
A Performance Measurement Infrastructure for
Co-Array Fortran

Bernd Mohr1, Luiz DeRose2, and Jeffrey Vetter3

1 Forschungszentrum Jülich, ZAM,
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Abstract. Co-Array Fortran is a parallel programming language for scientific
applications that provides a very intuitive mechanism for communication, and
especially, one-sided communication. Despite the benefits of this integration of
communication primitives with the language, analyzing the performance ofCAF

applications is not straightforward, which is due, in part, to a lack of tools for
analysis of the communication behavior ofCo-Array Fortran applications. In this
paper, we present an extension to theKOJAK toolkit based on a source-to-source
translator that supports performance instrumentation, data collection, trace gener-
ation, and performance visualization ofCo-Array Fortran applications. We illus-
trate this approach with a performance visualization of aCo-ArrayFortran version
of the Halo kernel benchmark using theVAMPIR event trace visualization tool.

1 Introduction

Co-Array Fortran (CAF) [12] extends Fortran 95 providing a simple, explicit notation
for data decomposition, communication, and synchronization, expressed in a natural
Fortran-like syntax. These extensions provide a straightforward and powerful paradigm
for parallel programming of scientific applications based on one-sided communication.
One of the problems thatCAF users face is the lack of tools for analysis of the com-
munication and synchronization behavior of the application. One of the reasons for the
lack of tools is because communication operations inCAF programs are not expressed
through function calls, as inMPI, or via directives that are executed by a run-time li-
brary, as inOpenMP. In contrast,CAF communication operations are integrated into the
language, and, on certain platforms like the Cray X1, they are implemented via remote
memory access instructions provided by the hardware.

For MPI applications, performance data collection is, in general, facilitated by the
existence of theMPI profiling interface (PMPI), which is used by mostMPI tools [14,7,2].
Similarly, performance measurement ofOpenMP applications can be done by instru-
menting the calls to the runtime library [4,1,5]. However, with the challenge ofCAF



communication primitives being integrated into the language, and potentially imple-
mented with special hardware instructions, the instrumentation of these communication
primitives requires a different approach that is not straightforward.

In order to address this problem, we first definedPCAF, an interface specification of
a set of routines intended to monitor all important aspects ofCAF applications. Then, we
extended theOPARI source-to-source instrumentation tool [10] to search forCAF con-
structs and to generate instrumented source code with the appropriatePCAF calls. Fi-
nally, we implemented thePCAF interface for the theKOJAK measurement system [13]
enabling it to traceCAF communication and synchronization instructions. With this ex-
tension, theKOJAK measurement system is able to support performance instrumentation
and performance data collection ofCAF applications, generating trace files that can be
analyzed with theVAMPIR event trace visualization tool [11]. In this paper, we describe
our approach for performance measurement and analysis ofCAF applications.

The remainder of this paper is organized as follows. In Section2, we present an
overview ofCo-Array Fortran. In Section3, we briefly describe theKOJAK performance
measurement and analysis environment. In Section4, we describe our approach for per-
formance instrumentation and measurement ofCo-Array Fortran applications. In Sec-
tion 5, we discuss performance visualization with an example using the Halo kernel
benchmark code. Finally, we present our conclusions in Section6.

2 An Overview of Co-Array Fortran

Co-array Fortran [12] is a parallel programming language extension to Fortran 95. At
the highest level,CAF uses a Single Program Multiple Data (SPMD) model to allow
multiple copies (images) of a program to execute asynchronously. Each image contains
its own private set of data objects. When data objects are distributed across multiple
images, the array syntax ofCAF uses an additional trailing subscript in square brackets
to allow explicit access to remote data (as shown in Figures2 and4), and it is referred
to as theco-dimension. Data references that do not use these square brackets are strictly
local accesses.TheCAF compiler translates these remote data accesses into underlying
communication mechanisms for each target system.CAF also includes intrinsic routines
to synchronize images, to return the number of images, and to return the index of the
current image. Besides functions for delimiting a critical region,CAF provides four
different forms of a barrier synchronization:

SYNC ALL(): a global barrier where every image waits for every other image.
SYNC ALL( <wait list>): a global barrier where every image waits only for the listed

images.
SYNC TEAM( <team>): a barrier where a team of images wait for every other team

member.
SYNC TEAM( <team>, <wait list>): a barrier where a team of images wait for a

subgroup of the team members.

CAF was originally developed on the Cray-T3D, and, as such, it is very efficient
on platforms that support one-sided messaging and fast barrier operations. On systems
with globally addressable memory, such as the Cray X1 or the SGI Altix 3700, these



mechanisms may be as simple as load and store memory references. By contrast, on dis-
tributed memory systems that do not support efficient Remote Direct Memory Access
(RDMA), these mechanisms can be implemented inMPI.

3 The KOJAK Measurement System

The KOJAK performance-analysis tool environment provides a complete tracing-based
solution for automatic performance analysis ofMPI, OpenMP, or hybrid applications
running on parallel computers.KOJAK describes performance problems using a high
level of abstraction in terms of execution patterns that result from an inefficient use
of the underlying programming model(s).KOJAK’s overall architecture is depicted in
Figure1. Tasks and components are represented as rectangles and their inputs and out-
puts are represented as boxes with rounded corners. The arrows illustrate the whole
performance-analysis process from instrumentation to result presentation.

executable

user program instrumented
user program

EPILOG
library

PAPI
library

EPILOG
event trace analysis result

VTF3
event trace

compiler / linker

OPARI / TAU
instrumentation

run

EXPERT
pattern search

CUBE
visualizer

VAMPIR
trace visualizertrace conversion

manual analysis

automatic analysis

 semi-automatic instrumentation

PMPI / POMP/ PCAF
libraries

Fig. 1. KOJAK OVERALL ARCHITECTURE.

TheKOJAK analysis process is composed of two parts: a semi-automatic multi-level
instrumentation of the user application followed by an automatic analysis of the gener-
ated performance data. The first part is considered semi-automatic because it requires
the user to slightly modify the makefile.

To begin the process, the user supplies the application’s source code, written in
eitherC, C++, or Fortran, toOPARI, which is a source-to-source translation tool. OPARI

performs automatic instrumentation ofOpenMP constructs and redirection ofOpenMP-
library calls to instrumented wrapper functions on the source-code level based on the
POMP OpenMP monitoringAPI [9]. In Section4.2, we describe how we extendedOPARI

for instrumentation ofCAF programs with the appropriatePCAF calls.



Instrumentation of user functions is done either during compilation by a compiler-
supplied instrumentation interface or on the source-code level usingTAU [2]. TAU is
able to automatically instrument the source code of C, C++, and Fortran programs using
a preprocessor based on thePDT toolkit [8].

Instrumentation forMPI events is accomplished with a wrapper library based on
the PMPI profiling interface. AllMPI, OpenMP, CAF and user-function instrumentation
calls theEPILOG run-time library, which provides mechanisms for buffering and trace-
file creation. The application can also be linked to thePAPI library [3] for collection
of hardware counter metrics as part of the trace file. At the end of the instrumentation
process, the user has a fully instrumented executable.

Running this executable generates a trace file in theEPILOG format. After program
termination, the trace file is fed into theEXPERTanalyzer. (See [13] for details of the au-
tomatic analysis, which is outside of the scope of this paper.) In addition, the automatic
analysis can be combined with a manual analysis usingVAMPIR [11], which allows the
user to investigate the patterns identified byEXPERT in a time-line display via a utility
that converts theEPILOG trace file into theVAMPIR VTF3 format.

4 Performance Instrumentation and Measurement Approach

In this section, we describe the event model that we use to describe the behavior ofCAF

applications, and the approach we take to instrumentCAF programs and to collect the
necessary measurement data.

4.1 An Event Model of CAF

KOJAK uses an event-based approach to analyze parallel programs. A stream or trace
of events allow to describe the dynamic behavior of an application over time. If nec-
essary, execution statistics can be calculated from that trace. The events represent all
the important points in the execution of the program. OurCAF event model is based on
KOJAK’s basic model for one-sided communication [6]. We extendedKOJAK’s existing
set of events, which cover describing the begin and end of user functions andMPI and
OpenMP related activities, with the following events for representing the execution of
CAF programs:

– Begin and end ofCAF synchronization primitives
– Begin and end of remote read and write operations

For each of these events, we collect a time stamp and location. ForCAF synchro-
nization functions, we also record which function was entered or exited. For the barrier
routines we also collect the group of images which participate in the barrier and the
group of images waited for, if applicable. Finally, for reads and writes, we collect the
amount of data which is transferred (i.e., the number of array elements) as well as the
source or destination of the transfer.

The event model is also the basis for the instrumentation and measurement. The
events and their attributes specify which elements ofCAF programs need to be instru-
mented and which data has to be collected.



4.2 Performance Instrumentation

Instrumentation ofCAF programs can be done on either of two levels depending on
how CAF is implemented on a specific computing platform. On systems whereCAF

constructs andAPI calls are translated into calls to a run-time library, these calls could
easily be instrumented by traditional techniques (e.g., linking a pre-instrumented run-
time library or instrumenting the calls with a binary instrumentation tool). However,
for systems like the Cray X1, where theCAF communication is executed via hardware
instructions, this approach is not possible. Therefore, we extendedOPARI, KOJAK’s
source-to-source translation tool, to also locate and instrument allCAF constructs of a
program.

As Fortran is line-oriented, it is possible forOPARI to read a program line by line.
Of course, it is also necessary to take continuation lines into account. Then, each line
is scanned for occurrences ofCAF constructs and synchronization calls (but ignoring
comments and contents of strings). CAF constructs can be located by looking for pairs
of brackets ([...]). The first word of the statement determines whether it is a declaration
line or a statement containing a remote read or write operation. ForCAF declarations,
OPARI collects attributes like array dimensions, and lower and upper bounds for later
use.

The handling of statements containing remote memory operations is more complex.
First, all operations are located in the line. If it is an assignment statement and the
operation appears before the assignment operator, it is a write operation. In all other
cases it is a read.OPARI determines whichCAF array is referenced by the operation, the
number of elements transferred (by parsing the index specification), and the source or
destination of the transfer (determined by the expression inside the brackets). Simple
assignment statements containing a single remote memory operation are instrumented
by inserting calls to the correspondingPCAF monitoring functions before and after the
statement, which get passed in the attributes determined byOPARI. In case of more
complex statements where a remote memory operation cannot be easily separated out
and wrapped by the measurement calls, or when it is necessary to keep instrumentation
overhead low,OPARI uses the single call version of thePCAF remote memory access
monitoring functions (instead of separate begin and end calls) and inserts them either
before (for reads) or after (for writes) the statement for each identified remote memory
access operation.

Finally, OPARI scans the line for calls toCAF synchronization routines, and replaces
them by calls toPCAF wrapper functions that will execute the original call in addition
to collecting all important attributes.

Figure2(b) shows the instrumented source code generated for the example in Fig-
ure 2(a). In this example, there is a two-dimensional arrayA, which is distributed on
all processors. In theCAF statementA(me,::2)[left] = me , each processor up-
dates the odd entries of the row corresponding to its image in the left neighbor array
with its index, and then waits on a barrier. OPARI identifies theCAF statement, and adds
a begin and end instrumentation event. The call to indicate the beginning of the event
contains the destination of the write (normalized to the range 0 tonum images()-1 )
and the number of array elements being transferred; the end call only gets passed the



integer :: me, num, left integer :: me, num, left
integer :: A(1024,1024)[*] integer :: A(1024,1024)[*]
. . . . . .
me = this image() me = this image()
num = numimages() num = num images()
left = me - 1 left = me - 1
if ( left < 1 ) left = num if ( left < 1 ) left = num

call PCAF rma write begin(-1+left, &
1 * max((ubound(A,2)- &

lbound(A,2)+2)/2,0))
A(me,::2)[left] = me A(me,::2)[left] = me

call PCAF rma write end(-1+left)
call sync all() call PCAFsync all ()

(a) (b)

Fig. 2. (a) Example of aCAF source code and (b)OPARI instrumented version

destination. The barrier call (sync all ) is translated into a call of the corresponding
wrapperfunction.

4.3 Performance Measurement

Finally, theKOJAK measurement system was extended by implementing the necessary
PCAF monitoring functions and wrapper routines and adding support for the handling
of the new remote memory access event types. We chose to implement our approach
within the KOJAK framework, asKOJAK is very portable and supports all majorHPC

computing platforms. Also, this way, we could re-use many ofKOJAK’s features like
event trace buffer management, generation, and conversion. Finally, it allows us not
only to analyze plainCAF applications but also hybrid programs using any combination
of MPI, OpenMP, andCAF. A separate, new instrumentor just forCAF would probably
be problematic in this respect, as the modifications done by two independent source-to-
source preprocessors could conflict.

The PCAF interface is shown in Figure3. Since this monitoring API is open, and
OPARI is a stand-alone tool, other performance analysis projects could use this infras-
tructure to also supportCAF. For example, it would be very easy to implement a version
of the PCAF monitoring library which (instead of tracing) just collects basic statistics
(number ofRMA transfers, amount of data transferred) for each participating image.
Ideally, in the future,CAF compilers could support this interface directly.

5 Performance Visualization

For illustration of our performance analysis approach, we ran the Halo kernel bench-
mark on the Cray X1 system at the Oak Ridge National Laboratory, using 16 and 64
processors. The Halo benchmark simulates a halo border exchange with the four differ-
ent synchronization methodsCAF provides (see Section2). The exchange procedure is



Remote Memory Access Monitoring Routines
SUBROUTINE PCAFrma write begin(dest, nelem)
SUBROUTINE PCAFrma write end(dest)
SUBROUTINE PCAFrma write(dest, nelem)
SUBROUTINE PCAFrma read begin(src, nelem)
SUBROUTINE PCAFrma read end(src)
SUBROUTINE PCAFrma read(src, nelem)

where INTEGER, INTENT(IN) :: dest, src, nelem

CAF Synchronization Wrapper Routines
SUBROUTINE PCAFsync all()
SUBROUTINE PCAFsync all(wait)
SUBROUTINE PCAFsync team(team)
SUBROUTINE PCAFsync team(team, wait)
SUBROUTINE PCAFsync file(unit)
SUBROUTINE PCAFsync memory()
SUBROUTINE PCAFstart critical()
SUBROUTINE PCAFend critical()

where INTEGER, INTENT(IN) :: unit
INTEGER, INTENT(IN) :: wait(:), team(:)

Fig. 3. PCAF Measurement Function Interface Specification

outlined in Figure4. During each iteration, the following events from our event model
occur:S2 a synchronization call;S3 a remote read ofn elements from the north neigh-
bor; S4 a remote read of2n elements from the south neighbor;S5 a synchronization
call; S7 another synchronization call;S8 a remote read ofn elements from the west
neighbor;S9 a remote read of2n elements from the east neighbor; and finallyS10
a synchronization call. For each synchronization method, this procedure is repeated 5
times per iteration, with 10 iterations being executed withn varying from 2 to 1024 in
powers of 2.

S1 HINS(1:3*n) = HOEW(1:3*n)
S2 CALL synchronization method
S3 HONS(1:n) = HINS(1:n)[MYPEN]
S4 HONS(n+1:3*n) = HINS(n+1:3*n)[MYPES]
S5 CALL synchronization method
S6 HIEW(1:3*n) = HONS(1:3*n)
S7 CALL synchronization method
S8 HOEW(1:n) = HIEW(1:n)[MYPEW]
S9 HOEW(n+1:3*n) = HIEW(n+1:3*n)[MYPEE]
S10 CALL synchronization method

Fig. 4.Pseudo-code for the halo exchange procedure



syncall syncall(wait) syncteam syncteam(wait)

(a) Complete program

(b) One exchange usingsync all

(c) One exchange usingsync team(wait)

Fig. 5.Timeline views of the Halo benchmark using 16 processors



Figure5 (a) shows the timeline view of the Halo benchmark running with 16 pro-
cessors. The four phases of the code (marked with white lines in the figure) can easily
be identified due to the different communication behavior of each of the synchroniza-
tion methods. The communication pattern between processors, as well as the amount
of data exchanged, can be observed with the pair-wise communication statistics view,
shown in Figure6 (left).

Figure 5 (b) and Figure5 (c) show a section of the timeline corresponding to a
full exchange (one call to the subroutine outlined in Figure4) for sync all and
sync team(wait) synchronization methods respectively. We observe that the re-
gion corresponding to thesync team(wait) synchronization method is much more
irregular (unsynchronized) than the one for thesync all , where the waiting times are
longer, due to the global synchronization.

(16 processor run) (64 processor run)

Fig. 6. Message statistics view of the Halo benchmark using 16 processors (left) and
Summary Chart View of Function times running on 16 and 64 processors (right)

Finally, on Figure6 (right), we observe the time spent on each synchronization
method for the 16 and 64 processors runs respectively. We notice that with the increase
of number of processors, thesync team(wait) method performs significantly bet-
ter than thesync all method, going from about 10% faster with 16 processors to
about 30% faster with 64 processors.

6 Conclusion

The CAF parallel programming language extends Fortran 95 providing a simple tech-
nique for accessing and managing distributed data objects. This language-level abstrac-
tion hides much of the complexity of managing communication, but, unfortunately, this
also makes diagnosing performance problems much more difficult. In this paper, we
have proposed one approach to solve this problem. Our solution uses a source-to-source
translator to allow performance instrumentation, data collection, trace generation, and
performance visualization ofCo-Array Fortran applications implemented as an exten-
sion of theKOJAK performance analysis toolset. We illustrated this approach with per-
formance visualization of aCo-Array Fortran version of the Halo kernel benchmark



using theVAMPIR event trace visualization tool. Our initial results are promising; we
can obtain statistical quantification and graphical presentation ofCAF communication
and synchronization characteristics. We will extendKOJAK’s automated analysis to also
coverCAF constructs and determine the benefits of this approach for real applications.
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