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Abstract—The integration of accelerators into cluster
systems is currently one of the architectural trends in
high performance computing. Usually, those accelerators are
manycore compute devices which are directly connected to
individual cluster nodes via PCI Express. Recent advances of
accelerators, however, do not require a host CPU anymore
and now even enable their integration as self-contained
nodes that are able to MPI-communicate over their own
network interface. This approach offers new opportunities
for application developers, as compute kernels can now
span multiple communicating accelerators to better account
for larger MPI-based code regions with the potential for
massive node-level parallelism. However, it also raises the
question of how to program such an environment. An
instance of this novel cluster architecture is the DEEP cluster
system currently under development. Based on this hard-
ware concept, we investigate the MPI Comm spawn process
creation mechanism for offloading MPI-based distributed
memory compute kernels onto multiple network-attached
accelerators. We identify limitations of MPI Comm spawn
and present an offloading mechanism which results in only
a fraction of the overhead of a pure MPI Comm spawn
solution.

Keywords-MPI Comm spawn; computation offloading;
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I. INTRODUCTION

Since the introduction of graphics processing units with
the capability to be programmed using general purpose
programming languages such as C, accelerators have
started to find their way into cluster systems. Originally
designed as PCI Express (PCIe) devices, which require a
host CPU, and are therefore attached to individual host
systems, latest accelerators no longer need a host and can
be connected to other cluster nodes via their own network
interface. The first example for this is the Intel Xeon Phi-
based accelerator developed within the DEEP project [1].
These so-called network-attached accelerators run their
own operating system and are able to execute MPI
programs. That is, now application developers have the
opportunity to extract larger highly parallel code regions
and separate them as compute kernels to be offloaded
in parallel across the network onto multiple accelerators.
Within such a kernel, MPI calls can be used for commu-
nication between different accelerators without requiring
any interaction with the cluster nodes. This is currently
not supported by CUDA and OpenCL. In essence, kernels
can be MPI programs which contain code constructs,
such as pragmas, specific to the accelerator hardware
and MPI calls for communication. As a more technical
consequence, the ratio of special purpose accelerators to

general purpose cluster nodes can be customized because
the maximum number of accelerators available in a cluster
does not depend on the number of PCIe slots provided by
its nodes. Since accelerators are now independent from
cluster nodes, they can also be requested separately in a
batch script according to precise application needs. This
avoids the scenario where free accelerators are unavailable
because the job allocated on their hosts fully occupies
the host resources while leaving the local accelerators
unused. Similarly, broken accelerators do not affect the
availability of cluster nodes and vice versa. However, it
is obvious that data transfers over the network between
accelerators and cluster nodes suffer from a greater penalty
than over local PCIe only. On the other hand, the ability
to communicate between accelerators over MPI will re-
duce the need to communicate frequently between cluster
nodes and accelerators, compensating for this penalty. Of
course, kernels can run asynchronously so that cluster
and accelerator nodes are utilized simultaneously. A use
case example for this scenario are classic MPMD-style
multiphysics applications where the different physics cal-
culations within the same time step have different scaling
characteristics. Furthermore, in this respect, the iPIC3D
implicit-moment-method particle-in-cell code [2] for space
weather simulations is a good candidate and investigated
in-depth within the DEEP project. More details on this
can also be found in [1].

An example for a cluster system that embodies the
concept of network-attached accelerators is DEEP. This
machine will consist of cluster nodes housing Intel Xeon
multicore CPUs and accelerators based on Intel Xeon Phi
manycore CPUs. Both cluster nodes and accelerators are
equipped with their own network interface and are able
to communicate via MPI. That is, compute kernels to be
offloaded to the accelerators can be MPI programs with
corresponding communication calls for data exchange.
These capabilities are not supported by current accelerator
programming models such as CUDA and OpenCL, which
are designed for node-local accelerators and where data
exchange between devices cannot be triggered by the ker-
nel running on the device. Thus, the question remains how
to program a cluster with network-attached accelerators
and, in particular, how to offload MPI-based compute
kernels onto the accelerators without introducing yet an-
other programming model and causing major rewrites of
existing applications.

To investigate this question, we use the hardware con-
cept of the DEEP cluster as the basis for our consider-



ations, which is still under development at the time of
writing and therefore not available yet. However, as can
be seen in the following, for this work it is sufficient
to know the hardware specifics and capabilities of the
final system for developing proper approaches and drawing
conclusions. Note that although considering the DEEP
cluster as the hardware basis, our solution developed in
this paper is not restricted to DEEP and can be used for
every future cluster sytem equipped with network-attached
accelerators. Focusing on high performance computing,
MPI is the most common programming paradigm for
distributed memory systems and thus many applications
already use it. For this reason, we present an offloading
approach based on MPI’s process creation mechanism
MPI Comm spawn. We review the capabilities of MPI’s
spawn and develop an approach which compensates for
the major drawbacks of a pure spawn-based solution. Our
experimental results show that this approach only adds a
fraction of the overhead compared to the naive spawn-
only approach. The remainder of this work is structured
as follows: We start with reviewing related work. After an
overview of the DEEP cluster and the MPI Comm spawn
function call, we present different offloading approaches
based on MPI Comm spawn. Afterwards, we discuss the
implementation of our offloading mechanism and compare
this experimentally to an MPI Comm spawn-only solu-
tion. Finally, we conclude the paper and outline future
work.

II. RELATED WORK

Several programming models, including CUDA, Open-
CL, and OpenACC, support offloading compute kernels
with a high degree of parallelism onto node-local ac-
celerators. rCUDA [3] even enables the execution of
CUDA kernels on GPUs attached to remote hosts. Here,
communication to the remote hosts is performed via native
InfiniBand. Not restricted to CUDA kernels and with more
emphasis on resource-management aspects, the concept
of the dynamic accelerator-cluster architecture [4] allows
the assignment of network-attached accelerators to classic
cluster nodes while communication between the host and
its remote accelerators is implemented using MPI. How-
ever, also this approach does not allow compute kernel
functions to communicate with other kernel functions that
run on different accelerators. That is, all communication
from the host to its assigned accelerators as well as
between its accelerators is still host controlled.

As stated above, Xeon Phi-based accelerators can ex-
ecute MPI processes with usual MPI communication.
Current large-scale cluster systems, such as Stampede at
the Texas Advanced Computing Center (No. 6 in Top500
Jun. 2013), house Xeon Phi-based PCIe cards that are
locally attached to individual cluster nodes. Corresponding
MPI libraries with special support for Xeon Phi, such as
Intel MPI, MPICH, and MVAPICH, provide the software
required for MPI communication. However, regardless of
a particular MPI library, state-of-the-art usage scenarios
foresee to start all MPI processes on host CPUs and

accelerators at once. That is, all MPI processes both on
host CPUs and accelerators belong to the same initial MPI
communicator MPI COMM WORLD. As a consequence,
host processes and accelerator processes cannot MPI-
communicate independently from each other. For instance,
collective communication for accelerators only requires
an exclusive communicator including only the accelerator
processes. To address this, the application programmer
has to create two new communicators, one for the host
processes and one for the accelerator processes. Finally,
all instances of MPI COMM WORLD in the original
program code, which is executed on the host, have to
be replaced with the corresponding new communicator.
These code changes are error-prone and do not follow
the conventional intuitive way of incrementally changing
existing code to support accelerators. That is, instead of
modifying only a small fraction of the original program
code to be offloaded to accelerators, the application pro-
grammer has to touch a larger portion of the code outside
the accelerated regions. To compensate for this drawback,
accelerator processes could be started dynamically at
runtime using MPI Comm spawn. Another aspect is the
hardware configuration. With node-attached accelerators,
host and accelerator processes compete for the host’s
network interface as all communication is routed through
the host. Network-attached accelerators with their own
network interface avoid this bottleneck.

A different approach is HeteroMPI [5], which is de-
signed for programming processors running at different
speeds that are connected with network links of different
speeds. The main idea is to automate the selection of a
group of processors that can execute a given algorithm
faster than any other group. The selection process is based
on a user-defined performance model of the algorithm and
the hardware capabilities of the available processors with
their different link speeds. The proposed programming
interface is an extension of MPI. However, compared to
our work, the focus of HeteroMPI is on heterogeneous
networks of general purpose processors without acceler-
ators, which are used and administered independently by
multiple users.

Kimura and Takemiya [6] spawn MPI processes via
MPI Comm spawn to distribute a coupled fluid/structure
simulation across several machines to account for the dif-
ferent computational requirements of individual simulation
components. Specifically, the fluid dynamics runs on a
vector-parallel computer, while the structure dynamics is
computed on a scalar-parallel computer. This approach is
similar to the DEEP concept, however, it uses different
machines instead of combining their different hardware
capabilities into a single, more tightly coupled system.
Also, the spawned program is supposed to run until
the complete simulation finishes. In this work, however,
we deal with smaller code regions to be offloaded on
demand. Another work considers the MPI spawn func-
tion for implementing task parallelism [7]. However, the
authors note that the spawn call is too coarse-grained as
it only allows starting new programs instead of individual
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Figure 1. DEEP architecture with cluster nodes (CN), booster nodes
(BN), and booster interface cards (BIC). Solid lines are InfiniBand
whereas dashed lines are EXTOLL links.

functions. Gangadharappa et al. [8] present an optimized
implementation of MPI’s spawn call. However, depending
on the number of processes spawned, in spite of the
optimizations spawn times still range from one to several
seconds. Spawning MPI processes at runtime requires
support from the resource management system. Current
resource managers provide facilities for creating processes
during job execution. However, the resources on which the
new processes will execute have to be requested before job
start, e.g., in a batch script. To enable even more flexible
usage scenarios where those resources can be requested
and allocated during job execution, [9] presents extensions
to the TORQUE/Maui batch system.

III. DEEP ARCHITECTURE

This section gives an overview of the DEEP cluster
system, which is currently under development and will be
installed at the Jülich Supercomputing Center, Germany.
DEEP implements the concept of network-attached accel-
erators and will serve as the basis for our considerations
on how to program such a system. The DEEP (Dynamical
Exascale Entry Platform) architecture consists of two
parts: A cluster part and a booster part, see Figure 1. The
cluster part will consist of 128 general purpose cluster
nodes connected through a QDR InfiniBand fat tree. Each
cluster node comprises two Intel Xeon E5-2680 multicore
processors (8 cores each). The booster part will contain
512 network-attached accelerators which are connected
by a 8 × 8 × 8 3D torus EXTOLL network [10].
Each accelerator, called booster node, houses one Intel
Xeon Phi manycore processor (60 cores with a 512-
bit vector unit each). The motivation for choosing two
different networks and topologies is to better account for
the different communication requirements of the main
program on the one hand and highly parallel kernels on
the other. That is, code parts with a modest degree of
parallelism and more irregular communication patterns
should run on the multicore cluster part, while highly
parallel regions with large thread counts and regular
communication patterns should be offloaded to the booster
part. To enable communication over the complete machine,
that means also between the two parts, so-called booster
interface cards are connected to InfiniBand as well as
EXTOLL to provide bridging capabilities. In particular,
one booster interface card connects 16 booster nodes to
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Figure 2. MPI intercommunicator where the arrow denotes communi-
cation between two processes. Numbers denote process ranks.

the cluster part. A more in-depth description of the DEEP
hardware can be found in [1] . Regarding software, the
system will provide an MPI implementation that enables
transparent communication between cluster and booster.
From a user’s point of view, an MPI application can be
launched over both parts of the system as the cluster nodes
and the booster nodes are able to run usual MPI processes.
The challenges this approach entails for the application
programmer are discussed below.

IV. MPI COMM SPAWN

In this section, we discuss MPI Comm spawn and
related routines which are the basis for our offloading
approach. With MPI-2 the dynamic process model has
been introduced. That is, MPI allows for the creation of
extra processes after an MPI application has started. One
way to start new processes at runtime and establish com-
munication between these new processes and the existing
MPI application is MPI Comm spawn:

int MPI_Comm_spawn(char *command, char *argv[],
int maxprocs, MPI_Info info, int root,
MPI_Comm comm, MPI_Comm *intercomm,
int array_of_errcodes[])

This call is collective over the intracommunicator
comm. It tries to start maxprocs copies of the MPI pro-
gram command with all spawned child processes getting
the same arguments provided in argv. Since MPI does
not define where the new processes are started, the info
argument can be used for this and other runtime system
specific purposes. The root argument gives the rank of
the process in comm which is the only process where all
arguments before the root argument are examined. The
array array_of_errcodes of length maxprocs can
be used to check for the success of the spawn operation.
On success, the newly created processes form their own
MPI COMM WORLD intracommunicator and an inter-
communicator is returned in intercomm. This intercom-
municator contains two disjoint groups of processes, a lo-
cal and a remote group. The local group comprises the pro-
cesses which called MPI Comm spawn, i.e., all processes
in comm. The remote group contains the newly created
processes. Note that in both groups process numbering
starts with zero. This intercommunicator can be used
with, e.g., point-to-point and collective communication,
however, as the prefix inter suggests, only for communi-
cation between not within the process groups. As the child
processes do not call MPI Comm spawn but MPI Init
once created, they have to obtain their intercommunicator
explicitly through the function MPI Comm get parent.



Afterwards, they can communicate with their parents using
their acquired intercommunicator. Note that the child
processes will find themselves in their local group whereas
they will find their parents in their remote group. An
example for an intercommunicator is depicted in Figure 2.

V. OFFLOADING APPROACHES

In the following, we investigate different approaches for
offloading computations from cluster nodes to network-
attached accelerators. Given that both the main program
on the cluster nodes and the compute kernel on the
accelerators are MPI programs, it does not seem to be
necessary to have a special offloading mechanism at the
first glance. One could simply run the MPI application by
creating all the processes on cluster nodes and accelerators
already at job start. During program execution, each pro-
cess must then decide which code path to follow based on
whether it is running on a cluster node or an accelerator.
However, both cluster node and accelerator processes
together form one common MPI COMM WORLD. As
a consequence, for instance, cluster node processes block
forever in collective calls on MPI COMM WORLD as
the accelerator processes would not necessarily want to
participate, or vice versa. A solution would be to divide
cluster node and accelerator processes into two differ-
ent communicators and finally replace all occurrences of
MPI COMM WORLD by the corresponding new com-
municator. However, this may require major changes in
existing applications and is not very practical. One pos-
sibility to have cluster node and accelerator processes
initially separated in their own MPI COMM WORLD
is to start the accelerator processes at runtime with
MPI Comm spawn. This approach is discussed below.

A. Spawn

Using MPI Comm spawn for starting the processes on
the accelerators gives a separation of cluster node and ac-
celerator processes into two disjoint intracommunicators.
This allows for independent communication within each
group of processes. Moreover, the resulting intercommu-
nicator can be easily used for communication between
both groups as rank numbering starts from zero in each
group. Here, the intercommunicator already provides im-
proved semantics over the no-spawn solution from above,
as the programmer need not distinguish between ranks
from cluster node and accelerator processes. Additionally,
collectives for intercommunicators facilitate the data ex-
change between both process groups and may improve
performance compared to using point-to-point primitives.
Given the spawn approach for offloading computations,
the usage scenario could be the following:

(i) The cluster processes perform one initial spawn to
create the accelerator processes.

(ii) They send the input data from the cluster nodes to
the accelerators.

(iii) The accelerator processes perform computation on
the accelerators, exchanging information between
them.

(iv) They send the results back from the accelerators to
the cluster processes.

Steps (ii)-(iv) can be repeated on demand.
This approach assumes that the actual calculations on

the data remain the same. That is, there is only one type
of compute kernel to be offloaded. However, in practice,
different compute kernels could be required where even
their number of invocations is not known before runtime.
To account for this case, the programmer could simply
perform a new spawn whenever a compute kernel is
offloaded. That is, after finishing any kernel, the corre-
sponding accelerator processes are terminated as well. In
this way, a different program (compute kernel) can be
provided with every MPI Comm spawn. However, the
disadvantage is the additional spawning overhead for each
kernel invocation as the processes have to be created
again. Depending on how a particular MPI implementation
represents an MPI process, whether as operating system
process or thread, program data could be re-used in subse-
quent spawn calls. However, most MPI implementations
define MPI processes as operating system processes. In
this case, the re-creation of processes disables the re-use
of data between successive kernel calls, as the processes
terminate and thus their data cease to exist. Nevertheless,
under the assumption that MPI processes are threads, the
spawn call’s info argument could be used to implement a
more flexible spawn call with less startup overhead and the
possibility of re-using the data. However, these assump-
tions highly depend on the actual MPI implementation
used and prevent a portable solution. A portable option
is to spawn only once and implement a protocol between
cluster node and accelerator processes that notifies the
accelerators of which kernel to run. This addresses the
limitations of multiple spawns, yet, introduces additional
work and pitfalls for the programmer. In the following, we
present an approach that offers the advantages of a spawn-
once solution and frees the application programmer from
implementing such a protocol.

B. Spawn and MPIX Kernel call

To take advantage of the one-spawn approach and
free the programmer from implementing a protocol for
triggering kernel execution on demand, we introduce the
function MPIX Kernel call. In particular, after the initial
MPI Comm spawn for creating the accelerator processes,
MPIX Kernel call is used to start the execution of a
compute kernel function whose name is specified as an
argument.

int MPIX_Kernel_call(char *kernelname,
int argcount, void *args[], int *argsizes,
int root, MPI_Comm comm, MPI_Comm intercomm)

A call to MPIX Kernel call involves exactly the same
processes as a previous spawn call did. After spawn-
ing, the parents instruct their children to call a function
kernelname. For this reason, comm and intercomm
are the same communicators as supplied to and returned
from a previous spawn call, respectively. Kernel call is
collective over the parents in comm and starts the function



void main(int argc, char **argv)
{

// Spawn accelerator processes
MPI_Comm_spawn(..., comm, &intercomm,

...);

// Start "kernel0" on accelerators
MPIX_Kernel_call("kernel0", ...,

comm, intercomm);

// Send input data to kernel functions
MPI_Alltoall(..., intercomm);

// Do some other calculations...

// Recv results from kernel functions
MPI_Alltoall(..., intercomm);

}

Listing 1. Main program launching an MPI kernel.

void kernel0(double a, int b, char c)
{

// Get intercommunicator to parents
MPI_Comm_get_parent(&intercomm);

// Recv input data from parents
MPI_Alltoall(..., intercomm);

// Do calculations and communicate...

// Send results to parents
MPI_Alltoall(..., intercomm);

}

Listing 2. MPI kernel launched by main program.

kernelname on the children given by intercomm.
As with usual function calls, it is possible to provide
arguments with args where argcount and argsizes
denote the number and the sizes of the corresponding
arguments. Similar to MPI Comm spawn, root gives the
rank of the parent in comm which is the only process
where all arguments before the root argument are exam-
ined. Kernel call returns once the provided input buffers
can be modified again. This does not imply that kernel
execution has finished, but tells that the corresponding
accelerator processes will be instructed to start kernel
execution. The call does not foresee testing for kernel
completion. However, a good indicator for completion is
when the results have been received on the cluster node.
That is, after finishing the calculation, in the last step, the
compute kernel can MPI-communicate the results back to
the cluster nodes. Similarly, at the beginning, the kernel
can receive the input data. Since for many applications
using accelerators the availability of the results is suffi-
cient, we did not introduce means for testing for kernel
completion. However, more experience with applications
which use Kernel call in the future might change our
decision.

According to the description above, MPIX Kernel call
is complementary to MPI Comm spawn. Note that to
trigger a function via Kernel call, this function must
be available in the program previously spawned. This
and more details are discussed in the implementation
in Section VI. Using MPIX Kernel call together with
MPI Comm spawn leads to the following usage scenario:

(i) The cluster processes perform one initial spawn to

create the accelerator processes.
(ii) They start a kernel on the accelerators.

(iii) They send the input data from the cluster nodes to
the accelerators.

(iv) The accelerator processes perform computation on
the accelerators, exchanging information between
them.

(v) They send the results back from the accelerators to
the cluster.

Steps (ii)-(v) can be repeated on demand. That is, Ker-
nel call can be executed multiple times, which is why
steps (iii) and (v) for moving the data forth and back
might not always be necessary. In any case, however,
the programmer has to ensure that all messages sent by
a kernel can also be received by this kernel running in
a different process before starting the next kernel via
another Kernel call. This guarantees that every commu-
nication among the accelerators themselves and between
accelerators and cluster nodes is finished within the same
kernel. Otherwise communication operations of successive
kernels might interfere with each other. This is similar to
the matching rules in any MPI program, however, here
applied at the granularity of a compute kernel instead
of a complete program. From a high-level perspective,
Kernel call triggers the execution of the same function
on multiple accelerators in parallel. The order of multiple
invocations of Kernel call determines the order in which
the requested kernel functions are executed. This approach
enables applications to offload compute kernels in any
order and any number of times. At the same time, instead
of multiple expensive process spawns, each kernel is
triggered by a single message sent from the cluster to the
accelerator processes. Listings 1 and 2 show an example
of how to start a compute kernel.

C. Spawn and MPIX Kernel call multiple

A simple optimization of MPIX Kernel call is to in-
struct the execution of kernels in a batch. That is, instead
of sending one message per kernel execution from the
cluster to the accelerators, multiple kernel requests can
be coalesced into a single message, which further re-
duces the overhead. The corresponding function is called
MPIX Kernel call multiple:

int MPIX_Kernel_call_multiple(int count,
char *array_of_kernelname[],
int *array_of_argcount, void **array_of_args[],
int *array_of_argsizes[], int root,
MPI_Comm comm, MPI_Comm intercomm)

It is similar to MPIX Kernel call. The only difference
is that instead of only one, count kernels are requested
for execution. The kernels are executed in the order
as provided in array_of_kernelname. For the i-th
kernel, array_of_argcount[i] contains the number
of arguments and array_of_argsizes[i] provides a
pointer to an array with the corresponding argument sizes.
The actual arguments for the i-th kernel are accessible via
an array of pointers. Finally, array_of_args[i] stores



the pointer to this array. With MPIX Kernel call multiple
and MPI Comm spawn, the usage scenario becomes:

(i) The cluster processes perform one initial spawn to
create the accelerator processes.

(ii) They request the execution of multiple kernels on the
accelerators.

(iii) They send the input data from the cluster nodes to
the accelerators.

(iv) The accelerator processes perform computation on
the accelerators, exchanging information between
them.

(v) They send the results back from the accelerators to
the cluster.

As with Kernel call, subsequent calls to Kernel call
multiple are possible. Moreover, both can be used in
combination.

VI. IMPLEMENTATION

This section discusses the implementation of MPIX
Kernel call and MPIX Kernel call multiple. We imple-
ment both calls on top and not as part of the MPI library
as this improves portability. Regarding the arguments of
the two functions, the intracommunicator of the parents
comm is not required for our implementation. However,
it is given to enable the possibility for different imple-
mentations. As stated earlier, a function that is requested
for execution must be available in the program that was
previously spawned. Furthermore, our purpose is to free
the programmer from additional work for enabling kernel
execution on accelerator processes. Thus, we decided to let
the application programmer only implement the minimum
required, which is the kernel functions themselves. The
rest of the logic is implemented by us in the main function
of the spawned program. This program consists of two
parts. One part contains the kernel functions provided
by the programmer, while the other part contains the
main function which is responsible for handling the kernel
execution requests. Both parts are combined in the linking
step which creates the actual binary program ready for
spawning on the accelerators.

Note that cluster nodes and accelerators are not nec-
essarily fully binary compatible. For instance, the DEEP
system uses Xeon CPUs on the cluster nodes and Xeon
Phi CPUs as accelerators. However, as the data types of
the programming language and the numerical precision of
the calculations are identical on both CPU architectures,
the precision of final results is not affected. Otherwise, to
account for different numerical precisions between cluster
node and accelerator, algorithmic changes might become
necessary. For this reason, it is only required to compile
the binaries for the correct architecture, which is cluster
node or accelerator. This is no limitation as the spawn call
can be provided with a binary which is different from the
main program.

Once the program was spawned on the accelerators,
kernel requests can be sent, e.g., via MPIX Kernel call.
Since this call is semantically identical to and thus imple-
mented with MPIX Kernel call multiple using a count

argument of one, we focus on Kernel call multiple in
the following. This function compiles a message from
its arguments which is then sent from rank root of
the cluster nodes to rank 0 of the spawned accelerator
processes. The message contains, (i) the number of kernels
to execute, (ii) the kernel names, (iii) the argument count
for each kernel, (iv) the sizes of all the kernel arguments,
and (v) the kernel arguments themselves. The message is
transmitted via MPI Send and received with MPI Recv
in the intercommunicator connecting cluster nodes and ac-
celerators. A similar communication mechanism designed
for implementing programming models is called active
messages [11]. Here, instead of the function name, an
active message carries the address of a request handler
and the input data to be processed on message arrival.
In our current implementation, we use a pre-allocated
receive buffer of fixed size. This implies that the message
cannot be larger than this size. However, a simple way
to extend the protocol to allow for larger messages is to
split the large message into smaller chunks which are then
separately sent and received. Nevertheless, as this message
carries usual kernel arguments only, it can be expected to
be at most in the order of few megabytes. Larger amounts
of data are recommended to be MPI-communicated from
within the kernel itself.

Upon receipt of the complete message, the correspond-
ing accelerator process broadcasts the size of this message
to the remaining processes in its intracommunicator. This
is necessary for them since they need to know the exact
size of the message before they can actually receive it
in a second broadcast operation. When the first broadcast
starts, the single message from the cluster node to the
accelerator process has already been delivered and Ker-
nel call multiple returned. Consequently, the cluster node
processes can asynchronously proceed with their execution
and need not wait for the kernel to start. To account for
the communication penalty between the cluster and the
booster part of the DEEP system, we do not directly issue
the broadcast but start with a single message between the
process groups.

After the accelerator processes received the information
on the requested kernels and their arguments, the next step
is to call the first kernel. As there is no additional pre-
processing of the user-implemented kernel functions in-
volved in our approach, the kernel functions are not known
before runtime to our protocol. At runtime, the only hint
of their existence in the spawned program are the kernel
names communicated through Kernel call multiple. For
this reason, we use the kernel name to get a handle to the
corresponding function to launch it. We accomplish this
with the help of the dynamic loading programming inter-
face, which is commonly used for implementing software
plugins. The programming interface is part of the POSIX
standard and thus available on many platforms. Here, we
use the dlsym function, which takes the kernel name and
returns the address of this kernel function in memory.
Finally, we invoke the function using the address as a
function pointer. As the number of arguments might differ



among kernels and given that a usual function call must
already contain all its arguments at compile time, it is not
possible to call the kernel functions with their arguments
with a classical function call. Instead, we push the kernel
arguments manually onto the process stack before actually
starting the kernel function. Note that the dlsym-based so-
lution assumes that the kernel function name chosen by the
application programmer in the program code remains the
same for the compiled program. However, depending on
the programming language, name mangling may change
the symbol name of the function in the program binary.
With C, we did not encounter any problems. To avoid
this issue with Fortran kernel functions, we recommend
using the BIND(C) attribute in their definitions. For C++
kernels, our approach is to declare them with extern
“C”. These workarounds are only required for the kernel
function that forms the entry point to the actual kernel
code. Additional lower-level functions within the kernel
code are not affected.

After all accelerator processes have started the first
kernel in the way described above, the corresponding
function is executed and finally finished. After finishing
the kernel, control is returned to our main function in the
spawned program. If there are additional kernel requests,
then the next kernel is started. Otherwise, the main func-
tion is waiting for the next incoming message containing
new kernel requests. Once the spawned processes are
not needed anymore, disconnecting from the parents and
termination of the children is achieved via sending an
empty string as kernel name for execution.

VII. RESULTS

In this section, we investigate the startup overhead for
launching parallel MPI kernels using the different ap-
proaches described above. In particular, we consider (i) the
mulitple-spawns approach where every kernel call invokes
one MPI Comm spawn, (ii) the single-spawn approach
with one initial spawn followed by one MPIX Kernel call
per kernel, and (iii) the single-spawn approach with one
initial spawn followed by one MPIX Kernel call multiple
for a batch of kernels. Unfortunately, the complete DEEP
system with its network-attached accelerators is not avail-
able yet. However, the cluster part of DEEP can already
be used and serves as the testbed for our measurements.
Details about the hardware of the cluster part have already
been presented above. Note that using a usual cluster
without the network-attached accelerators is not a limi-
tation for our experiments, as we time the kernel startup
mechanism which is not affected by the computational
power of different types of nodes. The configuration for
the timing measurements is the following. We use 120
cluster nodes in total. A subset of 40 nodes is used as
the cluster nodes which want to offload parallel MPI
kernels onto accelerators. The number of accelerators is
80, where the remaining cluster nodes take the role of
these accelerators. This yields a cluster node to accelerator
ratio of one to two. However, with network-attached
accelerators we are not restricted to this ratio. We start

two processes per cluster node, one per socket, which
gives 80 cluster-node processes in total. These 80 cluster-
node processes collectively start the same kernel on 80
accelerator processes. That is, each of the 80 accelera-
tors runs one process. The software environment for our
measurements is CentOS 6.4 (Linux 2.6.32) with the MPI
library Open MPI 1.6.4 and NFS as network file system.
The actual timing measurements were performed with the
SKaMPI 5.0.4 MPI benchmark framework which uses
a window-based methodology for more precisely timing
collectives [12].

Figure 3 depicts the time it takes to start different
numbers of kernels using the three different approaches.
Note that while with MPIX Kernel call one message
is sent per kernel execution, MPIX Kernel call multiple
sends the number of corresponding kernel requests in a
single message. The arguments for each kernel consisted
of five double precision values. To avoid overlap and
thus wrong timings of successive collective operations,
we measured the time for a single spawn and a single
Kernel call individually. The final times in the plot are
then obtained by adding the individual times accordingly.
The time for one spawn is the average of 30 individual
measurements, while the number of measurements for
Kernel call and Kernel call multiple is 100. As can be
seen in Figure 3, the Kernel call and Kernel call multiple
approaches clearly outperform the multiple-spawns ap-
proach. However, the timings of the two are very similar
since they are dominated by the initial spawn which takes
about 1.3 sec. Times similar to the initial spawn were
obtained for optimized spawn implementations in [8].
The time for spawning consist of two major compo-
nents: (i) loading the spawned program for execution
and (ii) exchanging process information and connection
setup between parent and child processes. That is, spawn
performance depends on both the performance of the
network filesystem for loading the spawned program and
the interconnect for connection setup. However, because
our solution loads the program only once while allowing
multiple kernel calls, its performance depends primarily on
the MPI message transfer latency and less on the network
filesystem.

Note that the times obtained using the two kernel
call functions are expected to be equivalent to the times
based on a protocol implemented by the application pro-
grammer themselves. Figure 4 takes a closer look at
the time differences of the individual Kernel call and
Kernel call multiple calls. As expected, it is shown that
the benefit of Kernel call multiple increases with an in-
creasing number of kernel calls. Note that the jump in
time from 64 to 128 kernels might be due to the network
hardware configuration. To get a more complete picture of
the kernel startup overhead, we changed the configuration
to 24 cluster nodes and 96 accelerators, where 48 cluster
node processes start 96 accelerator processes. This yields
a 1 to 4 ratio between cluster nodes and accelerators.
However, the timings for this configuration were almost
identical to the previous ones.
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Figure 3. Kernel startup overhead for different numbers of kernel calls
with different kernel offloading approaches.
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without initial spawn.

VIII. CONCLUSION AND OUTLOOK

Network-attached accelerators, as they appear in the
DEEP system, offer application developers the opportu-
nity to better account for varying scaling characteristics
within their codes. Even larger code regions that use MPI
internally and bear the potential for massive node-level
parallelism can be offloaded over the network. Within
these kernels, MPI communication can be used for data
exchange with other accelerators or with the cluster nodes
that dispatched the kernel. However, current accelerator
programming models such as CUDA or OpenCL do not
support this offloading scenario. For implementing this
scenario, we presented different offloading approaches
based on MPI’s MPI Comm spawn process creation
mechanism. Starting with a pure spawn-based solution, we
introduced the additional functions MPIX Kernel call and
MPIX Kernel call multiple which complement MPI’s
spawn call and compensate for its drawbacks. These two
calls provide a convenient interface to the application
programmer for starting MPI-based compute kernels on
multiple accelerators. In addition, our experimental results
show that they can noticeably reduce the kernel startup
overhead compared to a pure spawn-based solution. Once
the DEEP system is fully available, we will be able
to actually run applications on this novel architecture

using our proposed offloading mechanism. Currently, we
assist application developers in their porting efforts. In the
future, the insights gained from porting real codes might
motivate facilities such as testing for kernel completion.
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“On Achieving High Message Rates,” in 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Com-
puting, 2013.

[11] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser,
“Active messages: a mechanism for integrated commu-
nication and computation,” in Proc. of the 19th Annual
International Symposium on Computer Architecture, 1992.

[12] T. Worsch, R. Reussner, and W. Augustin, “On benchmark-
ing collective MPI operations,” in Proc. of the 9th European
PVM/MPI Users’ Group Meeting, 2002.


