1.81

Canneal routing cost given loc() Yes 2 1.32
Blackscholes CNDF() NA NA NA

Table 4 Pipeline patterns identified in PARSEC benchmarks and libVorbis.

Program # of pipeline in parallel version Corr. coef. # Detected Speedup
bodytrack 1 0.96 1 N.A.

dedup 1 1.00 1 N.A.
ferret 1 1.00 1 N.A.

blackscholes 0 0.00 0 N.A.
fluidanimate 0 0.94 1 1.52 (3T)

libVorbis N.A. 1.00 1 3.62 (4T)

lelized. The local speedups represent an average of five independent executions of
the programs. Column ”# Threads” shows the number of threads used to parallelize
the suggestions. Column ”Code refactoring” indicates if the refactoring the code
like adding necessary synchronization or replicating some part of the code across
multiple threads was necessary to parallelize the program based on the suggestion.
For our future work, we would like to predict the various kinds of synchronizations
or code refactoring necessary to parallelize a suggestion based on the available de-
pendences and CUs identified.

4.3 Pipeline

We applied DiscoPoP on five benchmarks from PARSEC and libVorbis to detect
pipeline pattern. Among the test cases, three benchmarks (bodytrack, dedup, and
ferret) have pipeline patterns according to their existing parallel implementations,
while two of the test cases (blackscholes and fluidanimate) do not. libVorbis has a
natural pipeline work flow, but we cannot confirm it before applying DiscoPoP since
there is no existing parallel implementation for it.

Table 4 shows the results of detecting pipeline patterns on the test cases. For all
the three cases that contain pipeline patterns in parallel implementations, the uti-
lized pipeline are successfully identified. Thus we did not parallelize them again.
No pipeline pattern is detected in blackscholes, which is also as expected. How-
ever, pipeline pattern is detected in fluidanimate, which do not have a pipeline in
its parallel implementations. After examining the code, we believe the parallelism
does exist, and we parallelized the code section following the suggestion. Our par-
allelization yields a speedup of 1.52 using three threads. Note that the correlation
coefficient for this pipeline pattern is 0.94, which implies that code refactoring may
be needed. Actually, parallelizing this place requires quite a lot of effort.
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Fig. 8 Slowdowns of data dependence profiler for sequential NAS and Starbench benchmarks.

LibVorbis is a reference implementation of the Ogg Vorbis codec. It provides
both a standard encoder and decoder for the Ogg Vorbis audio format. In this study,
we analyzed the encoder part. The suggested pipeline resides in the body of the
loop that starts at file encoder example.c, line 212, which is inside the main func-
tion of the encoder. The pipeline contains only two stages: vorbis analysis(),
which applies some transformation to audio blocks according to the selected encod-
ing mode (this process is called analysis), and the remaining part that actually en-
codes the audio block. After investigating the loop of the encoding part further, we
found it to have two sub-stages: encoding and output.

We constructed a four-stage pipeline with one stage each for analysis, encoding,
serialization, and output, respectively. We added a serialization stage, in which we
reorder the audio blocks because we do not force audio blocks to be processed in
order in the analysis and the encoding phase. We ran the test using a set of uncom-
pressed wave files with different sizes, ranging from 4 MB to 47 MB. As a result,
the parallel version achieved an average speedup of 3.62 with four threads.

4.4 Overhead

We conducted our performance experiments on a server with 2 x 8-core Intel Xeon
E5-2650 2 GHz processors with 32 GB memory, running Ubuntu 12.04 (64-bit
server edition). All the test programs were compiled with option -g -O2 using
Clang 3.3. For NAS, we used the input set W; for Starbench, we used the reference
input set.

4.4.1 Time overhead.

First, we examine the time overhead of our profiler. The number of threads for pro-
filing is set to 8 and 16. The slowdown figures are average values of three executions
compared with the execution time of uninstrumented runs. The negligible time spent
in the instrumentation is not included in the overhead. For NAS and Starbench, in-
strumentation was always done in two seconds.
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Fig. 9 Memory consumption of the profiler for sequential NAS and Starbench benchmarks.

The slowdown of our profiler when profiling sequential programs is shown in
Figure 8. The average slowdowns for the two benchmark suites (”NAS-average”
and ”Starbench-average”) are also included. As the figure shows, our serial profiler
has a 190× slowdown on average for NAS benchmarks and a 191× slowdown on
average for Starbench programs. The overhead is not surprising since we perform
an exhaustive profiling for the whole program.

When using 8 threads, our parallel profiler gives a 97× slowdown (best case 19×,
worst case 142×) on average for NAS benchmarks and a 101× slowdown (best case
36×, worst case 253×) on average for Starbench programs. After increasing the
number of threads to 16, the average slowdown is only 78× (best case 14×, worst
case 114×) for NAS benchmarks, and 93× (best case 34×, worst case 263×) for
Starbench programs. Compared to the serial profiler, our parallel profiler achieves
a 2.4× and a 2.1× speedup using 16 threads on NAS and Starbench benchmark
suites, respectively.

4.4.2 Memory consumption.

We measure memory consumption using the ”maximum resident set size” value
provided by /usr/bin/time with the verbose (-v) option. Figure 9 shows the
results. When using 8 threads, our profiler consumes 473 MB of memory on aver-
age for NAS benchmarks and 505 MB of memory on average for Starbench pro-
grams. The average memory consumption is increased to 649 MB and 1390 MB for
NAS and Starbench programs, respectively. The worst case happens when using 16
threads to profile md5, which consumes about 7.6 GB memory. Although this may
exceed the memory capacity configured in a three-year-old PC, it is till adequate for
up-to-date machines, not to mention servers that are usually configured with 16 GB
memory or more.
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5 Conclusion and Outlook

We introduced a novel dynamic tool for the discovery of potential parallelism in
sequential programs. Building the concept of computational units (CUs) and em-
bedding it in a framework of combined static and dynamic analysis, we can recon-
cile the identification of parallel tasks in the form of CU chains with efficiency both
in terms of time and memory. CU chains are not confined to predefined language
constructs but can spread across the whole program. Our approach found 92.5%
of the parallel loops in NAS Parallel Benchmark (NPB) programs and successfully
identified tasks spanning several language constructs as well as pipeline patterns.
It also helped parallelizing a loop in spite of initial dependences. Implementing the
generated plan achieved reasonable speedups in most of our test cases: up to 2.67
for independent tasks and up to 3.62 for pipelines using a maximum of four threads.

In the future, we want to support further types of task parallelism including, for
example, TBB flow graph. Furthermore, we want to develop heuristics to validate
the suggestions before submitting them to the programmer, providing more accurate
and reliable results.
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