
Understanding the Formation of Wait States in
Applications with One-sided Communication

Marc-André Hermanns
∗

German Research School for
Simulation Sciences

RWTH Aachen University
Aachen, Germany

m.a.hermanns@grs-sim.de

Manfred Miklosch
Dept. of Computer Science

University of Hagen
Hagen, Germany

David Böhme, Felix Wolf
German Research School for

Simulation Sciences
RWTH Aachen University

Aachen, Germany
{d.boehme,f.wolf}@grs-sim.de

ABSTRACT
To better understand the formation of wait states in MPI
programs and to support the user in finding optimization
targets in the case of load imbalance, a major source of wait
states, we added in our earlier work two new trace-analysis
techniques to Scalasca, a performance analysis tool designed
for large-scale applications. In this paper, we show how the
two techniques, which were originally restricted to two-sided
and collective MPI communication, are extended to cover
also one-sided communication. We demonstrate our expe-
riences with benchmark programs and a mini-application
representing the core of the POP ocean model.

Keywords
performance analysis, performance optimization, one-sided
communication, root cause, critical path

1. INTRODUCTION
The Scalasca performance analysis toolset [4] helps pro-

grammers in identifying and understanding parallel perfor-
mance problems in MPI programs, such as inefficient com-
munication patterns or load imbalance. Recently, we demon-
strated how we employ Scalasca’s scalable event-trace analy-
sis approach to study the root causes of wait states [3] and to
extract the critical path [2]. Rather than just showing symp-
toms, these analysis methods pinpoint the origins (e.g., load
imbalance) of parallel performance bottlenecks. The root-
cause analysis sheds light on the formation of wait states by
following the wait-state-propagation chain back to the delays
that originally caused them. The critical path identifies the
program activities that determine the program runtime, and
therefore highlights promising optimization targets. How-
ever, both techniques were so far limited to programs that
use only MPI point-to-point or collective communication.

∗Corresponding author

(c) 2013 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by an employee, contractor or
affiliate of the national government of Germany. As such, the government of
Germany retains a nonexclusive, royalty-free right to publish or reproduce
this article, or to allow others to do so, for Government purposes only.
EuroMPI’13, September 15–18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.
http://dx.doi.org/10.1145/2488551.2488569

With version 2.0, the one-sided communication interface
was added to MPI. One-sided communication offers flexi-
bility when implementing certain algorithms and can offer
superior performance for certain use cases [13, 16]. To en-
able such performance gains, deep understanding of an ap-
plication’s dynamic behavior is very important. However,
tool support for the analysis of one-sided communication
performance beyond simple time profiling is still in its in-
fancy. We previously targeted this support gap in [6], where
we showed how Scalasca can detect wait states in MPI-2
one-sided communication constructs in a scalable manner.
In this paper, we describe further extensions to Scalasca
that enable the root-cause and critical-path analyses for pro-
grams that use MPI-2 one-sided communication, again with
scalability in mind. With these extensions, it is now possi-
ble to identify delays that cause wait states in active-target
synchronization constructs. Moreover, in programs that use
one-sided in combination with point-to-point or collective
communication, we also take into account interactions be-
tween synchronization constructs pertaining to any of the
three different communication paradigms. This allows us
to extract the complete critical path and uncover all long-
distance distance effects in the formation of wait states in
multi-paradigm programs. As our case studies show, uncov-
ering such cross-paradigm interactions greatly improves the
understanding of wait-state formation in such programs.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work with respect to analyzing the
performance of one-sided communication, of wait states, and
of the critical path. In Section 3, we recap our approach to
root-cause and critical path analysis as well as the identifica-
tion of wait states in MPI active target synchronization. In
Section 4, we present the implementation of the infrastruc-
ture necessary to enable critical-path and root-cause analysis
for active-target communication. We present experimental
results, showing both the scalability and the utility of our ap-
proach, with synthetic benchmarks and application kernels
in Section 5, including a one-sided variant of the CGPOP
kernel [17] extracted from the CESM climate code. Finally,
we provide a summary and a brief outlook on future work
in Section 6.

2. RELATED WORK
By now, many vendors of HPC performance analysis tools

support basic performance metrics for one-sided communi-
cation. The well-known performance tools Paradyn [11] and

73

TAU [15] support the analysis of one-sided communication
through time-profiling and transfer counts. Vampir [12] sup-
ports the fine-grained, manual analysis of traces including
one-sided communication in combination with communica-
tion statistics, however, leaves the identification of inefficien-
cies to the expert user. In its support of partitioned global
address space languages and runtime engines, the Parallel
Performance Wizard supports the analysis of one-sided com-
munication and the identification of bottlenecks [18], yet, re-
lies on the GASP performance interface [19] to obtain mea-
surement data, which is currently only supported by the
GASNet communication substrate. Projections [8], as part
of the Charm++ programming framework, provides deeper
insight into the performance of its one-sided communication
infrastructure and overall load balancing, however, it does
not support other communication interfaces.

Our root-cause analysis was inspired by the work of Meira
Jr. et al. [9, 10] in the context of the Carnival system.
Like our analysis, their cause-effect analysis characterizes
the impact of imbalances on wait states by comparing the
execution paths that lead up to a synchronization point.
However, our analysis, based on parallel processing of dis-
tributed traces, offers far greater scalability than Meira’s
serial approach. Tallent et al. [20] describe a method inte-
grated in HPCToolkit that characterizes imbalance in call-
path profiles of MPI programs by mapping the cost of idle-
ness (i.e., wait states) occurring within globally balanced
call-tree nodes (balance points) to imbalanced call-tree nodes
descending from the same balance point. Being based on
profiles, Tallent’s solution can only detect suspects for wait-
state root causes within call paths that exhibit global, static
imbalance, whereas our trace-based approach accounts for
both static and dynamic imbalances. To the best of our
knowledge no prior work on imbalance characterization spe-
cifically targets the MPI-2 one-sided communication inter-
face.

The identification of the critical path of a parallel ap-
plication has already been subject to research in the past.
ParaGraph [5] is an early tool that could visualize the crit-
ical path in a parallel program. Recognizing that the crit-
ical path by itself is not overly expressive, Alexander et
al. [1] compute near-critical paths to determine the impact
of changes on the critical path on the program performance.
Schulz [14] and Hollingsworth [7] explore piggybacking as a
means to dynamically extract the critical path from MPI
and PVM programs, respectively. However, none of these
approaches target one-sided communication.

3. APPROACH
Wait states materialize at synchronization points of the

program, which occur during communication or synchro-
nization whenever one process has to wait for another. Sca-
lasca’s trace analysis detects such wait states and classifies
them according to various patterns. The two advanced anal-
ysis methods, which are subject of this paper, help users
point out root causes of wait states and identify promis-
ing optimization targets—beyond the mere identification of
wait states. The original cause of a wait state is a delay,
that is, an interval or a set of intervals that causes a process
to arrive belatedly at a synchronization point, causing one
or more processes to wait. Besides simple computational
overload, delays may include a variety of behaviors such as
serial operations or centralized coordination activities per-

time

p
ro
ce
ss
es A

B

C

foo Send

foo Recv Post Wait

foo Start Get Complete

Delay

Wait state Delay

Wait state

Figure 1: Delay costs and the critical path. The criti-
cal path (rectangle with rounded corners) is computed in a
backward replay (right to left). Whenever a wait state is
encountered on the process currently on the critical path,
the critical path changes to the originator of the wait state.
Delay costs are also exchanged in a backward replay to allow
for the aggregation wait states on the path to the root cause.
Indirect wait states are identified with the help of a forward
replay, where the originator of a wait states communicates
its own waiting time to the waiting process.

formed only by one process. Scalasca identifies the locations
of delays and calculates their costs, which represent the over-
all amount of waiting time caused by the delay. The delay
costs can be much higher than the delay itself, as shown by
the example in Figure 1. There, a delay in function foo on
process A leads to a Late Sender wait state on process B,
which itself delays the MPI_Win_post call on process B and
causes a subsequent Late Post wait state in MPI_Win_start

on process C. Hence, the delay costs assigned to foo cover
the waiting time in MPI_Recv on process B for which the de-
lay is directly responsible, and also the bulk of the waiting
time in MPI_Win_start on process C for which the delay is
indirectly responsible. The delay costs therefore highlight
those functions in the execution that contribute the most to
the waiting time. In addition, the root-cause analysis clas-
sifies wait states into direct and indirect, providing valuable
insight into wait-state propagation.

The critical path is the longest path through a program
activity graph without wait states. Therefore, it determines
the length of the program execution. Prolonging activities
on the critical path increases the program runtime, whereas
shortening them usually reduces it. In contrast, shorten-
ing activities that are not on the critical path only increases
waiting time, but does not affect the overall runtime. Hence,
the critical path highlights promising optimization targets.
In an MPI program, the critical path runs between Init

and Finalize. The critical path ends at the process which
entered Finalize last. From there, Scalasca follows the crit-
ical path backwards through the execution trace. Whenever
a wait state is encountered on the current process on the
critical path during the backward traversal, the critical path
changes to the process causing the wait state. Hence, in Fig-
ure 1 the critical path switches from process C to B when C
waits for the Post, and again from process B to A when B
waits for the Send on A. The execution times of the functions
executed by the process on the critical path are aggregated
in a critical-path profile. Hence, the critical-path profile con-
tains the time each function and process spent on the critical
path, which corresponds to the actual wall-clock execution
time for which these functions are responsible. Moreover, a
large difference between the critical-path time and the av-
erage per-process execution time of a function—the critical-

74

time

p
ro
ce
ss
es A

B

C

D

Start Get Complete

Start Put Complete

Post Wait

Start Put Complete

Waiting time

Waiting time

Waiting time

(a) The Late Post pattern. The origins (processes A, B, and
D) in general active target synchronization have to wait for
the target (process C) to start its corresponding exposure
epoch.

time

p
ro
ce
ss
es A

B

C

Start Put Complete

Start Put Complete

Post Wait

Waiting time

(b) The Early Wait pattern. The target (process C) in
general active target synchronization closes its exposure
epoch before the last origin (process A) completes its access
epochs.

time

p
ro
ce
ss
es A

B

C

Create Put FreeFence

Create Put FreeFence

Create Fence Free

Waiting time

Waiting time

Waiting time

Waiting time

Waiting time

Waiting time

(c) The Wait at Create/Fence/Free pattern. Processes have
to wait for the last process to enter this collective operation.

Figure 2: Synchronization points in MPI active target syn-
chronization.

path imbalance—pinpoints functions that spend a dispro-
portionate amount of time on the critical path, indicating a
parallel bottleneck.

Both root-cause and critical-path analysis require knowl-
edge of synchronization points. In our earlier work [6], we
have shown how synchronization points in MPI active target
synchronization can be identified at large scale. Identifying
synchronization in one-sided communication is challenging—
for performance reasons, MPI grants a lot of freedom to the
implementation in regards to when synchronization may oc-
cur. Only the synchronization functions ending access and
exposure epochs are required to block until all pending ac-
cesses are completed. For general active target synchro-
nization (GATS), this means that calls to MPI_Win_start

or any subsequent RMA operation may or may not block.
The implementation is free to buffer these until the call to
MPI_Win_complete occurs and complete all pending opera-
tions within this call. To still identify synchronization points
within active target synchronization calls, we use a heuristic
that assumes a call to block for completion when it overlaps
with its remote synchronization counterpart.

Figure 2 shows the three main wait states that may oc-
cur in one-sided programs: Late Post , Early Wait , and the
collective Wait at Fence and its equivalent in creating and
freeing a window. The different synchronization scenarios
in the Late Post pattern are shown in Figure 2a. The
Early Wait pattern (see Figure 2b) occurs when the tar-
get waits for the last origin to complete its access epoch

before closing the exposure epoch. For the collective opera-
tions MPI_Win_create, MPI_Win_free, and MPI_Win_fence,
we assume a call to be synchronizing when the call is over-
lapping on all participating processes, as shown in Figure 2c.
Through the detection of these wait states, the foundation
for identifying their root causes and the analysis of the crit-
ical path is laid.

4. IMPLEMENTATION
The extensions to support root-cause and critical-path

analysis for one-sided communication build upon the exist-
ing implementation of these analyses for point-to-point and
collective communication in Scalasca’s trace analysis frame-
work [2, 3], leveraging its scalable, post-mortem analysis
approach. During execution, each rank of an instrumented
target executable records relevant events, such as entering
or leaving code regions or sending and receiving messages.
After the target application finishes, we launch the trace
analyzer with one analysis process per application process.
The analyzer performs multiple trace traversals (replays),
where it iterates over all process-local traces in parallel,
and exchanges data required for the performance analysis
at each recorded synchronization point. Root-cause and
critical-path analysis are performed in a backward replay.
A backward replay traverses the trace backwards in time,
from end to beginning, and reverses the roles of senders and
receivers. Starting at the endmost wait states, the backward
replay allows delay costs to travel from the point where they
materialize back to the point where they were caused by de-
lays. The backward replay also facilitates the critical-path
analysis, since the route of the critical path through the pro-
gram cannot be determined before knowing the end of the
execution.

Given that root-cause and critical-path analysis require
the knowledge of the synchronization points on all analy-
sis processes associated with a synchronizing operation, the
analysis consists of two phases: the first phase detects and
exchanges synchronization information between the analy-
sis processes, and the second phase performs the critical-
path detection and delay cost calculation. To enable our
advanced analysis techniques for MPI’s active target syn-
chronization, these analysis steps needed to be implemented
for both active-target synchronization variants—collective
fences and group-based GATS. The collective synchroniza-
tion using fences is very similar to MPI’s N × N collec-
tive communication calls. In fact, as their collective na-
ture also allows the use of collective communication during
the analysis, the existing infrastructure for collective com-
munication could be reused. However, the potentially dy-
namic, group-based synchronization available with general
active-target synchronization introduces a new dependency
scenario: origins may synchronize with multiple targets and
targets synchronize with multiple origins. Therefore, it acts
as a potential 1 × N or N × 1 synchronization similar to
a broadcast or gather, but without the full collective na-
ture of these operations. Unlike other cases in our anal-
ysis, where we typically employ the original communica-
tion paradigm to exchange information required for their
analysis during delay-cost and critical path assessment, we
use point-to-point communication to exchange information
related to general active-target synchronization. Point-to-
point communication provides the flexibility to account for
the potentially dynamic list of communication partners in

75

GATS constructs and the dynamic message sizes required
for the analysis. Overall, the major adjustments to our anal-
ysis infrastructure needed to implement the root-cause and
critical-path analysis steps for MPI active-target synchro-
nization are threefold. First, beyond the mere detection of
waiting time, as presented in our earlier work [6], we need
to identify and store the corresponding rank of the remote
process causing the waiting time. Second, we need to build
the synchronization graph—a sub-graph of the communica-
tion graph comprising only those communications and syn-
chronizations where wait states occured—by communicating
synchronization information detected on one analysis pro-
cess to the corresponding remote process. Third, we need
to exchange rank-specific data for the calculation of delay
costs along the paths in the synchronization graph.

The identification of the remote process causing the wait
state on the waiting process proved to be straight forward.
For the Late Post pattern, the origin uses get calls to obtain
the timestamps of the respective post calls on the targets
and now additionally stores the rank associated with the
waiting time. For the Early Wait pattern, the origin uses the
built-in reduction operator MPI_MAXLOC where it used a one-
sided reduction earlier to determine the largest completion
timestamp. These changes enable the association of wait
states with the corresponding remote process. That process,
however, does not know whether it caused remote waiting
time at this point and still needs to be notified. For Late
Post patterns, each origin sends a message to each target of
the current access epoch, indicating either waiting time or
no waiting time. Clearly, only one process receives waiting
time greater zero, the others receive zero. For Early Wait
each target likewise informs every origin whether or not the
closure of the exposure epoch had to wait for any of its
corresponding access epochs to complete.

Once the synchronization graph is available, the informa-
tion required for the root-cause and critical-path analyses
can be communicated among its processes in the backward
replay. Overall, the delay-cost calculation for general active-
target synchronization is structurally similar to the delay-
cost calculation for point-to-point Late Sender and Late
Receiver wait-state patterns, which is explained in detail
in [3]. In short, when a synchronization point is encountered
during the backward replay, the involved processes deter-
mine the previous synchronization point with the same set
of processes. The period in between those synchronization
points is called the synchronization interval. Next, the pro-
cess causing the wait state at the synchronization point re-
ceives time profiles of the synchronization interval from each
process that incurred a wait state, compares these with its
own synchronization-interval time profile, and thereby de-
termines the code regions that exhibited delay. Also, addi-
tional costs are assigned to wait states in the synchroniza-
tion interval on the wait-state causing process, to account
for propagating waiting time. This additional cost is com-
municated further backwards when the trace replay reaches
that synchronization point, and used to incorporate long-
distance effects into the calculation of delay costs.

5. RESULTS
We tested the implementation of our methods for one-

sided communication on different platforms with distinct
MPI implementations: the Juropa Linux cluster at For-
schungszentrum Jülich using Parastation MPI over Infini-

(a) Process 2 waits for 0.3 seconds when starting its access
epoch on process 1.

(b) Although process 1 is causing the Late Post on process
2, the delay in foo on process 0 is correctly identified as the
root-cause.

Figure 3: Waiting time and the delay causing it in a propa-
gation scenario like the one shown in Figure 1.

band, the IBM Blue Gene/Q supercomputer Juqueen at
Forschungszentrum Jülich using an MPICH-based MPI, and
the Linux Infiniband-Cluster of RWTH Aachen University
using OpenMPI.

5.1 Microbenchmarks
We verified our analysis techniques using test cases cre-

ating specific, predictable wait states. Figure 3 shows the
results of one of our benchmarks in a setup similar to the
one shown in Figure 1 in Section 3, highlighting the waiting
time for Late Post on the origin and the corresponding de-
lay responsible for the wait state. Processes 0 and 2 act as
origins, while process 1 acts as the target. As in the wait
state scenario explained in Section 3, prior to the one-sided
data exchange processes 0 and 1 engage in point-to-point
communication, where a delay in function foo causes a Late
Sender , which in turn causes the exposure epoch on process
1 to be started late. Thus the Late Post on process 2 is
indirectly caused by the delay in foo on process 0, which is
shown in the analysis report.

5.2 SOR
The SOR benchmark solves the Poisson equation using a

red-black successive over-relaxation method on a two-dimen-
sional grid. The communication pattern includes a nearest-
neighbor halo exchange and a collective reduction. The halo
exchange, though originally using point-to-point communi-
cation, was adapted to use general active target synchroniza-
tion for our work on the wait-state detection [6]. We used
this benchmark for scaling tests, because it is easy to con-
figure for weak and strong scaling—although we only per-
formed weak scaling measurements here—while using two
common communication patterns: a nearest neighbor ex-
change and a collective reduction to test for convergence.
We configured the benchmark to perform 500 iterations with
an error tolerance of 1 × 10−7 to prevent convergence and
ensure a predictable number of iterations. This also ensured
a significant amount of communication load on one side and

76

29 210 211 212 213 214 215 216
100

101

102

processes

ex
ec
u
ti
o
n
ti
m
e
[s
]

Application Pattern search
Full analysis Root cause & critical path

Figure 4: Pattern search as well as root-cause and critical-
path analysis of the SOR benchmark at different scales on
the Blue Gene/Q supercomputer Juqueen.

a predictable trace size on the other. We configured the
application workload to result in approximately 60 seconds
runtime for the benchmark itself.

Depending on whether a processes is on the border of the
2D domain or not, local trace sizes range from 5 MB to 10
MB each. Figure 4 shows the scaling behavior of the anal-
ysis. Full analysis indicates the sum of the (basic) pattern
search and the root-cause and critical-path analyses. The
data shows that over all, the analysis scales very well up to
our largest measurement with 65,536 cores.

5.3 CGPOP
The CGPOP miniapp [17] represents the conjugate gra-

dient solver of Los Alamos National Laboratory’s Parallel
Ocean Program (POP) 2.0, which is the ocean model of the
Community Earth System Model (CESM), a major climate
code developed at the National Center for Atmospheric Re-
search. CGPOP was created to study the most critical part
of the application on different platforms without having to
port the whole ocean simulation. CGPOP is implemented
in several different variants, one of which uses one-sided,
point-to-point, and collective communication. As such, it
provides a good test case for studying inter-paradigm in-
fluences. As a test kernel, CGPOP provides different com-
munication drivers to identify the communication scheme
that suits a given platform best. Next to 1D and 2D point-
to-point variants, it also provides a 1D halo exchange using
one-sided communication with general active target synchro-
nization. The 1D decomposition uses a space-filling curve
to partition the data. According to the developers, the one-
sided kernel was not investigated deeply, as it did not seem
to perform en-par with the two-sided kernels. It therefore
posed an interesting test subject for our extended methods.
To gain first insights on where the time was actually lost we
tested the code with the 180 × 120 tile-set on 60 processes
on the RWTH cluster.

To enable measurement of CGPOP, we first needed to
modify the code slightly. Initially, group handles were fre-
quently created and not freed, which exceeded the tracking
capabilities of our measurement system. As our measure-

Performance Metric Original [s] Modified [s]
Time 125.21 108.26

MPI 59.78 45.50
Synchronization 56.20 34.28

Collective 52.98 -
Wait at Barrier 51.95 -
Barrier Completion 0.87 -

RMA 3.23 34.28
Late Post 1.56 26.21

Table 1: Performance metrics of the isolated call-tree of
solver.esolver in the CGPOP benchmark with the 180 ×
120 input tiles on 60 cores of the RWTH cluster.

ment system already gives us detailed insight into the code’s
performance, we also disabled any application-internal tim-
ing calls. We used this slightly modified version as the start-
ing point of our study. Because the I/O time needed to
read in the input data was non-deterministic and dominated
the overall execution time, we isolated the solver steps in
solver.esolver within the analysis report to focus our at-
tention on the performed iteration rather than the initializa-
tion. The initial measurements revealed two issues: (1) the
barrier, called in the solver step right before the one-sided
data exchange, experienced severe waiting time, and (2) de-
spite the barrier, some origins experienced Late Post wait
states (see Table 1). Initially, the Late Post waiting time was
not intuitive, as the barrier in front of it should have taken
care of any imbalances leading to wait states. However, our
root-cause analysis revealed that an imbalanced barrier com-
pletion is responsible for the Late Post wait state. This is an
example of a cross-paradigm wait state, where wait states or
imbalances in one communication paradigm influence other
paradigms as well. The waiting time in the barrier is caused
by delays in the function matrix_mod_matvec and its parent
function pcg_chrongear_linear. For both functions, the
delay costs identify two processes as the main contributors
to the overall waiting time. The waiting time itself, however,
is more wide-spread over the processes. With the underly-
ing nearest neighbor exchange, this indicates that the barrier
synchronization may be too heavy-weight in this case. As
the barrier itself is not functionally necessary at this point
in the code—the one-sided synchronization itself will take
care of consistency—we removed it to see how the waiting
time caused by the delay materializes in a more light-weight
synchronization. As expected, the modifications partly dis-
solved wait states due to the lighter-weight synchronization,
which partly reappeared as Late Post wait states. After all,
the actual delay causing the initial barrier wait states was
not changed. Overall, the waiting time decreased and the
application core showed a significant runtime improvement.
Furthermore, the critical-path profile shows both user func-
tions to be on the critical path and indicates a significant
imbalance. A logical next step would now be to find ways
of removing this load imbalance, which, however, is outside
the scope of this paper.

6. CONCLUSION
When processes wait for one another at synchronization

points, wait state occurs. Scalasca’s classic search for inef-
ficiency patterns can detect and quantify these wait states.
However, to remedy these wait states, a developer has to

77

know their root cause. Then, a better understanding of the
underlying performance problem can aid the optimization
process. Furthermore, capturing the critical path can fur-
ther aid the identification of viable subjects for optimization.

In this paper, we present extensions to our earlier work
in root-cause and critical-path analysis. It enables devel-
opers to understand the formation of wait states that oc-
cur in applications with MPI one-sided communication and
active target synchronization. Using microbenchmarks, we
explained how these methods can be used to identify indi-
rect wait states, which propagate across multiple processes
and communication paradigms. We demonstrated the scal-
ability of our methods with analysis runs on up to 65,536
cores. Furthermore, we showed how our approach found the
reason for wait states in a one-sided variant of the conjugate
gradient solver CGPOP.

Beyond extending our experiences with our methods on
applications with active target synchronization, we plan to
enable the identification of wait states in passive target syn-
chronization. Those wait states, however, are not created
by delays—i.e., imbalances—but through contention, which
would be resolved by controlled imbalances rather than bal-
ancing execution times since the last synchronization point.
Thus, those synchronization points, or rather contention
points, need special handling in our advanced analysis meth-
ods, which is still subject to further research. Furthermore,
as MPI-3 implementations become widely available on dif-
ferent platforms, we plan to extend our analysis to the new
functionality introduced in the current MPI standard.

7. REFERENCES
[1] C. A. Alexander, D. S. Reese, and J. C. Harden.

Near-critical path analysis of program activity graphs.
In Proc. of the 2nd Intl. Workshop on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’94), pages
308–317, Jan. 1994.

[2] D. Böhme, B. R. de Supinski, M. Geimer, M. Schulz,
and F. Wolf. Scalable critical-path based performance
analysis. In Proc. of the 26th IEEE Intl. Parallel &
Distributed Processing Symposium (IPDPS),
Shanghai, China, May 2012.

[3] D. Böhme, M. Geimer, F. Wolf, and L. Arnold.
Identifying the root causes of wait states in large-scale
parallel applications. In Proc. of the 39th Intl.
Conference on Parallel Processing (ICPP), San Diego,
CA, USA, pages 90–100, Sept. 2010.

[4] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham,
D. Becker, and B. Mohr. The Scalasca performance
toolset architecture. Concurrency and Computation:
Practice and Experience, 22(6):702–719, Apr. 2010.

[5] M. T. Heath, A. D. Malony, and D. T. Rover. The
visual display of parallel performance data. IEEE
Computer, 28(11):21–28, November 1995.

[6] M.-A. Hermanns, M. Geimer, B. Mohr, and F. Wolf.
Scalable detection of MPI-2 remote memory access
inefficiency patterns. Intl. Journal of High
Performance Computing Applications, 26(3):227–236,
Aug. 2012.

[7] J. K. Hollingsworth. An online computation of critical
path profiling. In Proc. of the SIGMETRICS
symposium on Parallel and distributed tools, 1996.

[8] L. Kalé, S. Kumar, G. Zheng, and C. Lee. Scaling
molecular dynamics to 3000 processors with
Projections: A performance analysis case study. In
Computational Science — ICCS 2003, volume 2660 of
LNCS, pages 23–32. 2003.

[9] W. Meira, Jr., T. J. LeBlanc, and V. A. F. Almeida.
Using cause-effect analysis to understand the
performance of distributed programs. In Proc. of the
SIGMETRICS symposium on Parallel and distributed
tools, SPDT ’98, pages 101–111, 1998.

[10] W. Meira Jr., T. J. LeBlanc, and A. Poulos. Waiting
time analysis and performance visualization in
carnival. In SPDT ’96: Proc. of the SIGMETRICS
symposium on Parallel and distributed tools, pages
1–10, 1996.

[11] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn
parallel performance measurement tool. Computer,
28:37–46, November 1995.

[12] M. S. Müller, A. Knüpfer, M. Jurenz, M. Lieber,
H. Brunst, H. Mix, and W. E. Nagel. Developing
scalable applications with Vampir, VampirServer and
VampirTrace. In PARCO, pages 637–644, 2007.

[13] W. B. Sawyer and A. A. Mirin. The implementation of
the finite-volume dynamical core in the community
atmosphere model. Journal of Computational and
Applied Mathematics, 203(2):387–396, 2007.

[14] M. Schulz. Extracting critical path graphs from MPI
applications. In Proc. of the 7th IEEE Intl. Conference
on Cluster Computing, September 2005.

[15] S. S. Shende and A. D. Malony. The TAU parallel
performance system. Intl. Journal of High
Performance Computing Applications, 20(2):287–311,
2006.

[16] C. Siebert and J. L. Träff. Efficient MPI
implementation of a parallel, stable merge algorithm.
In Recent Advances in the Message Passing Interface,
volume 7490 of LNCS, pages 204–213, Sept. 2012.

[17] A. Stone, J. Dennis, and M. M. Strout. The CGPOP
miniapp, version 1.0. Technical Report CS-11-103,
Colorado State University, July 2011.

[18] H.-H. Su, M. Billingsley, and A. D. George. Parallel
Performance Wizard: A performance system for the
analysis of partitioned global-address-space
applications. Intl. Journal of High Performance
Computing Applications, 24:485–510, November 2010.

[19] H.-H. Su, D. Bonachea, A. Leko, H. Sherburne,
M. Billingsley, III., and A. D. George. GASP! a
standardized performance analysis tool interface for
global address space programming models. In
PARA’06: Proc. of the 8th international conference on
Applied parallel computing, pages 450–459, 2007.

[20] N. R. Tallent, L. Adhianto, and J. Mellor-Crummey.
Scalable identification of load imbalance in parallel
executions using call path profiles. In Supercomputing
2010, Nov. 2010.

78

