
Discovery of Potential Parallelism in Sequential Programs
Zhen Li , Ali Jannesari , and Felix Wolf

German Research School for Simulation Sciences, Aachen, Germany
RWTH Aachen University, 52062 Aachen, Germany

{z.li, a.jannesari, f.wolf}@grs-sim.de

Abstract—Although multicore CPUs are dominating the
market of desktops and servers, writing programs that utilize
the available hardware parallelism on these architectures still
remains a challenge. In this paper, we present a dynamic
approach for automatically identifying potential parallelism in
sequential programs. Our method is based on the notion of
computational units, which are small sections of code following
the read-compute-write pattern that can form the atoms of
concurrent scheduling. In contrast to earlier approaches, our
method can identify parallelism between code sections of
arbitrary granularity and does not rely on a predefined notion
of language constructs subject to parallelization. Experimen-
tal results show that reasonable speedups can be achieved
by parallelizing sequential programs manually according to
our findings. By comparing our findings to known parallel
implementations of sequential programs, we demonstrate that
we are able to detect the most important code locations to be
parallelized.

I. INTRODUCTION

Stagnating performance of uni-processors together with
the prevalence of multicore processors on today’s desktops
and servers leaves parallelism as the the main vehicle for
further improving program speed. Unfortunately, writing
efficient parallel code is still an art mastered only by
experienced programmers. In particular, the parallelization
of the myriads of sequential legacy programs that exist today
presents a major technical and economic challenge. This is
even more true given that today software development is
mostly the transformation of programs written by someone
else rather than starting from scratch [1]. At the same
time, the sheer number of sequential programs in need of
further speedup provides a unique opportunity for large-
scale program optimization if the available parallelism can
be systematically identified and exploited. Given the task of
parallelizing a legacy program, a developer has to understand
the program first. Parallelization can therefore be very time
consuming, especially if the program is not well docu-
mented. Tools that can identify parallelism automatically
would therefore be a major asset.

Existing approaches limit the scope of their search for
parallelism to predefined language constructs. For example,
the method proposed in [2] is designed to find parallelism
only between functions. Other approaches such as [3], [4],
[5] are more flexible in that they consider multiple and also
in principle arbitrary construct types. Common to all of
them, however, is the restriction that they can only answer

questions of the following type: (i) Can a construct or
region with given entry and exit points be parallelized?
(ii) Can a construct with given entry and exit points run
asynchronously with other parts of the program? Thus,
their underlying strategy is always top down. First identify
the regions of investigation usually following the structure
of the programming language and then reason about their
parallelization. Possible answers are always confined to
supported construct types and therefore do not drill deeper
than the smallest level of language construct that is available.
Unstructured code sections inside those constructs are not
broken down any further. To do this, these methods would
have to try code sections with arbitrary entry and exit points,
potentially leading to a combinatorial explosion.

In this paper, we present DiscoPoP (Discovery of Potential
Parallelism), a tool for automatically finding potential par-
allelism in sequential programs. In contrast to the methods
cited above, the underlying approach works bottom up,
which eliminates the need to specify the desired granularity
in advance. In essence, we reverse the idea underlying data-
race detectors: Instead of looking for dependencies that
jeopardize the correctness of parallel code, we verify their
absence between portions of sequential code, which usually
indicates an opportunity for parallelization. While the target
program is executing under the control of our tool, we
identify small pieces of code called computational units
(CUs) that we arrange in a dynamic dependency graph. Since
a CU does not exhibit any true data dependency inside that
is essential to the data flow of the program, all dependencies
that may prevent parallelization appear explicitly as edges
in the graph. From this representation, we can easily derive
potential parallelism available on varying levels of the code,
including nested regions. As a result, we can tell the pro-
grammer which instructions (program lines) can be grouped
as a task and run concurrently with other tasks. Moreover,
given that CUs never cross control-region boundaries, our
approach naturally supports the identification of parallelism
also among higher-level constructs such as branches, loops,
and functions.

We validate our approach with eight programs in two
series of experiments. In the first series, we parallelize
four programs manually by adopting the suggestions of our
tool. The results show linear speedup for programs that
expose possible data parallelism. In the second series, we
compare the suggestions generated for four open-source

programs with pre-existing parallel implementations. Here,
we find that our tool identifies the most important source-
code locations to be parallelized.

The remainder of the paper is organized as follows:
In the next section, we classify our approach and review
related work. In Section III, we introduce the notion of a
CU, which is central to our method, and explain how we
discover parallelization potential in a dependency graph of
CUs. An experimental evaluation of our method follows
in Section IV. Finally, we conclude the paper and discuss
possible extensions and optimizations in Section V.

II. RELATED WORK

Methods to discover potential parallelism fall into one of
two categories: static and dynamic methods. Being closely
related to compiler technology, static approaches analyze
source or intermediate code and are restricted to information
that can be obtained before running the program. Auto-
parallelizing compilers such as Paralex [6], which was
designed for irregular pointer-intensive programs, belong to
this class. Static approaches are usually good at finding
the complete control-flow graph. However, there are several
disadvantages associated with them. First, when the program
is large and has many branches, the solution search space
becomes too big, a problem known as branch explosion.
Second, they cannot determine dependencies among objects
allocated or identifiable only at runtime. This is why static
approaches are usually too conservative in their assessment
of parallelization opportunities.

In contrast, dynamic methods instrument the code and
track dependencies at runtime. They treat the execution
of a user program as an instruction stream interrupted
by previously inserted calls to instrumentation functions
that help detect dependencies. Dynamic approaches identify
control and data dependencies accurately, that is, only if
they really exist at runtime. Since they track only precisely
the branches that are actually executed, they do not suffer
the branch explosion problem. On the other hand, that the
control-flow graph is usually incomplete may present a
limitation. In general, dynamic methods are input sensitive,
that is, their outcome may depend on the particular execution
configuration chosen to run the program, a disadvantage
traded in for not being overly pessimistic like purely static
methods. A straightforward compromise is selecting a range
of representative inputs and repeating the analysis with all of
them. Those parallelization opportunities that remain stable
across all inputs are likely candidates for parallelization,
but should still be subject to final validation by a human
developer.

Currently, DiscoPoP follows a purely dynamic approach,
but it is not the only tool based on this philosophy. Krem-
lin [3], which uses the LLVM compiler infrastructure [7] for
instrumentation, discovers parallelism based on knowledge
of the critical path and supports the programmer in ranking

different parallelization opportunities. To address dependen-
cies in nested code regions, Kremlin extends the traditional
critical-path analysis [8] by making it hierarchical. For this
purpose, it introduces a metric called self-parallelism, which
quantifies the parallelism of a parent region independent of
its children. Both Kremlin and DiscoPoP can find parallelism
on different code levels. However, Kremlin can only decide
whether a region between two given endpoints derived from
the structure of the programming language is parallelizable
or not, whereas DiscoPoP can find arbitrary parallelization
opportunities even within unstructured code.

Like our tool, Alchemist [4] is built on top of Valgrind
to discover parallelism and issue corresponding recommen-
dations. In comparison to our work, the unit of paral-
lelization is again a code region with predefined endpoints
derived from the structure of the programming language. For
each region, Alchemist decides whether the region can run
asynchronously with its dynamic context by checking the
distance between memory references inside and references to
the same location that occur during the region’s continuation.
It thus follows the parallelization strategy underlying the
use of futures. A future of a write operation is the code
section or construct that contains further reads of the written
variable. DiscoPoP represents once more the more general
approach because of its ability to recognize arbitrarily fine
pieces of independent code. We expect that this advantage
will allow more specific recommendations on how to exploit
parallelism and also simplify the detection of possible paral-
lelization patterns. AutoFutures [5] adopts the same idea as
Alchemist, but goes one step further in that it automatically
transforms the code. Yet, it is still in a preliminary stage
with negative speedup results for some of the test programs.

Further dynamic approaches are custom tailored to
specific types of programs and programming languages.
JavaSlicer [9] traces Java programs to find parallelism,
exploiting knowledge of the critical path. ParaMeter [10]
is a tool aiming to find parallelism in tasking-based appli-
cations where computational tasks are added dynamically.
It employs a speculative scheduler to decide whether two
tasks can be executed concurrently. Both [11] and [12] target
coarse-grained pipeline-style parallelism in multimedia ap-
plications. Another approach [13] applies machine learning
techniques to find parallelism in loops and to automatically
parallelize them using OpenMP. In comparison, DiscoPoP’s
design is not limited to specific classes of applications and
parallelism.

III. APPROACH

When trying to find potential parallelism in a sequential
program, we first need to answer two questions: On which
granularity level do we analyze the program and on which
level do we reflect parallelism? For example, analyzing and
reflecting parallelism among functions requires only coarse
granularity [2]. In contrast, [4] and [5] analyze the program

on the level of individual instructions and reflect parallelism
in terms of futures. Obviously, the amount and type of
parallelism that can be identified depends on the level we
choose.

A. Computational Units

Here, we define a new language-independent code-
granularity level for both program analysis and reflection
of parallelism, which we call computational unit (CU). A
CU is the smallest unit of code we map onto a thread, that
is, while potentially running in parallel to other CUs, a CU
itself is not subject to any further (internal) parallelization—
at least not within the scope of our method. The notion
of CUs was inspired by our earlier work [14], where a
variation of this concept was applied to detect data races
on correlated variables. The definition of a CU is simple
and natural because it reflects the building blocks of most
computer programs:

• CUs follow the read-compute-write pattern: a program
state is first read from memory, the new state is com-
puted, and finally written back. Therefore, there are no
true data dependencies inside a CU that are relevant to
the flow of data.

• All operations inside a computational unit are related
through anti-dependencies (write after read).

While the sequential target program is executed under the
control of our tool, we read the instruction stream and track
data and control dependencies. We transform the instruction
stream into a graph of CUs whose edges are true data
dependencies. While true data dependencies may prevent
parallelization, parallelization opportunities can be derived
from their absence. We argue that because CUs do not hide
any true dependencies inside that are essential to the data
flow of the program, all relevant parallelization opportunities
can be analyzed on the level of the CU graph.

Moreover, via control-flow analysis we ensure that CUs
never cross the boundaries of a control region. While being
small enough, typically not covering more than a few
lines of code, to express very fine-grained parallelism, this
property ensures that CUs can be easily combined to higher-
level constructs such as loops or functions. This allows the
reflection of parallelism to be lifted to arbitrarily high levels
of abstraction, making our approach most general. Currently,
our implementation considers only branches and loops on
such a higher level. Explicit support for other abstractions
such as functions is in progress.

B. Control and Data Dependencies

In general, knowing control and data dependencies is
necessary to decide whether a part of the program can be
isolated as an independent parallel task or which kind of de-
pendencies prevent parallelism between tasks. In particular,
we need to identify control-region boundaries since CUs are
not allowed to cross them.

A control dependency between two instructions opi and
opj exists if opj is conditionally guarded by opi. However,
to decide whether an instruction is conditionally guarded we
need to know the re-convergence point, which is the point
where the different branch alternatives end and unconditional
execution resumes. To circumvent that dynamic analysis has
usually no access to the complete control-flow graph because
not all branches of the program are actually executed, we use
a look-ahead technique. Before the real branch is executed,
we follow every possible branch first and terminate this look-
ahead once we encounter the re-convergence point, which
is the first instruction that comes after the basic blocks
defined by the branch alternatives. Looking ahead is possible
since Valgrind has already disassembled the basic blocks
belonging to all branch alternatives when the branch is
encountered by our tool. We traverse the blocks representing
the the branch alternatives without actually executing them,
simply following jump instructions until we find the re-
convergence point. The look-ahead is performed in a special
mode where we only track control dependencies while
deferring the tracking of data dependencies. An example
of finding the re-convergence point of an if-else and a
simple if statement is shown in Figure 1.

jmp (cond)

jmp

else part

if part

if-else

(a) if-else construct

jmp (cond)

if part if

(b) if construct
Figure 1. Finding the re-convergence point (solid black circle).

We instrument jump operations and maintain a stack
where we record the scope of the currently active control
regions. When we encounter a control region, we push a
triple < start, type, end > onto the stack. When we
leave a control region, we remove the topmost entry. Then
we determine the type of region (branch or loop) and its
re-convergence point using our look-ahead technique. We
also respond to function calls. If a function is called inside
a control region, we simply keep the top of the stack
unchanged and continue pushing control regions we find in
the callee on the stack. When the callee function returns,
all control regions it contains should also terminate and the
calling region is again on the top of the stack.

The example shown in Figure 2 illustrates our algorithm.
It contains several control and data dependencies. Applying
our algorithm for finding re-convergence points to the exam-
ple yields Figure 3, where the re-convergence points (solid
black circles) are exactly the first lines encountered after the
corresponding control structure ends.

1 for (i = 0; i < MAX_ITER; i++) {
2 if (i == 0)
3 x = 3
4 a = x + rand() / x
5 b = x - rand() / x
6 x = a + b
 ...
k }

Figure 2. A simple code example.

1 for (i = 0; i < MAX_ITER; i++)

2 if (i == 0)

3 x = 3

4 a = x + rand() / x

if

...

}

loop

next line

Figure 3. Re-convergence points of the example in Figure 2.

Data dependencies fall into one of four categories:
true dependencies (read after write or short RAW), anti-
dependencies (write after read or short WAR), output de-
pendencies (write after write or short WAW) and input
dependencies (read after read or short RAR). We insert
instrumentation calls for all reads and writes of both memory
and registers and record data dependencies in shadow mem-
ory. For every variable, we maintain a field called last write
operation, which is updated whenever the variable is written.
Table I shows the result of our data dependency analysis
when applied to the example from Figure 2. Together,
control and data dependencies form the prerequisites needed
to identify computational units.

Table I
DATA DEPENDENCIES OF THE EXAMPLE IN FIGURE 2.

Line No. Code Memory Ops. Dependencies
3 x = 3 init x -
4 a = x + rand() / x init a, read x x:RAW
5 b = x - rand() / x init b, read x x:RAW

6 x = a + b
write x
read a
read b

x:WAR
a,b: RAW

C. Building the CU Graph

Given that we have now both control and data dependen-
cies, the isolation of CUs becomes straightforward. The ba-
sic idea is that a write operation is much more important than
a read operation when trying to find parallelism. Whenever a
write operation happens, we check the dependencies of the

written variable and start observing its further use. Based
on these criteria, CUs can be computed automatically using
the online algorithm below, which we apply recursively to
the operations of the current control region, starting with the
main function.

Imagine the execution of the program as a sequence of dy-
namic operations (instructions) {op0, op1, . . . , opn−1}. Let
R be the subsequence of these operations that belong to the
current control region, not including operations belonging
to regions nested inside. Let us assume we have already
processed all operations in R up to but not including opi.
Then we can apply the following algorithm to opi and all
remaining operations in R:

1) When we encounter a new control region nested inside
the current one, we suspend the current region until
we have processed the region nested inside.

2) When an operation opi ∈ R is executed:
• If the variable v that opi operates on is defined

in other variable’s use, ignore opi and exclude
dependencies on v for building CUs. Otherwise
we build a CU that just contains opi.

• We merge the CU of opi with all the CUs of
dynamic operations opj<i ∈ R that opi directly
depends on via anti-dependencies.

• If opi directly depends on opj<i via a true data
dependency, we create a directed edge from the
CU of opi to the CU of opj , expressing that opi
truly depends on opj . Note that opj does not
necessarily have to be an element of R.

• If opi is the first write of a variable in R, we mark
it as initialization.

• Repeat the algorithm for all remaining operations
in R.

3) At the end, merge the CUs of all adjacent initialization
operations into one INIT node. Adjacent means that
their operations form a contiguous subsequence of R.

Note that we ignore intermediate variables that are intro-
duced to make the code more readable, but which are not
essential to describe the state of the program. Considering
them would increase the granularity of CUs to the level of
individual instructions, where reasoning about parallelism in
a meaningful way becomes difficult for the programmer. In
particular, the boundaries of computational units could break
individual source-code statements. When opi is ignored
because it operates on v, which is defined in w’s use, the
association of opi with the current CU of w (i.e., the CU
which only contains read operations of w, waiting for a write
operation) will be saved. When representing CUs later on the
source-code level, this association will allow the full code
coverage to be restored, including the code for opi, as we
will see later in an example.

Moreover, a CU is not able to cross control-region
boundaries. Of course, dependency edges between different

control regions are possible. Furthermore, if a variable is
written several times and no read occurs in between, the
first write is used to terminate the CU and the last written
value is kept. All write operations in between are ignored,
since their values are overwritten. Finally, all read-after-read
dependencies are ignored.

As an example, consider again the code inside the loop in
Figure 2. Figure 4 shows the identification process. On the
left side, we find control and data dependencies. From line
4 to line 6, x is read before a new value for x is computed
and eventually written. Note that line 6 is data dependent
on both line 4 and 5 in the form of a WAR dependency.
According to our algorithm above, we build a CU for the
computation of x. The first write of x in line 3 is identified
as INIT node. INIT is the only special node type found in
a CU graph.

if (i == 0)

x = 3

a = x + rand() / x

b = x - rand() / x

x = a + b

x = 3

a = x + rand() / x

b = x - rand() / x

CU

INIT

Control Dependency

True Dependency (RAW)

Anti Dependency (WAR)

Node in CU Graph

x = a + b

Figure 4. Identifying CUs.

To exclude temporary (intermediate) variables (i.e., vari-
ables defined in another variable’s use) when building a
CU, we trace the definition-use chain [15] for each variable
dynamically. A definition-use chain consists of a definition
D of a variable and all its uses U . U is reachable from the
definition D without any other intervening definitions. The
term definition here refers to the assignment of some value
to a variable. If a variable x2 is defined in the use of another
variable x1, we do not build a CU for x2 until x2 is defined
in no one else’s use. In our example, a and b are defined
in x’s use, and they are temporary variables for updating x.
Therefore, we do not build a CU for them.

D. Detection of Parallelism

Having identified all relevant dependencies, we can now
form the CU graph. Given the graph and the defined
terminology, we present the following rules for detecting
parallelism:

1. If CU2 truly depends on CU1, then CU1 must be
executed before CU2. They cannot run concurrently.

2. Different paths of the CU graph can be executed in
parallel after inserting a synchronization barrier into
the common node where these paths join.

3. A loop in the user program cannot be parallelized if
there is a CU inside the loop that holds a variable
without an INIT node preceding it.

The reason for rule 1 is simple. A read instruction has
to wait until the latest value has been produced, otherwise

the behavior of the program will be nondeterministic. The
rationale behind rule 2 is also obvious. Two CUs reside
on different paths because there is no dependency between
them. However, synchronization barriers must be inserted
into the node where the two paths join, since this common
node depends on the values produced by the two paths.

Rule 3, however, is not straightforward. Suppose a CU
holding variable v exists inside a loop but without any INIT
node preceding it. This implies that every time when the
loop starts a new iteration, the first access of v will be a
read operation. During the first iteration, it should read the
value produced outside the loop. But during later iterations,
it should read the value produced by the previous iteration.
In this situation, iteration (n+1) must wait until iteration n
has produced the latest value. However, if an INIT node exist
at the very beginning, v will be assigned a new value in each
iteration, and the iterations of the loop become independent.
Therefore, rule 3 means that we propose the parallelization
of the loop only if its iterations are independent of each
other. Note that we do not treat WAW dependencies between
iterations as an obstacle on the way to parallelization because
resolving WAW dependency is usually easy. In addition,
adding synchronization primitives to protect the shared data
structure will not significantly lower the speedup if the
amount of work in each iteration is big enough. In this
way, we still report loops having only WAW dependencies
between iterations as parallelizable.

Let us use the former example again to see how the
above rules work in practice. When the loop finishes the first
iteration, the partial CU graph of the first iteration is shown
on the left side of Figure 5. Rule 1 applies here: Since the
CU truly depends on the INIT node, the CU node must be
executed after the INIT node. This means that no parallelism
is discovered inside the loop. Then the loop iterates again.
The partial CU graph for the second iteration is shown on the
right side of Figure 5. Now we apply rule 3: There is a CU
inside the loop that holds a variable without preceding INIT
node. This means this loop cannot be parallelized between
iterations. From the third iteration on, iterations are merely
repeated, which is why we refrain from showing them.

x = 3

a = x + rand() / x

b = x - rand() / x

CU

INIT

x = a + b

(a) 1st iteration

a = x + rand() / x

b = x - rand() / x

CU

x = a + b

(b) 2nd iteration
Figure 5. The first two iterations of the example in Figure 2.

Now we explain how we can use rule 2 to identify
parallelism between CUs. We can find task parallelism in
code sections even if they contain no control region. Our
tool simply tells the programmer which source lines can
be grouped as a task. To determine paths in the CU graph
that can run concurrently, we treat the sequence of executed
CUs as a time-ordered sequence with dependencies, and
transform it into Foata normal form (FNF) [16]. FNF is a
normalized representation of traces in trace theory. There, a
trace is defined as an equivalence class of strings according
to a given independence relation. The FNF divides a trace in
stages based on the independence relation, and every stage
is a set of letters sorted from left to right by cardinality. We
consider every CU identifier as a letter of the string with
all available CU identifiers forming the alphabet. With this
property, we are able to determine the maximum number
of tasks that a certain code section can be divided into (the
maximum size of FNF stages). This is exactly what we want
in rule 2.

1 if (i == 0) {
2 x = 3
3 y = 4
4 }
5 a = x + rand() / x
6 b = x - rand() / x
7 x = a + b
8 a = y + rand() / y
9 b = y - rand() / y
10 y = a + b

Figure 6. Finding task parallelism.

Whereas we could not identify any potential parallelism
in the loop example, we demonstrate how we can eventually
find parallelism between CUs using a similar example,
which is shown in Figure 6. The new example extends
code from Figure 2 by introducing another variable y, but
with the calculations of x and y being independent. The
corresponding CU graph is depicted in Figure 7. Although
CUx and CUy both depend on the INIT node, they are
independent from each other. The CU graph can be ex-
pressed as string s = ”INIT, CUx, CUy”, with the
alphabet Σ = {INIT,CUx, CUy} and the dependency
relation D = {(INIT,CUx), (INIT,CUy)}. We place
CUx in front of CUy because the calculation of x starts
earlier than the calculation of y. The FNF of the string
”INIT, CUx, CUy” will be {INIT}, {CUx, CUy}.
According to the FNF representation, we conclude that
we must run the INIT node first, after which we can run
CUx and CUy in parallel. Since we maintain the source-
code location of each CU, we are able to suggest to the
programmer that line 5, 6 and 7 can form one task, while
line 8, 9 and 10 can form another.

Note that both variables a and b are defined in another
variable’s use. Hence, we refrain from building CUs for

x = 3

a = x + rand() / x

b = x - rand() / x

CUx

INIT

x = a + b

y = 4

a = y + rand() / y

b = y - rand() / y

y = a + b

CUy

Figure 7. CU graph for the example in Figure 6.

them, as we explained in Section III-C. Now, we are able
to find parallelism between CUx and CUy even if there are
data dependencies on variables a and b. CUx and CUy can
be easily parallelized by making a and b private to each
thread.

Finally, we would like to point out that it is straightfor-
ward to find parallelism also on higher levels. For example,
a function is a subgraph of the whole CU graph. Treating
every subgraph representing a function as a single node and
only considering dependencies between these function nodes
will yield the CU graph on the level of entire functions.
The above rules still apply. Currently, the highest levels we
support are loops and branches.

Of course, not all parallelization opportunities that we
identify are worth pursuing. Right now, we assess the
significance of our findings based on a very coarse cost
model, taking into account the number of instructions inside
a CU and the number of iterations in the case of a loop.

E. Implementation

DiscoPoP is implemented on top of Valgrind 3.7.0, an
instrumentation framework for building dynamic analysis
tools [17]. Valgrind first translates the binary code to a
special intermediate representation called VexIR. Before
Valgrind executes the program on a synthetic CPU, Dis-
coPoP automatically inserts instrumentation to track memory
accesses. Hence, DiscoPoP does not require any annotations
of the source code.

IV. EVALUATION

To validate our approach, we (i) measure the speedup
achieved for smaller test applications after adopting sug-
gestions made by DiscoPoP and (ii) compare DisoPoP’s
suggestions to known parallel implementations of larger
applications. We perform our tests on a server with 2 x 8-
core Intel Xeon E5-2650 2 GHz processors with 32 GB
memory, running Ubuntu 12.04 (64-bit server edition). All
test programs are compiled with GCC 4.6.3. Whenever
possible, we try different inputs to diminish input sensitivity.

Table II
SPEEDUP ACHIEVED WHEN ADOPTING DISCOPOP’S SUGGESTIONS.

Benchmark LOC Input size Number of
suggestions # Adopted Seq. time (s) Par. time (s) Speedup (4x)

histogram 102 50,000,000 numbers 5 1 0.36 0.098 3.67
mandelbrot 521 1024 x 1024 matrix 2 2 46.02 22.73 (11.61) 2.02 (3.96)

light propagation 74 500,000 random points 1 1 5.67 2.33 2.43
ANN training 107 50 x 500 x 4 matrix 10 2 5.11 1.66 3.07

A. Speedup Potential of DiscoPoP’s Suggestions

In the first series of experiments, we use DiscoPoP to
find potential parallelism in four test programs, which were
created as laboratory-course assignments. We parallelize the
programs manually by adopting the suggestions generated
by our tool and measure the speedup we gain. The paral-
lelization is either based on Pthreads or OpenMP. Although
dynamic program analysis is usually input sensitive, the
simplicity of the test programs lets the output of our tool
remain stable under varying inputs. The inputs are chosen to
cover all possible branches. Table II summarizes our results.
Values shown in the table are averages of five runs. Details
for each programs are discussed below.

Histogram visualization: This program receives an
array whose elements can belong to N different types and
sorts them into buckets, putting data with type Ni into
the ith bucket. The items in every bucket are counted to
produce the histogram. We use this example to illustrate
details of the suggestions produced by DiscoPoP, which are
shown in Table III. Our tool successfully finds the main
computational loop starting at line 46 as a good candidate
to be parallelized. The loop iterates over the input array with
no data dependencies inside, indicating the numbers in the
array can be processed in parallel. The structures identified
by suggestions ranked 2, 3, and 4 (suggestions are ranked
by #iterations * size in terms of #instructions) are also
parallelizable, but belong either to the initialization or output
stage and do not promise significant speedup for larger input
problems. Moreover, we do not follow suggestion 5 because
the loop contains only one line without function call and
iterates four times. To measure the speedup, we use an
array of 50,000,000 numbers as input. The serial version
of the program runs in 0.36 seconds, whereas the parallel
version with four threads runs in 0.098 seconds, resulting in
a speedup of 3.67.

Mandelbrot set: The Mandelbrot set is the set of values
c in the complex plane for which the orbit of zero under
iteration of the complex quadratic polynomial zn+1 = z2n+c
remains bounded. Our test program produces a 1024 x
1024 resolution image for the Mandelbrot set. The program
iterates over rows and columns, checking whether a point
belongs to the set. The problem exhibits a high degree
of data parallelism, since every point on the plane can be
examined independently. Our tool reports that the innermost
loop starting at line 27 cannot be parallelized because of

Table III
SUGGESTIONS FOR HISTOGRAM VISUALIZATION.

Rank Location # Iter. Size Adopted Reason
1 line 46 50 6 lines Yes -
2 line 21 50 3 lines No init.
3 line 54 53 1 line No output
4 line 34 50 1 line No output
5 line 44 4 1 line No too small

RAW dependencies between iterations, involving variables
zreal and zimag . This loop iterates 50,000 times at most to
test whether the complex number zreal + zimagi satisfies
the equation. However, the outer loops starting at line 16
and 18 are reported as parallelizable. The loop starting at
line 16 iterates over the rows of the matrix, and the loop
starting at line 18 over its columns. We parallelize the
program with Pthreads by dividing the matrix among four
threads. While the serial version of the program takes 46.02
seconds, the parallel version takes 22.73 seconds, resulting
in a speedup of 2.02. With the fastest thread running only
0.15 seconds, the disappointing speedup is the result of
imbalanced workload. After introducing a dynamic load-
balancing scheme, the four threads consume about the same
time, resulting in an almost linear speedup of 3.96.

Simulation of light propagation using Monte Carlo:
This program simulates light propagation from a point
source in an infinite medium with isotropic scattering using
the Monte Carlo method. Photons are modeled as pairs of
randomly produced numbers and each photon is simulated
independently. Nevertheless, a global array of heat must be
calculated. It is therefore possible that two photons write
the same element of the heat array. When the number
of photons is small, our tool reports that the loop that
iterates over the photons can be parallelized because the
probability of writing the same element of the heat array
is low. However, when the number of photons increases,
the loop is reported as unparallelizable. After getting this
report from DiscoPoP, we parallelize the main loop using
OpenMP, with the array heat as shared variable. We protect
each element of heat with a separate lock. We run the
parallel version with four threads. This simple approach
results in a slowdown of 15.75. The serial version runs only
5.67 seconds, but the parallel version runs 89.28 seconds.
After replacing all occurrences of rand() with a thread-safe
alternative rand r(), the adjusted parallel version runs 2.33
seconds, resulting a speedup of 2.43.

Artificial Neural Network training: The Artificial Neu-
ral Network training algorithm adjusts the weight matrixes of

the network by iteratively examining training data provided
as input. Because new weight values always depend on
their former values, it is hard to run different iterations in
parallel. However, during the same iteration, it is possible
to parallelize the calculation of the weight matrix in one
dimension. Our tool successfully points to two loops starting
at line 50 and line 81, respectively. Both of them iterate
along one dimension of the weight matrices. Adopting the
suggestion from DiscoPoP, we parallelize the training pro-
gram using OpenMP and run it with four threads. Because
the training algorithm usually needs quite a long time to
reach convergence if it reaches it at all, we took the liberty
of placing an upper bound on the number of iterations to
make the program terminate in reasonable time. Our neural
test network comprises 50 x 500 x 4 neurons. The serial
version runs 5.11 seconds, while our parallel version runs
1.66 seconds, resulting in a speedup of 3.07. This is actually
quite close to the results in [19]. In [19], three parallel
versions of ANN training are tested and approach B is
almost the same as when following DiscoPoP’s suggestions.
The test of approach B in [19] with 40 x 100 x 10 neurons
using OpenMP resulted in a speedup of about 3.

B. Comparison to Known Parallel Implementations

Whereas the former section presented smaller examples
that can be quickly parallelized, our second series of ex-
periments compares the recommendations DiscoPoP gener-
ates for four larger test programs to their known parallel
implementations. Our goal is to see whether DiscoPoP
proposes the same parallelization strategies. Two of the
test cases belong to the Parsec Benchmark suite [23] with
parallel versions already included in the suite. The two
other programs are well-known open-source programs, of
which popular parallel implementations exist [4], [20]. Given
that the efficient parallelization of larger programs usually
involves major refactoring beyond eliminating a few depen-
dencies, as shown in an empirical study [21], we refrain from
creating parallel versions ourselves this time. Instead, we just
verify whether DiscoPoP reproduces the ideas underlying the
already existing parallel versions.

Table IV contrasts the recommendations of DiscoPoP with
their main parallelization approach. The number of iterations
tells how many times the structure specified as matching
suggestion is executed. The size corresponds to the number
of source lines this structure covers. We also estimate the
effort to parallelize the suggested structure manually by
assigning values ranging from “low” to “high”. In the future,
we plan to provide such an estimate automatically. Although
the suggestions obtained for different inputs vary slightly,
the output is stable enough to justify our conclusions. The
details of each test case are discussed below.

parsec.blackscholes: Blackscholes, which calculates
the price for a portfolio of European stock options using
the Black-Scholes partial differential equation, is part of the

Parsec benchmark suite. The suite includes three parallel
versions based on Pthreads, OpenMP, and Intel TBB, re-
spectively. Since it comes closest to the serial program, we
picked the OpenMP version for our study. To reduce the time
needed for our analysis, we run blackscholes using the ”test”
input available in Parsec. The only place parallelized in the
OpenMP version is a loop starting at line 238. Given its
extent (20 lines of code) and the number of iterations (400),
it is easy to identify this loop as the most promising target
among the suggestions generated by DiscoPoP. Iterating over
the lines of input and solving the equation, it represents
the main computation and therefore consumes most of the
execution time. DiscoPoP also discovers another potential
parallel loop starting at line 233 (100 iterations and 22
lines of code), which runs the test NUM RUNS times
as the basis of the performance statistics. Since it belongs
to the Parsec framework and bears no relation to the actual
application, we refrained from parallelizing it.

parsec.streamcluster: Streamcluster, a computational
kernel that clusters continuously arriving data points into
k clusters, is another program from the Parsec benchmark
suite. It comes with two parallel versions based on Pthreads
and TBB. We let the program randomly produce a small
number of points as input. In the Pthreads version, threads
are created at line 1723, which is surrounded by a loop
starting at line 1714. In the serial version, this loop calls
a function to cluster the points. DiscoPoP successfully
classifies this loop as parallelizable. However, the existing
parallel version is not as simple as blackscholes and includes
synchronization primitives such as barriers. In addition to
this loop, our tool makes fifteen other proposals. After a
thorough check, we find that they are also parallelizable.
Nevertheless, these locations usually consist of small loops
not covering more than one or two lines and without function
calls inside. Neither are they parallelized in any of the
existing parallel versions nor do we we believe that the small
amount of work they perform justifies parallelization.

gzip 1.3.5: gzip is a widely used file-compression tool
and pigz [22] a popular parallel implementation based on
Pthreads. In gzip, files are broken down into blocks, and
the algorithm iterates over blocks, compressing them one
by one. We run gzip 1.3.5 under the control of DiscoPoP in
order to see whether DiscoPoP’s recommendations match
the locations parallelized in pigz 2.2.4. In the output of
DiscoPoP, we find that the loop starting at line 1595 iter-
ates 284 times while other structures are usually executed
not more than ten times. Although four dependencies are
reported inside the loop, the fact that it contains more than
100 lines of code and iterates 284 times makes it an attractive
parallelization target. After analyzing the code in detail, we
realize that all four dependencies refer to global variables,
which are used when compressing individual file blocks.
Based on these insights, we think that in spite of the four
dependencies this structure is worth to be parallelized, given

Table IV
DISCOPOP’S SUGGESTIONS COMPARED TO KNOWN PARALLEL IMPLEMENTATIONS.

Benchmark Number of Location Parallelized in Matching Details of Matching Suggestion
Suggestions Parallel Implementation Suggestion # Iterations Size (# Lines) Effort

blackscholes 2 blackscholes.c: 238 blackscholes.c: 238 400 20 Low
streamcluster 16 streamcluster.cpp: 1723 streamcluster.cpp: 1714 5 8 Medium

gzip 1.3.5 43 pigz.c: 1478 gzip.c: 1595 284 101 High
bzip2 1.0.2 62 bzip2smp.c: 81 bzip2.c: 3793 104 34 High

the large amount of work it performs. And indeed, the
loop is parallelized in pigz. In function parallel compress()
at line 1478 in pigz.c, pigz breaks the input into blocks
of 128 KB and compresses them concurrently. However,
this function does more than what has been suggested
by our simple discovery. It also calculates the individual
check values for each block in parallel, and contains some
optimizations for parallel IO. Nevertheless, the main idea of
the underlying parallelization strategy is correctly identified.
Note that DiscoPoP also lists other interesting places as
potential parallelization targets. For example, there is a loop
in the main function starting at line 3400, which iterates
over user input files after processing user options. Obviously,
it would also be a good parallelization candidate since
compressing different files exhibits data parallelism. But it
would require some effort to resolve dependencies, since the
buffers in the sequential program are reused. pigz does not
parallelize this part. In the parallel implementation suggested
by [20], this part is also identified.

bzip2 1.0.2: bzip2 is another well-known compression
tool. A number of parallel implementations exist, but their
approaches differ. We chose bzip2SMP [24], a parallel
implementation based on Pthreads, for comparison. Our
analysis with DiscoPoP indicates that the loop starting at line
3793 inside the function handle compress() iterates hun-
dreds times and consumes 83% of the function’s execution
time. Although several dependencies prevent parallelism,
all of them can be located in the structure EState ∗ s.
The loop contains two parts: one for the preparation of a
new block and the other for the compression of the block.
They exchange state information through s, leading to a
RAW dependency between iterations. By examining the
call tree starting from handle compress(), we find calls
to BZ2 compressBlock() and BZ2 blockSort(). Depen-
dencies inside them are also anchored in the structure s,
since the pointer of s is passed to these two functions as a
parameter. According to our understanding of the original
bzip2 algorithm, we believe that by duplicating the EState
structure the block sorting stage of the pipeline can be
parallelized, which means that the blocks of a file can
be compressed in parallel. Bzip2SMP adopts exactly the
same idea. The function performing the parallel block sort
is threadFunction() starting at line 81 in bzip2smp.c.
However, the real parallel strategy is much more complex
than we expected. The same parallelization target was also
found in [4].

C. Performance of the Analysis

To evaluate the performance of DiscoPoP itself, we run
each benchmark five times and calculate the average of
both the time elapsed and the memory consumed. As can
be seen in Figure 8, the slowdown caused by DiscoPoP
varies between 206x (histogram) and 1189x (streamcluster).
However, most of the cases (five out of eight) stay under
400x, which is normal compared to other approaches. For
example, the slowdown reported for Alchemist [4] ranges
from 166x to 712x. The highest slowdown rates exhibit light
propagation, bzip2, and streamcluster.

 0

 200

 400

 600

 800

 1000

 1200

 1400

mandelbrot

histogram

light propagation

NN training

gzip
bzip2

blackscholes

streamcluster

S
lo

w
d
o
w

n
 [

x
]

Figure 8. Slowdown when using DiscoPoP.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

mandelbrot

histogram

light propagation

NN training

gzip
bzip2

blackscholes

streamcluster

M
e
m

o
ry

 C
o
n
su

m
p
ti

o
n
 [

M
B

]

Figure 9. Memory consumption of DiscoPoP.

Figure 9 shows the memory consumption of our tool,
which ranges from 399MB (ANN training) to 3.33GB
(streamcluster). The memory consumption shares the same
general trend with the slowdown rates. The three programs
consuming more than 1GB memory are again light propa-
gation, bzip2 and streamcluster. The reason why these three
programs suffer from both higher slowdown rates and higher
memory consumption are loops with many iterations. Our
approach currently produces CUs and builds dependencies
for every iteration anew, which is often not necessary.
For example, a preceding static dependency analysis could

already identify loop patterns that allow the number of
iterations we need to analyze at runtime to be restricted to
just a few. This would seriously speedup the analysis and
reduce the size of the CU graph.

Although the memory consumption is large in absolute
terms, it is actually small in comparison to traditional
shadow memory techniques based on the pairwise method.
For example, for bzip2 pairwise shadow memory consumes
about 4GB memory, and native shadow memory consumes
more than 10GB [25]. We use less memory (< 1.5GB
for bzip2) mainly because apply the analysis region by
region, reclaiming the memory used for previously processed
regions. We designed our shadow memory in the form of a
multi-layer table that allocates memory only for addresses
that are actually being used. We also implemented a simple
run-time garbage collector that returns addresses of unrefer-
enced variables back to the free list.

V. CONCLUSION AND OUTLOOK

In this paper, we introduced a novel dynamic approach to
the discovery of potential parallelism in sequential programs,
which rests on the notion of computational units. Recom-
mendations on how to parallelize the program are derived
on-the-fly from a trace-representation of their dependencies
in Foata normal form. A major advantage of this very general
concept is that it allows arbitrarily fine code sections that can
run concurrently with each other to be precisely delineated—
opening the way for very specific instructions on how to par-
allelize the program. In comparison to previous approaches,
DiscoPoP does not restrict the analysis to language-defined
code levels. Our experiments confirm that our method can
find the most important parallelization opportunities, leading
to competitive and in some cases even near-linear speedup
when being implemented.

Nonetheless, several enhancement opportunities arise. In
general, we believe that combining our method with static
techniques will substantially reduce the time and space over-
head. Moreover, designing the shadow memory in a more
efficient way could reduce the memory footprint. Further
efforts will be directed towards a more precise estimation
of parallelization effort and expected speedup in order to
automatically identify the most profitable parallelization
opportunities. Overall, we believe that the work presented
here will provide the foundation for a both comprehensive
and practical tool that can significantly help programmers
parallelize large numbers of sequential legacy codes.

REFERENCES

[1] R. E. Johnson, “Software development is program transformation,” in Proceed-
ings of the FSE/SDP Workshop on Future of Software Engineering Research,
ser. FoSER ’10. New York, NY, USA: ACM, 2010, pp. 177–180.

[2] S. Rul, H. Vandierendonck, and K. De Bosschere, “Function level parallelism
driven by data dependencies,” SIGARCH Comput. Archit. News, vol. 35, no. 1,
pp. 55–62, Mar. 2007.

[3] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: Rethinking
and rebooting gprof for the multicore age,” in Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 458–469.

[4] X. Zhang, A. Navabi, and S. Jagannathan, “Alchemist: A transparent de-
pendence distance profiling infrastructure,” in Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
ser. CGO ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
47–58.

[5] K. Molitorisz, J. Schimmel, and F. Otto, “Automatic parallelization using
autofutures,” in International Conference on Multicore Software Engineering,
Performance, and Tools (MSEPT’12), May 2012, publication.

[6] H. Vandierendonck, S. Rul, and K. De Bosschere, “The paralax infrastructure:
Automatic parallelization with a helping hand,” in Proceedings of the 19th In-
ternational Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’10. New York, NY, USA: ACM, 2010, pp. 389–400.

[7] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion, ser. CGO ’04. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 75–.

[8] M. Kumar, “Measuring parallelism in computation-intensive scientific/engineer-
ing applications,” IEEE Trans. Comput., vol. 37, no. 9, pp. 1088–1098, Sep.
1988.

[9] [Online]. Available: http://www.st.cs.uni-saarland.de/javaslicer/
[10] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval, “How much

parallelism is there in irregular applications?” in Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’09. New York, NY, USA: ACM, 2009, pp. 3–14.

[11] G. Tournavitis and B. Franke, “Semi-automatic extraction and exploitation of
hierarchical pipeline parallelism using profiling information,” in Proceedings of
the 19th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010, pp. 377–388.

[12] W. Thies, V. Chandrasekhar, and S. Amarasinghe, “A practical approach to
exploiting coarse-grained pipeline parallelism in c programs,” in Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO 40. Washington, DC, USA: IEEE Computer Society, 2007, pp.
356–369.

[13] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a holistic
approach to auto-parallelization: Integrating profile-driven parallelism detection
and machine-learning based mapping,” in Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’09. New York, NY, USA: ACM, 2009, pp. 177–187.

[14] A. Jannesari, M. Westphal-Furuya, and W. F. Tichy, “Dynamic data race
detection for correlated variables,” in Proceedings of the 11th International
Conference on Algorithms and Architectures for Parallel Processing - Volume
Part I, ser. ICA3PP’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 14–26.

[15] M. J. Harrold and M. L. Soffa, “Efficient computation of interprocedural
definition-use chains,” ACM Trans. Program. Lang. Syst., vol. 16, no. 2, pp.
175–204, Mar. 1994.

[16] G. Rozenberg and A. Salomaa, Eds., Handbook of formal languages, vol. 3:
beyond words. New York, NY, USA: Springer-Verlag New York, Inc., 1997.

[17] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, pp. 89–100, Jun. 2007.

[18] [Online]. Available: http://www.cmiss.org/openCMISS/wiki/
[19] A. Strey, “A comparison of OpenMP and MPI for neural network simulations

on a sunfire 6800,” in PARCO, 2003, pp. 201–208.
[20] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang, “Software

behavior oriented parallelization,” in Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI
’07. New York, NY, USA: ACM, 2007, pp. 223–234.

[21] V. Pankratius, A. Jannesari, and W. F. Tichy, “Parallelizing bzip2: A case study
in multicore software engineering,” IEEE Softw., vol. 26, no. 6, pp. 70–77, Nov.
2009.

[22] [Online]. Available: http://zlib.net/pigz/
[23] [Online]. Available: http://parsec.cs.princeton.edu/index.htm
[24] [Online]. Available: http://bzip2smp.sourceforge.net/
[25] M. Kim, H. Kim, and C.-K. Luk, “Sd3: A scalable approach to dynamic data-

dependence profiling,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 535–546.

