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Daniel Lorenz, David Bohme, Bernd Mohr, Alexandre Strube, and Zoltdn Szebenyi

Abstract Scalasca is a performance analysis tool, which parses the trace of an
application run for certain patterns that indicate performance inefficiencies. In this
paper, we present recently developed new features in Scalasaca. In particular, we
describe two newly implemented analysis methods: the root cause analysis which
tries to identify the cause of a delay and the critical path analysis, which analyses the
path of execution that determines the application runtime. Furthermore, we present
time-series profiling, a method that allows to explore time-dependent behavior of
an application. Finally, we extended the means of Scalasca and its output format
CUBE to define and display topologies.

1 Introduction

Today, high performance computers provide the computing power which is required
by the complexity of many scientific computations. However, providing larger and
more powerful computer systems is useless if the applications do not make efficient
use of the available resources. Especially since the clock rate will no longer con-
tinue to grow, the performance increase is due to increasing the parallelism of the
computer systems.

However, the complexity of parallel programs is much higher than sequential
programs. Furthermore, the hardware is more complex, too. Instead of a single pro-
cessor, the programmer must deal with e.g. networks, data transfer rates and hierar-
chical memory. Thus, the optimization becomes much more difficult.
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Fig. 1 The performance analysis workflow with Scalasca.

Before a programmer can optimize the performance of his program, he must
understand the performance behavior of his program and identify causes of perfor-
mance reduction. In order to analyze the performance of a program, various perfor-
mance analysis tools have been developed, like Scalasca [6], Vampir [8], TAU [13],
Periscope [7] and Paraver [11]. Although each of the tools has its specific features
and methods for analysis and display of results, there are some common techniques.

Some tools [6, 13, 1] can create a so called profile. It consists of aggregated statis-
tics of performance metrics like runtime and/or number of visits for every function
or call path and/or for every thread. These statistics give an overview over the exe-
cution.

Another approach is to record all events, e.g. function entry/exit, and its associ-
ated performance data like timestamps in a so called trace. This allows a fine grained
analysis of the application. The user can visualize the trace directly, e.g., with Vam-
pir [8] or Paraver [11]. However, manually searching the whole trace is very tedious.
Another possibility, which is used by Scalasca [6], is to automatically examine an
event trace for certain patterns of inefficient behavior. This search guarantees to
cover the whole trace.

Figure 1 shows the performance analysis workflow with Scalasca. To instrument
his application, a user must prefix the original compile and link command with the
scalasca instrumenter. During application run, the events are recorded into a trace
file. The Scalasca parallel trace analyzer analyses the trace and writes an analysis
output which can be interactively explored in the CUBE graphical user interface
(GUI). The CUBE GUI has 3 panes. The left panes allows to select a metric, e.g.
time waited, due to a late sender. The middle pane shows a call tree which provides
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information where in the code, a particular issue appeared. The right pane shows the
distribution of values over all processes for the selected call path.

Scalasca uses a highly scalable event-trace replay mechanism for its analysis.
Hereby, the trace for every process is stored in a separate file. The trace analyzer is
launched as a separate program after the target application finished and runs on the
same number of processes as the application ran. Every analysis process traverses
the trace of one application process. Whenever the application process communi-
cated with another process, Scalasca exchanges information, too. Furthermore, a
backward replay is also possible.

In this paper, we will present extensions and new features to Scalasca. First,
we added two new analysis methods to our automatic trace analysis. The first new
method is called root-cause analysis, which identifies the root causes of wait states
in MPI synchronization points. It is described in Section 2. Afterwards, Section 3
describes the second new analysis method, called critical-path analysis. It is able to
detect inefficiencies that otherwise may be hidden through data aggregation.

Usually, profiling tool designs assume that the iterations of an iterative appli-
cation behave basically the same. However, this is not generally true. Section 4
presents a new feature to analyze time dependent behavior.

Section 5 describes the enhancements of the possibilities to define and display
topologies.

2 Root Cause Analysis

So far, Scalasca’s trace analysis could identify wait states at MPI synchronization
points. Wait states, which are intervals through which a process is idle while wait-
ing for a delayed process, are a primary symptom of load imbalance in parallel
programs. The new root-cause analysis [2] also identifies the root causes of these
wait states and calculates the costs of delays in terms of the waiting time that they
induce.

A delay is the original source of a wait state, that is, an interval that causes a
process to arrive belatedly at a synchronization point, causing one or more other
processes to wait. Besides simple computational overload, delays may include a
variety of behaviors such as serial operations or centralized coordination activities
that are performed only by a designated process. The costs of a delay are the total
amount of wait states it causes. Wait states can also themselves delay subsequent
communication operations and produce further indirect wait states. This propaga-
tion effect does not only add to the total costs of the original delay, but also creates a
potentially large temporal and spatial distance in between a wait state and its original
root cause. The root-cause analysis closes this gap by mapping the costs of a delay
onto the call paths and processes where the delay occurs, offering a high degree
of guidance in identifying promising targets for load or communication balancing.
Together with the analysis of wait-state propagation effects, the delay costs enable a
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Fig. 2 Distribution of computation time, waiting time, and total delay costs in Zeus-MP/2 across
the 8x8x8 three-dimensional computational domain. Red colors indicate high values.

precise understanding of the root causes and the formation of wait states in parallel
programs.

We applied the delay analysis to a variety of real-world MPI programs. One
example is the astrophysics code Zeus-MP/2, where we studied the formation of
wait states in a simulation of a 3D blast wave over 100 time steps on 512 processes.
Around 12.5% of the program’s total CPU allocation time is waiting time. Scalasca’s
report browser can visualize the Cartesian process topology of a program, which we
use in Figure 2 to illustrate the relation between waiting and delaying processes
in terms of their position within the computational domain. Obviously, there is a
computational load imbalance between the central and outer ranks of the domain.
Accordingly, the underloaded processes exhibit a significant amount of waiting time
(Figure 2(b)). Our analysis shows that about 70% of the waiting time was indirectly
caused by wait-state propagation. Examining the delay costs reveals that almost
all the delay originates from the border processes of the central, overloaded region
(Figure 2(c)). The distribution of the workload explains this observation: Within the
central and outer regions, the workload is relatively well balanced. Therefore, com-
munication within the same region is not significantly delayed. In contrast, the dif-
ference in computation time between the central and outer region causes wait states
at synchronization points along the border, which subsequently propagate towards
the outer domain border. By pinpointing one subroutine and three computational
loops with particularly high delay costs, the delay analysis also helped isolating the
imbalanced source-code regions that lead to the wait states.

3 Critical Path Analysis

Our search for compact yet powerful means to uncover inefficiencies in parallel pro-
grams has led us to revisit the critical path as a key performance structure. Although
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the power and expressiveness of the critical path has been demonstrated in previ-
ous work, critical-path techniques only play a minor role in current performance
analysis tools. This arises partly from the difficulty in isolating the critical path, but
also from the inability to extract intuitively accessible insight from the available in-
formation. Our work [3] adresses both issues. We leverage Scalasca’s parallel trace
replay technique to isolate the critical path in a highly scalable way. Also, instead
of exposing the lengthy critical-path structure to the user in its entirety, we use the
critical path to derive a set of compact performance indicators, which provide in-
tuitive guidance about load-balance characteristics and quickly draw attention to
potentially inefficient code regions.

The critical path is the longest path through a program activity graph that does not
include wait states. Thus, it determines the length of program execution. Prolonging
activities on the critical path increases program runtime, whereas shortening them
(usually) reduces it. In contrast, optimizing an activity not on the critical path only
increases waiting time, but does not affect the overall runtime.

Our critical-path analysis produces a critical-path profile, which represents the
time an activity spends on the critical path. In addition, we combine the critical-
path profile with per-process time profiles to create a critical-path imbalance per-
formance indicator. This critical-path imbalance corresponds to the time that is lost
due to inefficient parallelization in comparison with a perfectly balanced program.
As such, it provides similar guidance as prior profile-based load imbalance metrics
(e.g., the difference of maximum and average aggregate workload per process), but
the critical-path imbalance indicator can draw a more accurate picture. The critical
path retains dynamic effects in the program execution, such as shifting of imbalance
between processes over time, which per-process profiles simply cannot capture. Be-
cause of this, purely profile-based imbalance metrics regularly underestimate the
actual performance impact of a given load imbalance. As an extreme example, con-
sider a program like the example in Figure 3, where a function is serialized across all
processes but runs for the same amount of time on each. Purely per-process profile
based metrics would not show any load imbalance at all, whereas the critical-path
imbalance indicator correctly characterizes the functions serialized execution as a
performance bottleneck.

Both delay analysis and critical-path analysis are implemented as extensions
to the automatic wait-state detection of the Scalasca performance analysis toolset,
leveraging its scalable, post-mortem event-trace analysis. The analyzer traverses the
traces in parallel, iterating over each process-local trace, and exchanges data re-
quired for the performance analysis at each recorded synchronization point using a
communication operation similar to the one originally used by the program.

Other than the pure wait-state analysis, the delay and critical-path analysis re-
quire an additional, backward replay over the trace. A backward replay processes
a trace backwards in time, from its end to its beginning, and reverses the role of
senders and receivers. Overall, the analysis now consists of two stages: (1) a parallel
forward replay that performs the wait state analysis and annotates communication
events with information on synchronization points and waiting time incurred; and
(2) a parallel backward replay that identifies the delays causing each of the wait
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Fig. 3 Analysis of dynamic performance effects: The serialized execution of function B, as seen
in the timeline (a), goes unnoticed in a summary profile (b), but is correctly identified as a perfor-
mance bottleneck by the critical-path imbalance indicator (c).

states detected during forward replay, calculates their costs, and extracts the critical
path. Starting at the endmost wait states, the backward replay allows delay costs
to travel from the point where they materialize in the form of wait states back to
the place where they are caused by delays. The backward replay also facilitates the
critical-path analysis, since the route of the critical path through the program cannot
be determined without knowing the end of the execution. For MPI programs, the
critical path runs between MPI_Init and MPI_Finalize. Our critical-path search be-
gins by determining the MPI rank that entered MPI_Finalize last, which marks the
endpoint of the critical path, and then exploits the lack of wait states on the critical
path: whenever a wait state is found on the currently active path, the search proceeds
on the MPI rank that caused the wait state. This way, we follow the entire critical
path backwards through the trace.

4 Time-Series Profiling

Call path profiling accumulate multiple visits of the same call path. If all visits of
the same call path behave basically the same, all visits are well represented by the
resulting statistics. For iterative applications, the user usually assumes very similar
behavior of each iteration. However, this assumption is not always true. Szebebyi
et al. [15] have shown on examples from the SPEC MPI benchmarks (see Figure 4)
and on the coulomb solver PEPC [16] (see Figure 5) that some applications change
their behavior for different iterations.



Extending Scalasca’s analysis features 7

0.9 0.12

0.8

0.10
0.7

0.6 0.08

Z 05
0.06

Time [s]

£ 04

03 0.04

0.02
0.1

0.0 0.00

0 100 200 300 400 0 100 200 300
Tteration # Tteration #

(a) 121.pop2 (b) 126.lammps

0.10

0.08

Z(].(Ni
£
g
0.04
0.02
0.00 .0
0 500 1000 1500 2000 2500 0 20 40 60 B0 100 120 140 160 180
Tteration # Tieration #
(c) 128.GABgeofem (d) 129.tera_tf
0.016 0.5
0.014
0.4
0.012
-~ 0.010 —03
2 0008 g
= [
0.006 -

0.004

0.002

0.000 0.0
0 2500 5000 7500 10000 12500 15000 0 100 200 300 400 500 600 700
Iteration # Tteration #
(e) 143.dleslie (f) 147.12wrf2

Fig. 4 Runtime of iterations of the SPEC MPI benchmark codes 121.pop, 126.lammps, 128.GAP-
geofem, 129.tera_tf, 143.dleslie, and 147.12wrf2

To display time-dependent behavior of iterative applications, the Scalasca mea-
surement system can now record separate profiles for every iteration of the main
loop. For this purpose, a user can manually instrument the body of the main loop
using the EPIK API. TAU [13] and Score-P [10] provide similar concepts named
dynamic timer, or dynamic region, respectively.
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Fig. 5 Point-to point communication time of the PEPC code for each program iteration.

However, for applications with many iterations such a time-series profile may
become very large. To reduce the memory requirements of the profile, we added
a mechanism which clusters similar iterations to a single profile sub-tree instance
[14]. The maximum number of clusters is configurable. However, we only cluster
iterations with a similar structure. Iterations which contain different call paths are
never clustered together. The time dynamics can be reconstructed from a mapping
table, which stores the cluster associated with each iteration.

In case of the SPEC MPI benchmarks, the clustered profiles match the profiles
without clustering very well, even if only 64 clusters are used. Figure 6 shows the
comparison between the runtimes of iterations with clustering and without cluster-
ing. In the case of clustering the more complex PEPC coulomb solver, count based
metrics show already a good match when using 64 clusters. However, time based
metrics require more clusters for a good match [14].

5 Topologies

Scalasca obtains performance data for every process/tread of the application. In
many cases, the hardware, the network, the communication system (e.g. MPI), or
the application define neighborhood/dependency relationships and/or structure on
these processes/threads, called topologies. However, network structure, hardware hi-
erarchy, and application neighborhood relationships may significantly influence the
performance of an application. Thus, we extended Scalasca’s capabilities to record
and display topologies. The previous capabilities of Scalasca to represent topolo-
gies were limited to 3-dimensional Cartesian topologies, i.e. each element has an
unique set of coordinates in a 3-dimensional realm. Now, the topologies defined in
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Fig. 6 comparison between the runtimes of each iteration without clustering and with clustering
for the SPEC MPI benchmarks 129.tera_tf, and 147.12wrf2.

Scalasca can have any number of dimensions. Furthermore, an application can de-
fine more than one topology, e.g., to compare the results for hardware topology and
an algorithms domain topology.

Scalasca can work with the following types of Cartesian topologies:

5.1 Hardware topologies

Supercomputers, such as the IBM Blue Gene series, can report where on the ma-
chine processes run. This is useful in tightly-coupled programs, where distance in-
formation can provide insights on communication delays. This information is col-
lected automatically by Scalasca during measurement.

Going further with the example of the Blue Gene series, the Blue Gene/Q model
of supercomputer has a five-dimensional torus network, which is fully supported
by Scalasca. Besides the support of topologies with more than 3 dimensions on
measurement and analysis, Scalasca now has a “folding” mechanism which al-
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lows the user to select three-dimensional slices of the topology for visualization.
Scalasca now also supports names for all the topologies and their dimensions, thus,
the topologies can be easily identified. The names of the dimensions also are helpful
to identify the individual processes/threads in complex hardware topologies such as
the Blue Gene/Q’s (see figure 1).
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Fig. 7 CUBE showing the Blue Gene/Q’s 5D Hardware Topology. The screenshot shows 524,288
threads on the Jiilich BlueGene/Q machine.

5.2 Processes X Threads

Scalasca now automatically creates a two-dimensional virtual topology that shows
all OpenMP threads belonging to each process.

5.3 Runtime mapping

On MPI programs, for instance, Scalasca can show how the processes are distributed
in ranks and the relationship between them. This information is also collected au-
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tomatically by Scalasca during measurement. Scalasca now supports any number
of dimensions. In the future, topologies whose communicator was named using the
MPI_Comm_set_name function will have this name shown in the topology’s tab.

5.4 Algorithm domain

The MPI specification does not enforce a strict mapping between neighbor ranks
and the hardware, neither between ranks and the problem decomposition, which is
application specific. In some specific cases, the user might benefit from creating a
virtual topology that is independent from the hardware and from the MPI mapping,
being specific to the application. These topologies can be created manually by the
user, using our APL

6 Future Work

As computational science evolves and new programming paradigms emerge, new
challenges for performance analysis appear. Thus, we will continue to improve
Scalasca. This Section describes some of the ongoing developments and planned
features for Scalasca.

First, we will replace Scalasca’s native instrumentation and measurement system
by Score-P [10]. Score-P is a common instrumentation and measurement system,
initially used by Periscope [7], Scalasca [6], TAU [13], and Vampir [§8]. This im-
plies that these tools will also share common data formats for tracing and profil-
ing. Scalasca will remain as a pure trace analyzer for traces written in the Score-P
OTF2 [4] trace format. Score-P profiles and Scalasca trace analysis reports will be
written in the CUBE4 format, which is the more scalable successor of the current
CUBES3.

The common Score-P measurement stack improves the interoperability of the
tools. Furthermore, it reduces the need for each tool to maintain its own instrumen-
tation and measurement system, and thus, allows tool developers to focus on the
specific analysis strengths of their tools.

With respect to future trace analysis enhancements, we plan to extend the cur-
rent OpenMP analysis of Scalasca with the analysis of OpenMP tasks. Score-P can
already record task events [12, 9]. However, we must extend Scalasca’s profile con-
struction algorithm and we want to add some task specific patterns to its analysis.

At the Barcelona Supercomputing Centre, a new tasking system was developed,
named OmpSs [5]. We want to support measurements of applications using OmpSs.
Therefor, we will implement instrumentation and measurement support for OmpSs
in Score-P. Furthermore, we want to create the task analysis general enough that it
covers also OmpSs tasks. A third new analysis feature that we are working on is the
analysis of one-sided communication and PGAS languages.
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