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Abstract

To enable portable tools for performance analysis and debugging of OpenMP programs, we define an
application programming interface (API) for tools that we propose for adoption as part of the OpenMP
standard and supported by all OpenMP compliant implementation. The API is designed to allow perfor-
mance tools to gather useful performance information from applications and to hide low-level OpenMP
implementation idiosyncrasies from users. At the same time, the API is designed from the ground up
to minimize the additional runtime overheads incurred while maintaining performance information. The
API is designed to allow performance tools to gather useful performance information from applications
and to hide low-level OpenMP implementation idiosyncrasies from users. At the same time, the API is
designed from the ground up to minimize the additional runtime overheads incurred while maintaining
performance information.

1 Introduction

There are two parts to the proposed interface: OMPT—a first-party API for performance tools, and OMPD—
a shared-library plugin for debuggers that enables a debugger to inspect and control execution of an OpenMP
program. This paper is about OMPT, the API for performance tools. A separate paper will describe OMPD.

1.1 OMPT

The design of OMPT is based on experience with two prior efforts to define a standard OpenMP tools
API: the POMP API [4] and the Sun/Oracle Collector API [2, 3]. POMP is geared toward trace-based
measurements, which has the shortcoming that its overhead can be significant because operations to be
traced, e.g., an iteration of an OpenMP work-sharing loop, can take less time than recording an event in
a trace. As an alternative to POMP’s trace-based approach, the Sun/Oracle Collector API was designed
primarily to support measurement and attribution of performance information using asynchronous sampling
of call stacks. This sampling-based design enables construction of tools that attribute costs to full calling
contexts without the drawbacks of tracing; namely, tools can record compact profiles with low runtime
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overhead. However, not all events can be traced prohibiting the implementation of subset of tools, such as
trace analyzers or verification tools. OMPT builds on ideas of both POMP and the Sun/Oracle collector
API to support asynchronous sampling and optional trace event generation. It extends them with support
for blame shifting [5, 6] which shifts attribution of costs from symptoms to causes. The OMPT interface can
be implemented either in entirely the compiler or entirely the OpenMP runtime system, as well as using a
hybrid compiler/runtime option.

Most routines described in the OMPT API are intended only for use by tools rather than for direct use
by applications. As a result, all OMPT API functions have a C binding only. A Fortran binding is provided
only for a few application-facing inquiry and control functions, described in Section 6.

1.1.1 Design Objectives

OMPT tries to satisfy several design objectives for a performance tool interface for OpenMP. These objectives
are listed in decreasing order of importance.

• The API should enable tools to gather sufficient information about an an OpenMP program executing
under control of an OpenMP runtime system to associate costs with the program and the runtime
system.

– The API should provide an interface sufficient to construct low-overhead performance tools based
on asynchronous sampling.

– The API should enable a profiler that uses call stack unwinding to identify which frames in its
call stack correspond to routines in the OpenMP runtime system.

– An OpenMP runtime system should associate the activity of a thread at any point in time with
a state, e.g., idle, which will enable a performance tool to interpret program execution behavior.

– Certain API routines must be defined as thread-safe so that they can be invoked in a signal
handler by a profiler as part of processing asynchronous events, e.g., handling sample events.

• Incorporating support for the API in an OpenMP runtime system should add negligible overhead to
an OpenMP runtime system if the interface is not in use by a tool.

• The API should define support for trace based performance tools.

• Adding the API to an OpenMP implementation must not impose an unreasonable development burden
on implementer.

• The API should not impose an unreasonable development burden on tool implementers.

1.1.2 Interface

To support the OMPT interface for tools, an OpenMP runtime system has two responsibilities: maintain
information about the state of each OpenMP thread and provide a set of API calls that tools can use to
interrogate the OpenMP runtime. Maintaining information about the state of each thread in the runtime
system is not free and thus an OpenMP runtime system need not maintain state information unless a tool
has registered itself, an environment variable directed the tool to track runtime state, or a debugger has
demanded that runtime state information be maintained. Without any explicit request for tool support to
be enabled, an OpenMP runtime need not maintain any information to support tools and may provide trivial
(and thus, perhaps useless) answers to any API queries.

1.2 Document Roadmap

The document outlines aspects of the OMPT tools API. Section 2 describes state information maintained
by the OpenMP runtime system for use by tools. Section 3 describes callback events for tools supported by
the OpenMP runtime system. Section 4 describes tool data structures. Section 5 describes runtime system
inquiry operations for tools. Section 6 describes runtime system inquiry and control operations available to
applications.
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2 Runtime State

To enable a tool to understand what an OpenMP thread is doing, when tools support has been turned on,
an OpenMP runtime will maintain state information for each OpenMP (master, worker, or idle) thread that
can be queried by a tool. The state maintained for each thread by the OpenMP runtime is an approximation
of the thread’s instantaneous state. When a thread not associated with the OpenMP runtime queries its
state, the runtime returns ompt_state_undefined.

To enable low overhead implementations, an OpenMP runtime has some flexibility as to if and when it
must report thread state transitions. For example, consider when a thread acquires a lock. One compliant
runtime may transition the thread state to ompt_state_wait_lock early before attempting to acquire a
lock. Another compliant runtime may transition a thread state to ompt_state_wait_lock late only if the
thread begins to spin or block to wait for an unavailable lock. A third compliant runtime may transition the
state to ompt_state_wait_lock even later - only after a thread waits for a significant amount of time.

Each thread maintains not only a state but also an ompt_wait_id_t identifier. When a thread is waiting
for a lock, critical region, ordered, or atomic, and the thread is in the corresponding wait state, then the
thread’s wait_id field must point to the lock, critical region identifier, or atomic variable upon which the
thread is waiting. A thread’s wait_id is meaningless if the thread is not in a wait state.

State values 0 to 127 are reserved for current OMPT states and future extensions.
The supported states include Work States, Wait States for Non-Mutex, Wait States for Mutex, Overhead

State and Miscellaneous State. Further details can be found in the draft OpenMP Tools Technical report [1].

3 Events

This section describes callback events that an OpenMP runtime may provide for use by a tool. Each callback
has a particular type signatures defined for it.

There are two classes of events: mandatory events and optional events. Mandatory events must be imple-
mented in any compliant runtimes implementations. Optional events are grouped in sets of related events.
While each event can be individually included or omitted, we encourage tools to consider implementing all
or none of the events in a given set.

A callback need not be registered for an event. An OpenMP runtime system will not make any callback
unless a tool has registered to receive it.

3.1 Mandatory Events

The following events are mandatory and must be supported by a compliant OpenMP runtime system. These
are create and exit events relating to Threads, Parallel Regions, and Tasks. The other are Application Tool
Control events and Termination events. Further details can be found in the draft OpenMP Tools Technical
report [1].

3.2 Optional Events

This section describes two sets of events. One set of events is used by sampling-based performance tools
that employ a strategy known as blame shifting to attribute waiting to activity in contexts that cause other
threads to wait rather than the contexts in which the waiting is observed.

Supporting any of the events in this section is optional for a compliant OpenMP runtime system.

3.2.1 Events for Blame Shifting

This section describes synchronous events used by sampling-based performance tools that employ ’blame
shifting’ to transfer blame for waiting from contexts where waiting is observed to code responsible for the
waiting.1 Using these callbacks, a tool employing blame shifting can attribute time a thread spends waiting
for a lock to the context of the lock holder. Similarly, time threads spend waiting at a barrier can be

1Blame shifting has previously been demonstrated to be effective for attributing costs associated with threads idling while
waiting to steal work in a work-stealing runtime [5], and spin waiting to acquire a lock [6]
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attributed back to to code being executed by working threads while other threads wait. There are Idle
State Entry/Exit, Barrier Idling, Taskwait Idling, Taskgroup Idling, Lock Release, Critical Release, Ordered
Release, and Atomic Release. Further details can be found in the draft OpenMP Tools Technical report [1].

3.2.2 Events for Trace-based Measurement Tools

The following are synchronous events to support trace-based measurement of tasks. There are Task Creation
and Destruction, Lock Creation and Destruction, Loops Begin and End, Sections Begin and End, Single Block
Begin and End, Master Block Begin and End, Barrier Begin and End, Taskwait Begin and End, Taskgroup
Begin and End, Lock Wait and Acquire, Nested Lock, Critical Section Wait and Acquire, Ordered Section
Wait and Acquire, Atomic Block Wait and Acquire, and Flush. Further details can be found in the draft
OpenMP Tools Technical report [1].

4 Tool Data Structures

4.1 Thread and Task Data

Each OpenMP thread and task instance provides an ompt_data_t data structure, which is a union of an
integer and a pointer.

typedef union ompt_data_u {

uint64_t value; /* data under tool control */

void *ptr; /* pointer under tool control */

} ompt_data_t;

The lifetime of the structure begins when a thread/task instance is created and ends when the instance is
destroyed. While the value of a structure is preserved over the lifetime of the thread or task with which it
is associated, tools should not assume that the address of an ompt_data_t structure remains constant over
its lifetime.

When a thread/task instance is created, the callback associated with event creation must initialize the
ompt_data_t structure. If there is no callback associated with this event, the OpenMP runtime initializes the
structure value field to 0. The address of the ompt_data_t structure is passed to callbacks associated with
the creation/destruction of threads/tasks. The address of the structure can also be retrieved on demand,
e.g., by invoking an inquiry function in a signal handler.

If the ompt_data_t value field is 0 for a thread or task at the point that an exit callback would be
made, the exit callback is not invoked. The tool is responsible for coordinating any concurrent accesses to
ompt_data_t structures.

4.2 Parallel Region Identifier

Each OpenMP parallel region instance has an associated ompt_parallel_id_t that uniquely identifies the
region instance.

typedef uint64_t ompt_parallel_id_t;

The ompt_parallel_id_t for a parallel region instance is unique across all instances of all parallel re-
gions. The value of this structure is defined when a parallel region instance is created and passed to
callbacks associated with creation/destruction of the parallel region instance. A parallel region’s ID can be
retrieved on demand, e.g., by invoking an inquiry function in a signal handler. Tools should not assume that
ompt_parallel_id_t values for adjacent region instances are consecutive.

4.3 Wait Identifier

Each thread instance provides a ompt_wait_id_t data structure, which identifies what caused a thread to
wait.
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exit / reentry reentry = null reentry = defined

exit = null case 1) initial task in user code
case 2) explicit task that is cre-
ated but not yet scheduled

initial task in runtime because of
a parallel region or a task creation

exit = defined non-initial task in user code non-initial task in runtime be-
cause of a parallel region or a task
creation

Table 1: Meaning of various values for exit runtime frame and reenter runtime frame.

typedef uint64_t ompt_wait_id_t;

For example, when a thread is waiting for a lock, this structure identifies the address of the lock. This
structure is undefined when a thread is not in a wait state. The value of the ompt_wait_id_t structure is
passed to callbacks associated with wait events, and also can be retrieved on demand, e.g., by invoking an
inquiry function in a signal handler.

4.4 Pointers to Support Classification of Stack Frames

Each implicit or explicit task instance provides an ompt_frame_t data structure which contains pointers to
OpenMP runtime procedure frames that appear above and below procedure frames associated with user task
code.

typedef struct ompt_frame_s {

void *exit_runtime_frame; /* next frame is user code */

void *reenter_runtime_frame; /* previous frame is user code */

} ompt_frame_t;

The structure’s lifetime begins when a task instance is created and ends when the task instance is destroyed.
While the value of the structure is preserved over the lifetime of the task, tools should not assume that the
address of a structure remains constant over its lifetime. Frame data is passed to some callbacks; it can also
be retrieved for a task (e.g. by a signal handler). Frame data contains two components:

exit_runtime_frame This value is set once, the first time that a task exits the runtime to begin executing
user code. This field points to the stack frame of the runtime procedure that called the user code. This
value is NULL until just before the task exits the runtime.

reenter_runtime_frame This value is set each time that current task re-enters the runtime to create new
(implicit or explicit) tasks. This field points to the stack frame of the runtime procedure called by a
task to re-enter the runtime. This value is NULL until just after the task re-enters the runtime.

Advice to tool implementers: A monitoring tool using asynchronous sampling can observe values of
exit_runtime_frame and reenter_runtime_frame before they are set to non-NULL values while in the
runtime. Tools must be prepared to handle samples that occur in this brief window.

5 Inquiry Functions for Tools

Inquiry functions retrieve data from the execution environment for the tools. All inquiry functions are async
signal safe.
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5.1 Enumerate States Supported by an OpenMP Runtime

An OpenMP runtime system is allowed to support other states in addition to those described herein. For
instance, a particular runtime system may want to provide finer-grain information about the nature of
runtime overhead, e.g., to differentiate between the overhead associated with setting up a parallel region and
the overhead associated with setting up a task. Further, a tool may not report all states defined herein, e.g.,
if state tracking for a particular state would be too expensive. To enable a tool to identify all states that an
OpenMP runtime system implements, OMPT provides the following interface for enumerating all possibly
reported runtime states.

_OMP_EXTERN int ompt_enumerate_state(

int current_state,

int *next_state,

const char **next_state_name

);

When this interface is invoked for the first time, the value ompt_state_first should be supplied for
current_state. The argument next_state is a pointer to an integer that will be set to the code for the next
state in the enumeration. The argument next_state_name is a pointer to a location that will be filled in with
a pointer to the name associated with next_state. Subsequent invocations of ompt_enumerate_state should
pass the code returned in next_state by the prior call. The enumeration is complete when ompt_state_last

is returned in next_state. The canonical way to enumerate the states supported by an OpenMP runtime
system is shown below:

int state;

const char *state_name;

for (int ok = ompt_enumerate_state(ompt_state_first, &state, &state_name);

ok && state != ompt_state_last;

ompt_enumerate_state(state, &state, &state_name)) {

// tool notes that the runtime supports ompt_state_t "state"

// associated with "state_name"

}

5.2 Thread Data Inquiry

Function ompt_get_thread_data is an inquiry function to access data stored by the OpenMP runtime
system for the current thread for use by a tool.

_OMP_EXTERN ompt_data_t *ompt_get_thread_data(void);

This inquiry function returns NULL prior to OpenMP initialization or when no tool is attached to the
runtime. This function is async signal safe.

5.3 Thread State Inquiry

Function ompt_get_state is the inquiry function to determine the state of the current thread.

_OMP_EXTERN ompt_state_t ompt_get_state(

ompt_wait_id_t *wait_id

);

The location specified by wait_id is updated point to the wait identifier associated with the current state,
if any, or NULL otherwise. This function returns ompt_state_undefined prior to OpenMP initialization or
when no tool is attached to the runtime. This function is async signal safe.
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ancestor level value meaning
0 current parallel region
1 parallel region directly enclosing region at ancestor level 0
2 parallel region directly enclosing region at ancestor level 1
...

Table 2: Meaning of different values for the ancestor level argument to ompt get parallel function.

5.4 Parallel Region Inquiry

The OMPT interface defines two inquiry functions to access data stored by the OpenMP runtime for parallel
regions. The first, ompt_get_parallel_id, returns the unique parallel id associated with this instance of
the parallel region:

_OMP_EXTERN ompt_parallel_id_t ompt_get_parallel_id(

int ancestor_level

);

Outside a parallel region, ompt_get_parallel_id should return 0. If a thread is in the idle state, then
ompt_get_parallel_id should return 0. In all other cases, the thread should return the state of the
enclosing parallel region, even if the thread is waiting at a barrier.

The second, ompt_get_parallel_function, returns a pointer to the compiler generated function used
by the OpenMP runtime to encapsulate the code of the parallel region, if any, and NULL otherwise.

_OMP_EXTERN void *ompt_get_parallel_function(

int ancestor_level

);

Both of the functions take an ancestor level as an argument. By specifying different values for ancestor level,
one can access information about each parallel region, even if parallel regions are nested. The meaning of
different values for the ancestor_level argument to ompt_get_parallel_function is given in Table 2.

These functions return the value 0 when requesting higher levels of ancestry than available, prior to
OpenMP initialization, or when no tool is attached to the OpenMP runtime. These functions are async
signal safe.

5.5 Task Region Inquiry

The OMPT interface defines three inquiry functions to access data stored by the OpenMP runtime for
task regions. Function ompt_get_task_data returns the tool data associated with a given task. Function
ompt_get_task_frame returns the tool frame associated with a given task.

_OMP_EXTERN ompt_data_t *ompt_get_task_data(

int ancestor_level

);

_OMP_EXTERN ompt_frame_t *ompt_get_task_frame(

int ancestor_level

);

The value returned by the ompt_get_task_function indicates the compiler-generated function used by the
OpenMP runtime to encapsulate the code of the task construct, if any, and NULL otherwise.

_OMP_EXTERN void *ompt_get_task_function(

int ancestor_level

);
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ancestor level value meaning
0 current task
1 direct parent of task at ancestor level 0
2 direct parent of task at ancestor level 1
...

Table 3: Meaning of different values for the ancestor level argument to ompt get task function.

The meaning of different values for the ancestor_level argument to ompt_get_task_function is given
in Table 3.

These functions return the value 0 when requesting higher levels of ancestry than available, prior to
OpenMP initialization, or when no tool is attached to the OpenMP runtime. These functions are async
signal safe.

5.6 Tool Support Version Inquiry

The function ompt_get_ompt_version returns the version of the OMPT interface supported by the runtime.

_OMP_EXTERN int ompt_get_ompt_version(void);

The version of OMPT described by this document is known as version 1.

6 Inquiry and Control Functions for Applications

The functions described in this section are the only ones with a Fortran interface in addition to a C/C++
interface.

6.1 Runtime Version Inquiry

The function ompt_get_runtime_version, with the type signature shown below

_OMP_EXTERN int ompt_get_runtime_version(char *buffer, int length);

fills buffer with a version-specific string of at most length characters. The suggested format is

<vendor>-<major version number>.<minor version number>[-<optional feature]*

Namely, a vendor name, major and minor version numbers, and, optionally, a list of zero or more features,
separated by dashes. As an example, IBM’s OpenMP runtime might return the following version string “
IBM-1.1-core=1-blame=1-trace=0”, indicating that IBM’s OpenMP runtime supports the OMPT tools API
core augmented with support for blame shifting, but not support for detailed tracing.

6.2 Tool Control

The function ompt_control can be called by an application to pass control information to a tool. The
signature for this function is shown below:

_OMP_EXTERN void ompt_control(uint64_t command, uint64_t modifier);

A classic use case for the ompt_control routine might be for an application to start and stop data collection
by a tool.
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return code meaning
0 event may occur; no callback is possible
1 event will never occur in runtime
2 event may occur; callback invoked when convenient
3 event may occur; callback always invoked when event occurs

Table 4: Meaning of return codes for ompt set callback.

7 Initializing OMPT Support for Tools

An OpenMP runtime need not maintain information to support tools and may provide trivial (and thus,
perhaps useless) answers in response to invocations of any API inquiry functions. Section 7.1 describes
normal initialization for a tool. A further section describing the environment variable control over tool
initialization and the tool initialization API for debugger can be found in the draft OpenMP Tools Technical
Report [1].

7.1 Initialization of a Tool

A tool must register itself with an OpenMP runtime system and then specify callbacks for events of interest.
Section 7.1.1 describes the initializer for a tool. Section 7.1.2 describes registration of callbacks for OMPT
events.

7.1.1 Initializer for a Full-featured Tool

A tool must register itself with an OpenMP runtime by overriding the following weak symbol:

_OMP_EXTERN int ompt_initialize(void);

The role of ompt_initialize is to register callbacks for specific events, e.g., creating a parallel region. A tool
must register a callback for every event of interest using ompt_set_callback, as described in Section 7.1.2.
The OpenMP runtime system defines a weak symbol version of ompt_initialize that returns 0; a tool-
provided version must return 1.

Since only one tool-provided definition of ompt_initialize will be seen by an OpenMP runtime, only one
tool can be registered. Ordinarily, ompt_initialize will be invoked by an OpenMP runtime immediately
after the runtime initializes itself.

An OpenMP runtime system may allow registration of a tool after initialization of the OpenMP runtime
at a clean point. An OpenMP runtime is said to be at a clean point when no pthread is inside a parallel
region. An OpenMP runtime system will not necessarily attempt to register a tool at a clean point unless
a debugger has previously called ompd_enable(true)as described in the draft OpenMP Tools Technical
Report [1].

After a process fork, if OpenMP is re-initialized in the child process, the OpenMP runtime system in the
child process will call ompt_initialize under the same conditions as it would for any process.

7.1.2 Callback Registration for a Full-featured Tool

Full-featured tools register callbacks to receive notification of various events that occur as an OpenMP
program executes. A tool uses ompt_set_callback to register callback functions.

_OMP_EXTERN int ompt_set_callback(

ompt_event_t event,

ompt_callback_t callback

);

The function ompt_set_callback may only be called within the implementation of ompt_initialize pro-
vided by a tool, as described in Section 7.1.1 The possible return codes for ompt_set_callback and their
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meaning is shown in Table 4. Registration of supported callbacks may fail if this function is called outside
ompt_initialize. The ompt_callback_t type for a callback does not reflect the actual signature of the
callback; OMPT uses this generic type to avoid the need to declare a separate registration function for each
actual callback type.

The function ompt_get_callback, as shown below, may be called at any time to inspect whether a
callback has been registered or not. If a callback has been registered, ompt_set_callback will return 1 and
set callback to the address of the callback function; otherwise, ompt_set_callback will return 0.

_OMP_EXTERN int ompt_get_callback(

ompt_event_t event,

ompt_callback_t *callback

);

8 Conclusion

This paper defines an application programming interface (API) for tools that we propose for adoption as
part of the OpenMP standard and supported by all OpenMP compliant implementation. Further details
can be found in the draft OpenMP Tools Technical report [1].
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