
Automatic Generation of Parallel Unit Tests
Jochen Schimmel∗, Korbinian Molitorisz∗, Ali Jannesari†, Walter F. Tichy∗

∗Karlsruhe Institute of Technology (KIT), Germany
{schimmel, molitorisz, tichy}@kit.edu

†German Research School for Simulation Sciences, RWTH Aachen University, Germany
{a.jannesari}@grs-sim.de

Abstract—Multithreaded software is subject to data races.
Currently available data race detectors report such errors to the
developer, but consume large amounts of time and memory; many
approaches are not applicable for large software projects. Unit
tests containing fractions of the program lead to better results. We
propose AutoRT, an approach to automatically generate parallel
unit tests as target for data race detectors from existing programs.
AutoRT uses the Single Static Multiple Dynamic (SSMD) analysis
pattern to reduce complexity and can therefore be used efficiently
even in large software projects. We evaluate AutoRT using
Microsoft CHESS and show that with SSMD all 110 data races
contained in our sample programs can be located.

Index Terms—Data Races, Unit Testing, Multicore Software
Engineering

I. INTRODUCTION

Writing parallel programs is hard. Data races and deadlocks
are error types specific for multicore software development.
Finding such errors is a tedious and non trivial task: Due to
alternating schedules, data races may only show up on rare oc-
casions, rendering conventionell debugging and reproduction
techniques effectless. To ease this situation, data race detection
strategies are a prospering scientific field for several years. The
data race detectors available today may coarsly be grouped into
three categories: (1) static, (2) dynamic, and (3) model-driven.
All categories have their own strenghts and weaknesses. How-
ever, all of them share the fact that they have not yet achieved
broad acceptance in the professional developer community.
The common main problem with data race detectors is that
they either (1) consume too much memory and computation
time or (2) report too many false positives. A fact that we see
accross many race detectors is that the results are impressive
when applied to small applications, but with increasing sizes
of real world applications, race detection approaches become
increasingly impractical. In general parallel unit tests would
be well-suited to overcome the well-known issues with current
data race detectors mentioned above. However, it is difficult
to write and design a profound set of parallel unit tests: What
method pairs need to be tested with what input data?

In this paper we present AutoRT, an extension to regular
parallel unit tests: AutoRT automatically generates parallel
unit tests from whole programs, produces a test context and
checks for concurrency bugs using a dynamic race detector.
Regular parallel unit tests run two or more methods in parallel
on given input data and program state. With AutoRT we apply
a data race detector on parallel unit tests instead of a whole
program and therefore reduce complexity to a set of small

fractions instead of a single large one. We use Microsoft
CHESS [1], a race detector that is speficially designed to
be applied to unit tests. Thus AutoRT overcomes scalability
limitations. AutoRT uses a combined static and dynamic anal-
ysis pattern we call Single Static Multiple Dynamic (SSMD,
chapter IV). In a first step, SSMD identifies method pairs
containing accesses to common data through the notion of
strong parallel dependency (chapter IV-A). These method pairs
are subject to multiple dynamic analyses. SSMD identifies
methods that effectively run in parallel, gathers corresponding
test contexts and removes equivalent method pairs. Finally,
parallel unit tests are created from method pairs and test
contexts and passed on to Microsoft CHESS. We evaluated
our approach using several academic sample programs and
the Microsoft Parallel Sample Library as benchmark and show
that AutoRT finds all of the 110 known data races.

II. PARALLEL UNIT TEST BASICS

AutoRT extends regular parallel unit tests (parUT) and data
race detectors. In this chapter we present basics to better
understand the concept presented in chapter III. A parallel
unit test is a dedicated test method in a separate class, which
executes two or more methods in parallel. Each of these
methods under test is executed within its own thread. The
test class also initializes required parameters and global data.
It returns as soon as all parallel methods under test finish their
execution.

A. Parallel versus Conventional Unit Tests

A parallel unit test differs from a conventional unit test in
several ways. A conventional unit test is self-verifying: After
the execution of a test method, assert statements check if
the test method behaved as expected. If not, an exception is
thrown. One problem when dealing with parallelization errors
is the lack of a mechanism to assert correctness. A parallel unit
test is not self-verfiying: There is no assertion-like mechanism
to verify that the test is successful or not. Even if a parallel unit
test contained a regular assertion to check for the correct result,
the data race would still not be found, because parallelization
errors inherently occur extremely rare. An assertion can only
report a deviation to the expected result, if it ocurrs, so a
regular parallel unit test will very likely execute and terminate
successfully, although it contains a data race. A regular parallel
unit test cannot decide whether the methods under test behave
as inteded, but a combination with a data race detector can,



as Figure 1 illustrates. Increment() and Decrement()
that are show in Figure 4 both access x, so there obviously
is a data race on variable x. AutoRT automatically generates
parallel unit tests like in Figure 1 using SSMD and passes
them on to a race detector. Related works such as ConCrash
[2] generate unit tests as soon as a data race detector reports a
data race to assist in error reproduction. In contrast to AutoRT
this approach still has the scalability disadvantage: Applying
race detection on a whole software system takes a very long
time. A parallel unit test in AutoRT clearly focuses on the
relevant portions of a software system that are worth the effort
of running data race detection.

B. Extending Data Race Detectors

As explained, a parallel unit test is deliberately not self-
verfiying and leaves the race detection to other tools. We
decided that our unit tests do not anticipate a certain mecha-
nism to detect races. Following the principle of separation of
concerns we are able to use a variety of data race detectors
on each parallel unit test. We also enable productive use of
detectors that are too slow and memory intensive: Especially
model based detectors may benefit from this design decision,
as they evaluate a unit test as a single small instance instead of
a whole program. In our implementation depicted in chapter
V, we use Microsoft CHESS as a race detector. CHESS is
designed to find races in small tests, executing only small
fractions of large programs [1]. In extension to this, we are
currently working on a .NET-implementation of Helgrind+ [3],
a novel data race detector to find correlated races which can
so far not be found by CHESS. The aspect of scalability
accounts for a combination of different data race detectors
even more: Applying any of these detectors consecutively on
a complete program would consume even more time, but for
an automatically generated parallel unit test the combination
executes with acceptable speed.

III. REQUIREMENTS OF A PARALLEL UNIT TEST
GENERATOR

When parallel unit tests are created manually, an engineer
has to identify the methods that could potentially be executed
in parallel, locate relevant input parameters and assign object
states in order to evoke the desired control flow. Even for
experienced software testers, this task is far from trivial
because of the following problem areas:

• A parallel execution might be overlooked resulting in
incomplete test sets.

• Testins regions that are not executed in parallel unneces-
sarilly extend test execution duration.

• Methods containing data races but that will never occur
due to control flow dependecies don’t have to be tested
in order to minimize false positives.

The automatic generation of unit tests face the same chal-
lenges as the manual generation, so we define the following
goals for AutoRT: (1) Reduction of test cases to relevant
code areas, (2) completeness of the set of test cases and
(3) correctness of the executed tests. We will evaluate these

//)x)defined)in)program)assembly
//)public)int)x;

[TestMethod]
void)TestIncrementDecrement2w
{
))))x)=)350;
))))amount_1)=)500;
))))amount_2)=)200;
)))
))))Thread)t1)=)new)Thread2)delegate){
))))))))Increment2amount_1w;)}w.Start2w;
))))
))))Thread)t2)=)new)Thread2)delegate){
))))))))Decrement2amount_2w;)}w.Start2w;
))))
))))t1.Join2w;)t2.Join2w;
}
)

Fig. 1. Test case generated by AutoRT for the methods shown in Figure 4.

goals in section VI. In the remainder of this section, we will
explain the requirements to fulfill these threee goals. Section
V presents the implementation of AutoRT.

1) Test Case Reduction: It is commonly known that exhaus-
tive testing of parallel code leads to a tremendous number of
states due to the large number of possible thread interleavings.
Parallelization errors however can only occur in the relatively
few areas that are effectively executed in parallel. This leads to
a large search space although the problematic code regions are
relatively small. At the same time we want to be able to filter
out redundant test cases. We define the following requirements
in order to reduce the number of test cases.

Red1: Method pairs that never access common memory
areas are excluded from the test set, as they cannot lead to data
races. We therefore conduct a static pre-analysis to filter out
those methods that don’t access common data. Because of the
potentially high number of common states AutoRT employs a
lightweight analysis.

Red2: Variables might influence the intra-procedural control
flow. Variables that cannot lead to data races are excluded from
the test set. We therefore use a dynamic analysis to check for
reference identity at commonly used object instances. This is
motivated by the fact that two parallel accesses to a common
data type only result in a data race, if the same object instance
is used. As [4] shows, this problem is statically undecidable,
so we employ a dynamic analysis.

Red3: Methods invoked with different parameter values that
execute the same control flow path either contain a data race
or not. If they do, it’s the same data race and the methods
only have to be checked with one parameter value. We
therefore identify equivalence classes for variable allocations
that lead to the same control flow path and might therefore
lead to the same data race. A different strategy to retrieve
equivalent classes of program states and variable assignments
that evoke the same data races would be a symbolic execution.
This procedure could enrich our dynamic analysis efficiently:
Capturing the execution paths at runtime would cause minor
overhead. A symbolic execution would be able to detect



equivalent classes but at the same time put the correctness at
risk as shown in Corr2. The correctness clearly is more crucial
than having less redundancy in the test set, so we relinquish
this mechanism.

Red4: Method pairs that are never executed in parallel need
not be tested. This requirement is also important for Corr1.

2) Correctness: Corr1: Method pairs that do not run in
parallel in any thread interleaving can safely be ignored. We
use a dynamic analysis to retrieve parallel methods and let the
user remove incorrect test cases. The strengths of a dynamic
analysis are the absence of false positives for parallel method
pairs and scalability of the dynamic recording. The goal to
reduce user interaction wherever possible still counts, but in
this case user interaction might be necessary. An alternative is
the may-happen-in-parallel analysis ([5]). It can successfully
be used to retrieve certain parallel methods, but at the price
of a worst-case-complexity of O(N5), which is not suitable
for complex applications. Although may-happen-in-parallel
produces few false positives, it cannot reliably identify all
parallel code areas.

Corr2: Variable assignments for method pairs that evoke
races when executed in parallel, but cannot occur at runtime
are excluded from the test set. We employ the same dynamic
analysis for the retrieval of variable assignments. The require-
ment for correctness demands the absence of false assumptions
about race conditions. Corr2 assures that only those variable
assignments are taken into the test set, that effectively occur
at runtime.

3) Completeness: Completeness of the generated test set is
crucial, as unidentified parallel code blocks might contain data
races. As the two previous requirements test case reduction and
correctness might interfere with the completeness, we define
the following requirements:

Comp1 All method pairs that execute in parallel in any
thread interleaving and stand in a strong parallel dependency
relationship must be included in the test set (see chapter IV-A).
This demands that no parallel method pairs are ignored. In a
dynamic analysis, this can indeed happen due to unfavorable
thread interleavings. As discussed, we do not use a may-
happen-in-parallel analysis. Instead, we employ heuristics to
raise the probability for a parallel interleaving. It adds a time
supplement to methods, that executed very close to each other
assuming that with a slightly different scheduling, they might
have interleaved.

Comp2 For all relevant method pairs all instruction inter-
leavings must be covered without tampering with Corr2. To
achieve this, we evaluated symbolic execution, may-happen-
in-parallel analysis and user unteraction. The two latter so-
lutions can result in a complete test set but with the serious
disadvantage that the two other goals correctness and test case
reduction are violated. At the time of writing, the test user has
to define a set of execution parameters that covers all relevant
execution paths.

IV. AUTOMATIC GENERATION OF PARALLEL UNIT TESTS
USING SSMD

Our approach to automatically generate parallel unit tests
follows a pattern we call Single Static Multiple Dynamic
(SSMD), as depicted in Figure 2. In SSMD, a single static
analysis retrieves data required by multiple dynamic analysis
runs. Our approach contains two different dynamic steps,
which are repeated several times. The first dynamic run
determins what methods in the program run in parallel and the
second records object state information about them. To explore
parallel regions which cannot be reached within a single pro-
gram execution, these two steps have to be iterated. After data
collection, AutoRT emits the test methods. AutoRT consists of
four steps: (1) static parallel dependency analysis, (2) dynamic
method analysis, (3) dynamic object state recording, and (4)
test case generation. We present each step in this section.

Static Analysis Detect Parallelism Fetch State Information

Fig. 2. The Single Static Multiple Dynamic Pattern (SSMD).

A. Parallel Dependency

We define the term parallel dependency as a foundation for
our static analysis step. It is used to identify methods worth
examining for unit test generation.

For all methods M in a program, S is the set of shared
variables across multiple threads. The write access relation
W ⊆M ×S and read access relation R ⊆M ×S are defined
as follows:

W := {(m, s)|m ∈M ∧ s ∈ S ∧ ∃i ∈M :

Value of s is written in instruction i}
(1)

R := {(m, s)|m ∈M ∧ s ∈ S ∧ ∃i ∈M :

Value of s is read in instruction i}
(2)

The parallel dependency PD is a binary relation PD ⊆
M × M that puts two methods m1 and m2 in a relation,
when they contain at least one instuction reading or writing a
common variable. Formally, PD is defined as follows:

PD := {(m1,m2)|m1,m2 ∈M ∧ ∃s ∈ S :

(W (m1, s) ∧R(m2, s))∨
(R(m1, s) ∧R(m2, s))∨
(R(m1, s) ∧W (m2, s))∨
(W (m1, s) ∧W (m2, s))}

(3)

Definition 1: Two methods which both access a common
variable are called parallel dependent. If at least one of the
methods performs a write access, they are called strongly
parallel dependent. If none of the accesses is a write access,
they are called weakly parallel dependent. Any method which



ProgramRunderRTest TestRCaseRGeneratorRComponents GeneratedRArtefacts

OriginalRPUT

InstrumentedRPUT
ParallelRMethodRAnalysis

InstrumentedRPUT
ObjectRStateRRecording

StaticRAnalysisRModule

DynamicRAnalysisRRuntime

TestRCaseRGenerator

ParallelRDependancyRList

ParallelRMethodRList

ObjectRStates

ParallelRTestRCases

Fig. 3. The Architecture of AutoRT

is part of a [strongly—weakly] parallel dependent pair is also
called [strongly—weakly] parallel dependent.

According to this definition we can further refine the relation
PD as follows:

PD = PDs ∪ PDw (4)

where PDs contains strongly parallel dependent methods and
PDw contains weakly parallel dependent methods, that are
excluded from the dynamic analyses.

B. Static Parallel Dependency Analysis

We do not want to generate parallel unit tests for each
method pair in a program. In order to determine which method
pairs are relevant for data race detection, we perform a static
pre-analysis. We use the notion of strong parallel dependency
in order to identify relevant method pairs. For test generation
we only consider strongly parallel dependent method pairs
at the moment. These method pairs are candidates for test
case generation, as they contain at least one write access to a
potentially shared variable, which is a precondition for a data
race. During dynamic analysis it is determined whether the
variable is actually shared.

Although AutoRT currently only uses the strong parallel
dependency analysis, we present a scenario that would profit
from weak parallel dependency: Using strongly dependent
method pairs is a sound approach to test programs that
currently contain data races. However, during early stages of
software development, a data race might only be included in
later revisions. For this, regression tests are an interesting
option. While the software is still subject to development
changes, weakly dependent method pairs might additionally
be used for test case generation. Weakly dependent method
pairs contain harmless read accesses that might be updated to
contain write accesses in future software revisions. Such test
cases would currently not report any races, but would do so
as soon as races sneak into the program. This shows a major
difference between parallel test case generation and data race
detection: While a data race detector has to be as precise as
possible and should not report any false positives at all, test

case generation embraces code, which does not contain a data
race right now, but might easily do so in the future.

C. Dynamic Method Analysis
In this step, the program under test is instrumented to record

entry and exit time stamps for the set of methods reported
by the static analysis. After that, the program is run. Using
the information recorded, it can be seen which methods ran
simultaneously. These are the method pairs for which AutoRT
has to generate parallel test cases. The methods of these pairs
are called test case candidates.

Obviously, test cases can only be generated for program
parts that have been executed during dynamic analysis. It is
the software tester’s responsibility to rerun the application with
input data that cover all parallel program parts. This input data
is already available in most software projects to test the correct
program behaviour.

D. Dynamic Object State Recording
The program under test is instrumented again: All test case

relevant methods are instrumented to write down the values
of all parameters and objects they access as soon as the
method is entered - we get a complete object state dump. Our
runtime detects when the same instance of an object is used
several times and stores this information - even accross thread
boundaries. So methods running in parallel and accessing the
same object instance will access a single object instance in
the generated test case, too. If a method calls a sub-routine,
this method will also dump its object state information. In
the current version, each call to an instrumented method will
produce a full state dump of the accessed objects, so obviously
useless data is recorded; for example, frequently called getter-
methods record the same values many times. We are currently
working on improvements to dynamically decide if further
dumps are required to generate the full set of parallel test
cases to improve memory consumtion and run time.

E. Test Case Generation
For each method pair identified, at least one parallel test

case has to be generated. In order to run both methods within



such a test case, all objects accessed by both methods need to
be initialized to a valid state before the method calls. For each
relevant method, one or more object state dumps are available
- depending on how often the method has been executed. The
test case generator will emit code to restore the object states
for each tested method within a parallel unit test. We call the
set of object states accessed by two (ore more) methods the
test context. If both of these methods ran parallel during object
state recording, we get such a test context directly. But it is
also possible to construct a test context for two methods if
both were executed sequentially. How to combine these states
is not obvious, as both methods may have accessed a common
global object with different state. If it is possible to combine
two object states, we call them compatible. Object states are
always compatible if they do not share any objects. They are
also compatible if all fields of each common object contain the
same value. At the moment, this is the only situation in which
we apply test context construction. For future versions, we will
explore how to merge object states with different values.

V. IMPLEMENTATION

We implemented our test case generator in C#. For instru-
mentation, we used the Phoenix compiler framework [6] in
a first version and updated it to use Microsoft CCI [7]. We
instrument .NET-Assemblies and generate test cases in C#.
The C# file generated compiles into a .NET-Assembly which
contains a class with test methods. Microsoft CHESS and other
data race detectors can then execute the test methods.

Test cases generated with our sample implementation recon-
struct values of global variables including data structures of
the .NET Framework such as lists or dictionaries. Generic data
types are included in this process, too. A generated sample test
case is shown in Figure 1. A test case cannot set protected and
private fields by assignment. For such elements, we emit .NET
reflection API code. Using this technique, we avoid calling
complex object initializers and constructurs, but may set only
those parts of an object’s state that can be seen be the methods
under test.

The architecture of our implementation is depicted in Figure
3. First, our static analysis module will examine all CIL-
methods of the program under test for parallel dependencies.
Using the dependencies found, an instrumented version of the
program under test is generated which links to our dynamic
analysis runtime. During execution of the instrumented pro-
gram under test, our runtime records which methods actually
run in parallel. Multiple executions with different input may
be necessary to examine all program parts. After that, the
generated parallel method list is used to instrument parallel
methods for object state recording. The program is executed
again. Finally, our test case generator uses the program states.

A sample program under test with the according instru-
mented versions is shown in Figure 4. In (a), we can see
the original version of two parallel dependent methods. They
are strongly parallel dependent, as they both contain a write
access to the global variable x and run in parallel. (b) shows
the instrumented version for parallel method analysis: calls

to our dynamic analysis runtime are added at the beginning
and the end of the methods. The runtime logs timestamps for
method entry and exit. After execution, the runtime decides
which methods ran in parallel. For those methods, a second
instrumentation of the program is performed (c): In this ver-
sion, runtime calls are added for each global variable as well
as any method parameter at the beginning of the method. With
the resulting information, a test case can be generated which
initializes the program state with the same values as during
real program execution. Finally, Figure 1 shows the resulting
parallel test case: Both methods are called within a thread for
each method. Before starting these threads, parameter values
as well as global variables accessed by these methods are
initialized with the values recorded. A barrier will block the
main thread of the test to wait for both methods to end.

VI. EVALUATION

This section presents our sample applications and the results
of our experiments.

A. Sample Applications

The samples chosen for evalution are composed from par-
allel sample applications found in the MSDN Code Gallery,
samples from the CHESS data race detector and programs
written on our own, such as a quad tree simulation. The
applications from the CHESS package already contain data
races as found in real-world applications; we chose them to
show that our test case generator may bring up these kinds
of errors. In the programs from the MSDN Code Gallery and
in our own applications, we introduced data races manually
by removing synchronisation instructions. After generating
parallel unit tests, we used CHESS to find the data races.
We then fixed those errors and applied CHESS again to the
parallel unit tests, to show that the tests then execute without
reporting any errors. The results of our evaluation are shown
in table I.

B. Race Detection Efficiency

Our data race detector is not designed to detect data races
itself. Instead, it generates test cases which enable data race
detectors such as CHESS to detect data races. As the overall
goal is to detect races, the number of detected races is the most
important metric. Our data race detector generated 50 parallel
unit tests for the 8 sample programs. The sample programs
contained 110 data races, of which all have been found by
CHESS, when applied to the parallel unit tests. Using the tests,
we also found a data race in our quad tree application which
we did not introduce deliberately. We were not able to find
this bug without our generated test cases, as CHESS was not
able to complete the application when running it as a whole
program.

C. Performance

In order to generate parallel unit tests, three performance
critical steps have to be performed: (1) static analysis, (2) dy-
namic method analysis and (3) dynamic object state recording.



intkxk=kj;

voidkIncrementEintkamounty
{
kkkkxk=kxkPkamount;
}

voidkDecrementEintkamounty
{
kkkkxk=kxk<kamount;
}

EaykTwokmethodskofkthek
BankkAccountksample>

intkxk=kj;

voidkIncrementEintkamounty
{
kkkkInstrLib>LogEEntryMkIncrementy;
kkkkxk=kxkPkamount;
kkkkInstrLib>LogEExitMkIncrementy;
}

voidkDecrementEintkamounty
{
kkkkInstrLib>LogEEntryMkDecrementy;
kkkkxk=kxk<kamount;
kkkkInstrLib>LogEExitMkDecrementy;
}

EbykInstrumentationkfork
ParallelkMethodkDetection>

intkxk=kj;

voidkIncrementEintkamounty
{
kkkkInstrLib>Log<int>EIncrementMkxy;
kkkkInstrLib>Log<int>EIncrementMkamounty;
kkkkxk=kxkPkamount;
}

voidkDecrementEintkamounty
{
kkkkInstrLib>Log<int>EDecrementMkxy;
kkkkInstrLib>Log<int>EDecrementMkamounty;
kkkkxk=kxk<kamount;
}

EcykInstrumentationkforkObjectkStatekRecording>k

Fig. 4. Code excerpt of the Bank Account Sample with its instrumented versions.

We experience the most sever performance impact in steps
(2) and (3). The slowdowns vary from good (factor 1.2) to
dramatic (factor 190). The main reason for this is that we
record methods blindly in our current implementation: If we
instrument a method foo to record its object states during
runtime, it will do so in every single method call. It will do so
even if all required data from foo has already been recorded.
If such a method uses many objects or is called within a loop,
performance is doomed. Therefore, we will include a dynamic
instrumentation in our next version, which will stop recording
data on a per method basis, if enough sample data has been
recorded1. We expect a significant speed up. Other obvious
improvements include the way we store data: The generator
emits XML-files during execution. We are currently switching
to a more performant binary file format. The static parallel
dependency analysis is executed within a few milliseconds for
each of the sample applications. However, despite the perfor-
mance drawbacks described above, we can apply CHESS to
the test cases generated, even if we cannot apply it to the whole
application due to performance limitations. Furthermore, the
test cases may be re-run deliberately. Even though we need
to further evaluate our test case generator on large scale
applications, we can already see that automatically dividing
programs in smaller portions using a test based approach may
improve the usability of current data race detectors.

D. Search Space Reduction

The quad tree sample application shows the usefullness of
the static analysis: 12 parallel dependent method pairs have
been found within the 58 methods. However, during dynamic
parallelity analysis, 1,254 parallel running method pairs have
been found. Without the static analysis, all of these would
have to be instrumented for parallel data analysis; but as only

1After dynamic method analysis, we know for which method pairs and
control flow paths we need to generate unit tests. During object state recording,
we can disable recording for each methods after recording appropriate method
calls.

12 method pairs may share common data, we can reduce the
instrumentation overhead to 1% only.

VII. RELATED WORK

Data Race Detectors: In our implementation we used the
dynamic race detector Microsoft CHESS ([1]). Dynamic race
detectors ([8], [9], [10], [11], [12]) monitor the program
execution and look for races at runtime. For this reason they
return few false positives, but they can only identify errors,
when they ocurr. As races ocurr rarely, dynamic detectors have
to be re-run often or for a long time. Another disadvantage is
the slowdown of the program under test resulting from the
runtime analysis.

Static race detectors ([13], [14]) produce large numbers of
false positives. For static tools it is hard to detect data or
control flow dependencies between objects or method pairs.
Also it is hard to identify the parallel execution of methods
correctly.

In [15], G. Szeder defines a framework for the execution
of unit tests for Java programs. A unit test is regarded
successful, if it produces the same output for any possible
thread interleaving. It uses Java Pathfinder [16] as model
checker to verify all possible execution branches.

Parallel Test Case Generators: In [17], A. Nistor et al.
generate parallel unit tests for concurrent usage of public class
methods. However, they don’t generate tests for whole pro-
grams and don’t test multiple class interaction. Additionally,
they don’t use existing race detectors but implement their own
mechanism.

In [18], W. Wong et al. use of reachability graphs to generate
parallel unit tests. The test cases are reduced via four criteria
to priorize them and to sort them topologically. It also uses
the Stubborn Set Method as model checker. It was applied
to small programs but it does not scale to higher degrees of
parallelism and bigger programs.

In [19], T. Katayama et al. map the behaviour of a parallel
program onto to a graph structure containing the control



Program Bank Account Async Queue MT Printing WaitHandle ProgressBar QuadTree BoundedQueue Argument Dependency
LOCs 25 147 20 14 31 520 21 21

Methods 4 19 2 2 5 91 5 3
Threads 8 61 10 2 100 15 6 6

Parallel Methods 4 5 1 3 3 58 5 2
Parallel Methods Pairs 9 30 1 2 6 1258 14 3

Runtime (ms) 47 150 236 6 N/A (GUI) 300 8 7
Runtime (ms) instrumented 1 120 2500 280 10 N/A (GUI) 28000 66 175
Runtime (ms) instrumented 2 830 5200 320 16 N/A (GUI) 57000 360 320

Depth Call Stack 3 4 2 2 4 27 2 2
Heap Objects 1 255 1 1 2 472 24 16

Test Cases Generated 5 17 1 1 3 10 10 3
Data Races 5 17 2 1 2 48 32 3

Data Races Detected 5 17 2 1 2 48 32 3
TABLE I

RUNTIME EVALUATION OF THE PARALLEL TEST GENERATOR IMPLEMENTATION.

flow and explicit thread synchronizations. Via predefined test
criteria this graph is reduced to unit tests.

In [2], Q. Luo et al. use static race detection and employ a
capture-and-replay-technique to detect data races. In contrast
to AutoRT, ConCrash produces unit tests only for program
executions that led to a certain exception.

J.-D. Choi et al. track thread schedules of a parallel program
and are able to replay them ([20]), which enables a determin-
istic execution and facilitates debugging of parallel programs.
DejaVu itself does not use unit tests but could be used to
capture and replay them deterministically.

VIII. CONCLUSION

This is work in progress and we currently work on extending
the automatic test generator presented in this paper. For the
future we motivate a combination of multiple race detectors
at once for two purposes: (1) filtering false positives and (2)
using detectors specialiced on certain error patterns.

In this paper we present AutoRT, a concept for automatic
parallel unit test generation. We use a combination of static
and dynamic program analysis to generate small test cases
as input for current data race detectors. We have found all
110 races in our sample applications using our generated
tests and the data race detector CHESS. We plan to extend
our analysis runtime using dynamic instrumentation: current
instrumentation is never changed during a single program run;
using dynamic instrumentation, we can enable and disable
object state recording deliberately. We will present results of
our test case generator in combination with other data race de-
tectors, such as TachoRace ([9]) and the .NET-implementation
of Helgrind+.

ACKNOWLEDGMENT

The authors would like to thank Filip Dimitrov for his
support during design, implementation and experimentation of
AutoRT.

REFERENCES

[1] S. Q. Madanlal Musuvathi and T. Ball, “Chess: A systematic testing tool
for concurrent software,” Microsoft Research, Tech. Rep., Nov 2007.

[2] Q. Luo, S. Zhang, J. Zhao, and M. Hu, “A lightweight and portable
approach to making concurrent failures reproducible,” in Proceedings
of the 13th international conference on Fundamental Approaches to
Software Engineering. Springer-Verlag, 2010, pp. 323–337.

[3] A. Jannesari, M. Westphal, and W. Tichy, “Dynamic data race detection
for correlated variables,” 11th International Conference on Algorithms
and A. for Parallel Processing, Eds. Melbourne, Australia, 2011.

[4] N. Rinetzky, G. Ramalingam, M. Sagiv, and E. Yahav, “On the com-
plexity of partially-flow-sensitive alias analysis,” ACM Trans. Program.
Lang. Syst., vol. 30, no. 3, pp. 13:1–13:28, May 2008.

[5] G. Naumovich and G. S. Avrunin, “A conservative data flow algorithm
for detecting all pairs of statements that may happen in parallel,” in
Proceedings of the 6th international symposium on Foundations of
software engineering. NY, USA: ACM, 1998, pp. 24–34.

[6] M. Research, “Phoenix academic program,” 2007,
http://research.microsoft.com.

[7] ——, “Cci: Common compiler infrastructure,” 2009,
http://ccimetadata.codeplex.com.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, “Multithreaded
java program test generation,” IBM Systems Journal, vol. 41, pp. 111
–125, 2002.

[9] J. Schimmel and V. Pankratius, “Exploiting cache traffic monitoring
for run-time race detection,” in Euro-Par’11 Proceedings of the 17th
international conference on Parallel processing - Part I, 2011.

[10] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy, “Helgrind+: An
efficient dynamic race detector,” in Proceedings of the 23rd international
Parallel & Distributed Processing Symposium (IPDPS’09). IEEE, 2009.

[11] D. Vyukov, “Relacy race detector,” http://www.1024cores.net.
[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: a dynamic data race detector for multithreaded programs,” ACM
Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997.

[13] Coverity. Coverity prevent.
[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and

R. Stata, “Extended static checking for java,” in Proceedings of the 2002
Conference on Programming language design and implementation, NY,
USA, 2002, pp. 234–245.

[15] G. Szeder, “Unit testing for multi-threaded java programs,” in PADTAD
’09: Proceedings of the 7th Workshop on Parallel and Distributed
Systems: Testing, Analysis, and Debugging. ACM, Jul 2009,.

[16] “Effective generation of test sequences for structural testing of concur-
rent programs,” in Proceedings of the 10th IEEE International Confer-
ence on Engineering of Complex Computer Systems. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 539–548.

[17] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov, “Ballerina:
automatic generation and clustering of efficient random unit tests for
multithreaded code,” in Proceedings of the 2012 International Confer-
ence on Software Engineering, ser. ICSE 2012, 2012, pp. 727–737.

[18] W. Wong, Y. Lei, and X. Ma, “Effective generation of test sequences
for structural testing of concurrent programs,” in Engineering of Com-
plex Computer Systems, 2005. ICECCS 2005. Proceedings. 10th IEEE
International Conference on, june 2005, pp. 539 – 548.

[19] T. Katayama, E. Itoh, Z. Furukawa, and K. Ushijima, “Test-case gener-
ation for concurrent programs with the testing criteria using interaction
sequences,” in Software Engineering Conference, 1999. (APSEC ’99)
Proceedings. Sixth Asia Pacific, 1999, pp. 590 –597.

[20] J.-D. Choi and H. Srinivasan, “Deterministic replay of java multithreaded
applications,” in Proceedings of the SIGMETRICS symposium on Paral-
lel and distributed tools, ser. SPDT ’98. New York, NY, USA: ACM,
1998, pp. 48–59.


