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Abstract

EARL is a high-level interface for accessingEPILOG event traces and can be used to write
advanced trace-analysis software.EARL provides random access to single events and computes
the execution state at the time of a given event as well as links between pairs of related events.
EARL is implemented in C++ and offers a C++ and a Python class interface. This document
describes the abstractions in terms of which the event traceis represented inEARL and how to
efficiently access them using the C++ or Python API.
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1 Introduction

An event trace is a chronologically sorted sequence of runtime events recorded during program
execution that can be used to analyze program behavior. In the KOJAK performance-analysis envi-
ronment [5, 6], event traces are used to identify patterns ofinefficient execution.

KOJAK stores the event traces generated at runtime in theEPILOG binary trace-data format [7].
EPILOG traces consist of definition records and time-stamped eventrecords. Event records describe
the dynamic program behavior and reference objects that aredefined in definition records. By letting
event records store only references to those objects, tracefile size can be reduced since an object,
such as a region, is referenced many times.

To simplify the development of advanced trace-analysis software, KOJAK providesEARL (Event
Analysis and Recognition Library), a high-level interfacefor accessing and processingEPILOG

event traces.EARL offers the following functionality:

� Random access to single events

� Access to the execution state at the time of a given event

� Links between pairs of related events

� Various statistical functions

EARL can be used for a large variety of trace-analysis tasks. The main purpose ofEARL within
KOJAK is to simplify the specification of execution patterns representing performance problems
within the EXPERT analyzer [8] and, thus, to allow an easy extension and customization of the
pattern base used in the analysis process. The first prototype of EARL was completed in 1998 as
part of a master’s thesis [4].

Section 2 introduces the abstractions in terms of which an event trace is presented to the user.EARL

is implemented in C++ and offers a C++ and a Python class interface. The Python interface’s main
advantage is the ability to useEARL interactively, which is useful especially for those unfamiliar
with the abstractions it provides. Section 3 explains how touse the C++API and gives a small code
example. After that, Section 4 presents the internal buffermechanisms that support efficient random
access and tells how to configure them for maximum efficiency.Finally, Section 5 briefly describes
the Python binding and how it differs from the C++ binding.

Important: This version ofEARL supportsEPILOG version 1.1, which is included inKOJAK version
2.0b. Please see theEPILOG 1.1 specification$(PREFIX)/doc/epilog.ps1 for details.

2 Data Model

EARL is based on a simple object-oriented data model, whose simplicity is derived from the fact that
all higher-level abstractions, such as execution states and links between related events, are expressed
in terms of event sets or event references, thus never leaving the familiar notion of an event.

1$(PREFIX) is theKOJAK installation directory.
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2.1 Abstractions

An event traceis a chronologically sorted sequence of events representing one program run of an
MPI, OpenMP, or hybrid application. The event trace offers random access to its events including the
execution state at the time of a given event, as well as information on program and system resources
involved in the program execution, such as source-code regions and processes.

The central abstraction inEARL is anevent. Every event has a type, a time stamp, and a location,
which answers the questions what happened, when it happened, and where it happened, respectively.
In addition, an event may provide type-specific attributes including links to related events.
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Figure 1: A parallel computer withSMP nodes.

The program resources represented in an event trace includefiles, regions, and call sites. Afile is
simply string containing a file name. Aregion is a source-code section that can represent a function,
a loop, anOpenMP construct, or an arbitrary user-defined section. Acall site is a source-code
location where the control flow moves from one region to another. Although it is called “call site”,
it does not need to be involved in a function call. InEARL, a loop entry can also be a call site
because the control flow moves from the enclosing region to the the loop.

The system resources associated with an event trace form a hierarchy consisting of machines, nodes,
processes, and threads.Machinescan be made up of multiple (potentiallySMP) nodes. Each node
can host multipleprocesses, which in turn can spawn multiplethreads. This model mirrors one
or more parallel computers withSMP nodes (Figure 1) and can also accommodate more traditional
non-SMP, single-SMP, or simple desktop architectures. An eventlocation is a tuple consisting of a
machine, a node, a process, and a thread. A location is basically a thread that includes information
on the process, the node, and the machine it is associated with. A single-threaded process always
has one explicit thread because inEARL the thread level is mandatory. AnMPI communicatoris
a special type of resource referenced byMPI communication events and is modeled as a group of
processes.

Also, some events may store the values of certain systemmetrics, such as the number of floating
point operations executed. A metric may represent the countof event occurrences (e.g., from a
hardware counter) across an interval, an occurrence rate measured across an interval, or the current
value of a metric, such as the current memory utilization.
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Figure 2: Hierarchy of event types.

2.2 Event Model

The event model is defined by a hierarchy of abstract and concrete event types, which is shown in
Figure 2 usingUML notation [1]. Abstract event types do not appear in the eventtrace, they are
used only to isolate commonalities in the model. In the figure, abstract event types have been distin-
guished by writing the type names in italics. The arrows illustrate an inheritance relationship with
respect to the type attributes, that is, an event type inherits all attributes from its ancestors. Hatched
boxes representMPI-specific types, whereas spotted boxes representOpenMP-specific types. Table 1
explains the semantics of the event types and attributes.

In addition to the attributes listed in Table 1,REGIONevents may also carry values of system metrics,
such as hardware counters. If the event trace defines metrics, everyFLOW event is required to carry
one value for each system metric defined in the trace.

To be able to interpret the records contained in anEPILOG event trace,EARL relies on the following
validity constraints, which are already part of theEPILOG specification, but which are repeated here
for clarity:

� The regions must be left in the opposite order they are entered. That is, the region that has
been entered last must be left first.

� FORK and JOIN events are only generated by the master thread. TheFORK event before
entering and theJOIN event after leaving the parallel region.

� A SEND event must always appear before its correspondingRECV event.

� In hybrid MPI/OpenMP applications,SEND andRECV events are only allowed to be generated
by the master thread.
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Table 1: Event types and attributes.

Event Type Description
EVENT (abstract) general event
FLOW (abstract) change of control flow
ENTER entering a region
EXIT leaving a region
MPI

MPICEXIT leaving anMPI collective communication operation including a barrier
P2P (abstract)MPI point-to-point communication
SEND sending a message
RECV receiving a message
OpenMP

TEAM (abstract) change of parallelism
FORK starting a parallel region
JOIN terminating a parallel region
SYNC (abstract) lock synchronization
ALOCK lock acquisition
RLOCK lock release

Attribute Description
cedgeptr least recentENTER event visiting the parent call path
cnodeptr least recentENTER event visiting the same call path
csite call site
enterptr ENTER event of the enclosing region instance
loc location
pos relative position (1-n) within the event trace
reg region
time time stamp
type event type
MPI

com communicator associated with a communication operation
dest destination location of a message
length message length
recvd bytes received during a collective operation
root root location of anMPI collective operation
sendptr SEND event to a givenRECV event
sent bytes sent during a collective operation
src source location of a message
tag message tag
OpenMP

f orkptr FORK event to a givenJOIN event
lock id identifier of the lock object used for synchronization
lockptr SYNC event that performed the last change of a lock’s ownership status
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2.3 Higher-Level Abstractions

To simplify the development of trace-analysis tools,EARL provides the following higher-level ab-
stractions that are useful to easily identify related events:

� Pointer attributes

� Execution states

Pointer attributes, the first class of higher level abstractions, are event attributes that refer to another
related event. For example, the attributesendptrpoints from aRECV event to the corresponding
SEND event. In Figure 2, pointer attributes are printed in bold face. They can be identified in
Table 1 by a name ending in “ptr”.

The second class of higher-level abstractions reflects different aspects of the program’s overall ex-
ecution state. The overall execution state consists of a setof (component) states, each of which
represents one aspect of the overall state, such as the call stack or the message queue.EARL models
each component state as a set of events. These sets are stepwise transformed by the sequence of
events making up the trace file. That is, an event causes a state transition altering the event set
representing the component state by either removing elements and/or adding itself to the set. Thus,
for every component state, an event trace defines astate sequence. The initial state is always the
empty set. Transition rules define how a state is transformedby an event into its successor state.

For example,EARL maintains a region (call) stack for every location. The initial stack is empty.
Whenever anENTER event occurs, it is added to the stack, and whenever anEXIT event occurs,
the correspondingENTER event is removed from the stack. Note that the state set derives its stack
structure from the implicit ordering of events. For more information on the underlying theory please
refer to [5]. EARL provides the following state information:

� One region stack per location that remembers allENTER events of active region instances at
a location.

� One inherited region stack per location that remembers allENTER events of active region in-
stances at a given location. If the location represents a slave thread,EARL adds the (inherited)
region stack of the corresponding master at the time when theprocess starts multi-threaded
execution (i.e., the time of the precedingFORK event). This is needed to track the stack of a
slave all the way up to the main function even if it was createdsomewhere in the middle of
execution.

� One message queue per location pair (src, dest) that remembers allSEND events of messages
currently being transferred fromsrc to dest. According to the restriction thatMPI statements
are only allowed to be executed by the master thread, there are message queues only for
source and destination locations that represent master threads.

� All MPICEXIT events belonging to the same instance of anMPI collective communication
operation including a barrier that has just been completed.

� All OMPCEXIT events belonging to the same instance of an OpenMP parallel construct that
has just been completed.

� The call tree encoded as the set ofENTER events having visited a certain call path for the first
time.
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3 C++ API

Before using the C++API, you need to include<earl.h> in your source code, which will be located
in the following directory after installingKOJAK:

$(PREFIX)/include/earl

To generate an executableEARL application, you also need to link against theEARL and theEPILOG

base library:

-L$(PREFIX)/lib -learl -lelg.base

3.1 class EventTrace

This class provides random access to all events in the trace file including the execution state at the
time of a given event.EARL includes buffer mechanisms to minimize the number of file accesses
and to make unavoidable file accesses faster when retrievinga particular event.

The class also provides information on program and system resources involved in the program
execution. Program and system resources consist of regions, call sites, machines, (SMP) nodes,
processes and threads,MPI communicators, and metrics. Except for nodes and threads, all resources
have a unique identifier between zero andn� 1, with n being the total number of resources of each
type defined in the trace. The identifier of nodes and threads is also a number between zero and
n� 1, but it is local to the machine or process it belongs to andn would be the number per machine
or process. A location is a tuple (machine, node, process, thread). There is one location per thread,
that is, a location represents a thread and also includes theupper-level system resources the thread
belongs to. Locations have unique global identifiers from zero ton� 1, wheren is the total number
of locations (i.e., threads).

Events are assigned a relativepositionfrom 1 ton. Execution states can refer to any event position
plus zero, which corresponds to the initial state.

Methods that take an identifier in order to return the corresponding object will throw an exception
of typeRuntimeError if no such identifier exists.

3.1.1 Constructor

EventTrace(std::string path);

Creates an event-trace object from anEPILOG trace file, whose path name is supplied as
argument.

3.1.2 Methods to access program and system resources

long get nfiles() const;

Returns the total number of source-code files.

std::string get file(long file id) const;
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Returns the name of the file with identifierfile id.

long get nregs() const;

Returns the total number of code regions.

Region* get reg(long reg id) const;

Returns the region with identifierreg id.

long get ncsites() const;

Returns the total number of call sites.

Callsite* get csite(long csite id) const;

Returns the call site with identifiercsite id.

long get nmachs() const;

Returns the total number of machines.

Machine* get mach(long mach id) const;

Returns the machine with identifiermach id.

long get nnodes() const;

Returns the total number of (SMP) nodes across all machines.

Node* get node(long mach id, long node id) const;

Returns the (SMP) node with machine-specific identifiernode id belonging to machine
mach id.

long get nprocs() const;

Returns the total number of processes used during execution.

Process* get proc(long proc id) const;

Returns the process with identifierproc id.

long get nthrds() const;

Returns the total number of threads across all processes used during execution.

Thread* get thrd(long proc id, long thrd id) const;

Returns the thread with process-specific identifierthrd id belonging to processproc id.

Location* get loc(long loc id) const;

Returns the location with identifierloc id.

long get ncoms() const;

Returns the total number ofMPI communicators.

Communicator* get com(long com id) const;

Returns theMPI communicator with identifiercom id.

long get nmets() const;

Returns the number of metrics defined in the trace.

Metric* get met(long met id) const;

Returns the metric with identifiermet id.
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3.1.3 Methods to access events

long get nevents() const;

Returns the total number of events in the trace (i.e., the number of event positions).

Event event(long pos);

Returns the event at positionpos. Note that the event object is not returned as a pointer
because it is a smart object containing only a reference. (See section on classEvent for more
details.)

3.1.4 Methods to query the execution state

All methods to query the execution state have an output parameter of typestd::vector<Event>&
which returns a list of events in ascending chronological order. The list reflects the state at the
moment immediately after the event at positionpos took place. The input parameterpos can be any
number between zero and the total number of events. If zero isspecified, the methods will return
the initial state, which is always empty.

void stack(std::vector<Event>& out, long pos, long loc id);

Returns inout all ENTER events belonging to active region instances at locationloc id,
which corresponds to the (region) call stack at this location.

void istack(std::vector<Event>& out, long pos, long loc id);

Returns inout the result ofstack() if loc id is a master thread. Ifloc id is a slave thread,
istack() adds (i.e., inherits) the stack of the master at the time whenthe process starts
multi-threaded execution (i.e., the time of the precedingFORK event).

void queue(std::vector<Event>& out, long pos,
long src id = -1, long dest id = -1);

Returns inout all SEND events of messages currently in transit from locationsrc id to
locationdest id. Specifying-1 for one of the end points is interpreted as from any or to any
location.

void mpicoll(std::vector<Event>& out, long pos);

Returns inout all mpicexit events belonging to an instance of aMPICEXIT collective com-
munication operation or a barrier that has been completed bythe event at positionpos. If the
event at this position did not complete such an operation,out is left empty.

void ompcoll(std::vector<Event>& out, long pos);

Returns inout all ompcexit events belonging to an instance of aOpenMP parallel construct
or a barrier that has been completed by the event at positionpos. If the event at this position
did not complete such an operation,out is left empty.
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3.1.5 Methods to query the call tree

Similar to the call stack, the call tree is also considered asan aspect of the execution state. The
call tree is empty at the beginning and evolves as execution progresses. The results returned by the
methods taking a position parameter do not reflect any portions of the trace following the event at
the specified position. Specifying-1 as the position is equivalent to specifying the last position.
Only methods that do not need a position parameter automatically reflect the entire trace. Note that
those methods may requireEARL to read the entire trace file.

The call tree is modeled as the set ofENTER events that visit a call path the first time during the
entire run regardless of the location. That is, there is onlyone call tree for all locations. A call-tree
node is anENTER event which is part of the call tree. The call tree may have multiple roots, for
example, if a parallel program was started using multiple different executables. Note that the call
tree consists of a subset of allENTER events. The functions listed below that require a parameter
namedcnode, expect the position of anENTER event that is part of this subset.

Thecnodeptrattribute of anENTER event points to theENTER event that visited the current call-tree
node the fist time. Thus, a member of the call tree can be easilyidentified by acnodeptrattribute
pointing to itself. While thecnodeptrattribute points to the current node, thecedgeptrattribute
points to the parent node.

void calltree(std::vector<Event>& out, long pos = -1);

Returns inout all ENTER events belonging to the call tree.

void ctroots(std::vector<Event>& out, long pos = -1);

Returns inout all ENTER events representing roots of the call tree.

void callpath(std::vector<Event>& out, long cnode);

Returns inout the sequence of call-tree nodes (i.e.,ENTER events) from the root to the node
with positioncnode.

void ctchildren(std::vector<Event>& out, long cnode);

Returns inout the child nodes (i.e.,ENTER events) of the node with positioncnode.

long ctvisits(long cnode);

Returns the number of times the call-tree node with positioncnode was visited.

long ctsize(long pos = -1);

Returns the size of the call tree as the number of events that would be returned by
calltree().

3.2 class Event

This class represents an event and provides methods to access event attributes. The class covers all
event types, and there are no subclasses accessible to the user. Trying to access an attribute that
this not defined for the type of a particular event will resultin NULL being returned if the attribute
value is supposed to be an object,-1 if it is supposed to be an integer number, or a null event (i.e.,
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an event with an empty reference) if it is supposed to be an event. Which attributes are defined for
which event type can be seen in Figure 2.

From the programmer’s viewpoint, the type of an event has tworepresentations: a string represen-
tation and an enumeration type representationetype. The former one uses a string identical to the
type name used in Figure 2 (e.g.,‘‘ENTER’’). The latter use an enumeration constant whose name
is identical to the string constant (e.g.,ENTER).

To minimize the runtime and storage overhead of copying, instances of this class maintain only a
reference to the actual object representation, which itself includes a reference counter to control its
life cycle. The behavior of all methods is defined as long as the EventTrace object from where
the event was retrieved exists. An event without a valid reference to an event object is called anull
event. To check whether an event is a null event, use the null() method.

3.2.1 Event attributes

long get pos() const;

Returns the relative position of the event.

Location* get loc() const;

Returns the location of the event.

double get time() const;

Returns the time stamp of the event.

etype get type() const;

Returns the event type’s enumeration type representation.

std::string get typestr() const;

Returns the event type’s string representation.

bool is type(etype type) const;

Returns true if the event type is the same as or a subtype of theone supplied as argument and
false otherwise.

Region* get reg() const;

Returns the region entered or left orNULL if the event has no region attribute.

Callsite* get csite() const;

Returns the call site of anENTER event. Since the call site attribute is optional forENTER

events, anENTER event may also returnNULL. If the event is noENTER event, this method
returnsnull.

Location* get src() const;

Returns the sender’s location of a message.

Location* get dest() const;
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Returns the receiver’s location of a message.

Communicator* get com() const;

Returns the communicator of anMPI communication operation.

long get tag() const;

Returns the message tag.

long get length() const;

Returns the message length in bytes.

Location* get root() const;

Returns the root location of anMPI collective communication operation.

long get sent() const;

Returns the number of bytes sent during anMPI collective communication operation.

long get recvd() const;

Returns the number of bytes received during anMPI collective communication operation.

long get lock id() const;

Returns the lock identifier of theOpenMP lock accessed by the event. Please note that the
identifier is only used to distinguish between different locks. There are actually no lock
objects inEARL. Also note that lock identifier do not need to be unique acrossdifferent
processes.

long get nmets() const;

Returns the number of metrics carried by the event. The return value will be either zero or
equal to the total number of metrics.

std::string get metname(long i) const;

Returns the name of metric with identifieri. If this metric is not defined, aRuntimeError
exception is thrown.

double get metval(long i) const;

Returns the value for metric with identifieri. If this metric is not defined, aRuntimeError
exception is thrown.

3.2.2 Pointer attributes

Event get enterptr() const;

Returns theENTER event of the currently active region instance. In the case ofanEXIT event,
this is the correspondingENTER event. If there is no enclosing region instance, a null eventis
returned.

Event get cnodeptr() const;
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Returns theENTER event that has visited the current call path the first time regardless of the
location. The event returned represents the call-tree nodecurrently visited.

Event get cedgeptr() const;

Returns theENTER event that has visited the parent call path the first time across all locations.
The event returned represents the parent node of call-tree node currently visited. If there is
no parent node, a null event is returned. You can use the null() method to check whether the
event returned is a null event.

Event get sendptr() const;

Returns theSEND event of the message received by aRECV event.

Event get lockptr() const;

Returns theSYNC event that accessed the sameOpenMP lock object immediately before the
current event. If the lock was never accessed before, a null event is returned. You can use the
null() method to check whether the event returned is a null event.

Event get forkptr() const;

Returns theFORK event generated at the beginning of a parallel region closedby aJOIN event.

3.2.3 Miscellaneous

bool null() const;

Returns true if the event object is a null event (i.e., does not point to a valid event representa-
tion) and otherwise false.

Also, the class supports comparison operators==, !=, <, >, <=, and=> that compare events based on
their position, which means they only provide meaningful results when applied to events from the
same trace, since the position is only comparable across thesame event trace.

3.3 class Region

This class represents a source-code region. A region is characterized by a name, a file where it is
defined, begin and end line numbers, a description, and its region type.

long get id() const;

Returns the region identifier.

std::string get name() const;

Returns the region name.

std::string get file() const

Returns the name of the file where the region is defined. If thisinformation is not available,
"UNKNOWN" is returned.

long get begln() const;
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Returns the begin line number. If the this information is notavailable,-1 is returned.

long get endln() const;

Returns the end line number. If the this information is not available,-1 is returned.

std::string get descr() const;

Returns the region description.

std::string get rtype() const;

Returns the region type, which can be one of the following strings:

"FUNCTION"

"LOOP"

"USER REGION" (user defined region)

"OMP PARALLEL"

"OMP LOOP" (for/do construct)

"OMP SECTIONS" (sections construct)

"OMP SECTION" (individual section inside a sections construct)

"OMP WORKSHARE"

"OMP SINGLE"

"OMP MASTER"

"OMP CRITICAL"

"OMP ATOMIC"

"OMP BARRIER"

"OMP IBARRIER" (implicit barrier)

"OMP FLUSH"

"OMP CRITICAL SBLOCK" (body of critical construct)

"OMP SINGLE SBLOCK" (body of single construct)

"UNKNOWN"

3.4 class Callsite

A call site is a line within a file where the control flow can movefrom one region to another.

long get id() const;

Returns the call-site identifier.

std::string get file() const;

Returns the name of the file.

long get line() const;

Returns the line number.

Region* get callee() const;

Returns the region to which the control flow can move from the current region.
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3.5 class Metric

A metric has a name and a description. It can represent an event count, an event rate, or a sample
value. An event count or rate always refers to a measurement interval, whereas a sample refers
to a distinct point in time. Although for simplicityEARL returns every metric as a double,EARL

indicates whether the value is meant to be an integer or a floating-point value. If the metric values
refer to an interval,EARL indicates how the interval is computed. Please also read thesection on
performance metrics in theEPILOG specification.

long get id() const;

Returns the metric identifier.

std::string get name() const;

Returns the metric name. Note theEPILOG specifies predefined names for common hardware
counters. Please refer to theEPILOG specification for details.

std::string get descr() const;

Returns the metric description.

std::string get type() const;

Tells whether the metric is an integer or a floating-point number by returning one of the
following string constants:

"INTEGER"

"FLOAT"

std::string get mode() const;

Tells whether the metric represents an event count, an eventrate, or a sample by returning one
of the following string constants:

"COUNTER"

"RATE"

"SAMPLE"

std::string get ival() const;

If the metric represents an event count or rate, this method tells which interval the values refer
to by returning one of the following string constants.

"START": interval since start of measurement on a location

"LAST": interval since last measurement on a location

"NEXT": interval to next measurement on a location

If the metric represents a sample,"NONE" is returned.

Important: Note that theEPILOG library version 1.1 only generates metric information of type
"COUNTER"/"INTEGER" measured from"START".
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3.6 class Location

A location is a tuple consisting of a machine, a node, a process, and a thread. There is a one-to-one
mapping between locations and threads. A location is basically a thread plus information on the
upper levels of the system hierarchy.

long get id() const;

Returns the unique location identifier.

Machine* get mach() const;

Returns the machine.

Node* get node() const;

Returns the node.

Process* get proc() const;

Returns the process.

Thread* get thrd() const;

Returns the thread.

3.7 class Machine

The machine class constitutes the top level of the system hierarchy. A machine consist of multiple
nodes.

long get id() const;

Returns the unique machine identifier.

std::string get name() const;

Returns the machine name. If there is no name specified, the method returns"UNKNOWN".

long get nnodes() const;

Returns the number of nodes associated with the machine.

Node* get node(long node id) const;

Returns the node with the identifiernode id. node id is unique only within the machine and
is a number between zero andn� 1, wheren is the number returned byget nnodes().

3.8 class Node

A node is a physical part of a machine usually with a single address space and one or moreCPUs.
It can host a subset of an application’s processes. A node is uniquely identified by the identifier of
the machine the node belongs to in combination with the machine-local node identifier.

long get mach id()
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Returns the identifier of the machine the node belongs to.

long get node id() const;

Returns the node identifier. This identifier is local to the machine the node is associated with.

std::string get name() const;

Returns the node name. If there is no name specified, the method returns"UNKNOWN".

long get ncpus() const;

Returns the number ofCPUs. Please note that the event trace might not contain the real
number ofCPUs, but a number greater or equal to the actual number used by the application.

double get clckrt() const;

Returns the clock rate of the node in cycles per second or zeroif this information is unavail-
able.

Machine* get mach() const;

Returns the machine the node belongs to.

long get nprocs() const;

Returns the number of processes hosted by the node.

3.9 class Process

A process may spawn multiple threads. A process has at least one thread.

long get id() const;

Returns the unique process identifier. ForMPI applications, the process identifier is equal to
the rank inMPI COMM WORLD.

std::string get name() const;

Returns the process name. If there is no name specified, the method returns"UNKNOWN".

Node* get node() const;

Returns the node the process belongs to.

long get nthrds() const;

Returns the number of threads spawned by the process.

Thread* get thrd(long thrd id) const;

Returns the thread with the identifierthrd id. thrd id is unique only within the process and
is a number between zero andn� 1, wheren is the number returned byget nthrds().

Location* get loc() const;

Returns the location corresponding to thread zero.
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3.10 class Thread

A thread is uniquely identified by the identifier of the process the thread belongs to in combination
with the process-local thread identifier.

long get thrd id() const;

Returns the thread identifier. This identifier is local to themachine the node is associated
with. For OpenMP applications, the thread identifier is equal to the thread number returned
by omp get thread num(). Note that neitherEARL nor EPILOG support nested thread paral-
lelism.

long get proc id() const;

Returns the identifier of the process the thread belongs to.

std::string get name() const;

Returns the thread name. If there is no name specified, the method returns"UNKNOWN".

Process* get proc() const;

Returns the process the thread belongs to.

Location* get loc() const;

Returns the location of the thread.

3.11 class Communicator

EARL represents a communicator as a group of processes with an ordering defined by the rank of
each process.

long get id() const;

Returns the unique communicator identifier.

long get rank(Location* loc) const;

Returns the rank of a location’s process within the communicator. If the location is not part
of the communicator, an exception of typeRuntimeError is thrown.

long get nprocs() const;

Returns the size of the communicator.

Process* get proc(long rank) const;

Returns the process that corresponds to rankrank.

3.12 class P2Statistics

This class integrates some basic statistical functions of adata set and can be used to calculate
quantiles of a very large number of values like the executiontimes of all instances of a particular
region or the sizes of messages. The quantiles are estimatescomputed with theP2 algorithm [2]
which makes it unnecessary to store the complete data set. Thus, the size of anP2Statistic
object is very small and always constant. Use of theP2 algorithm is the reason for naming the class
P2Statistic.
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3.12.1 Constructor

P2Statistic();

Creates a statistics object.

3.12.2 Methods to manage the data set

void add(double val);

Adds a numeric value to the data set.

void reset();

Reinitializes the object. After applying this operation the data set is empty again.

long count() const;

Returns the cardinality of the data set, i.e. the number of values added so far.

3.12.3 Quantiles

double med() const;

Returns the median of the data set. The return value is an estimate computed with theP2

algorithm. Requires at least five elements in the data set.

double q25() const;

Returns the 25% quantile of the data set. The return value is an estimate computed with the
P2 algorithm. Requires at least five elements in the data set.

double q75() const;

Returns the 75% quantile of the data set. The return value is an estimate computed with the
P2 algorithm. Requires at least five elements in the data set.

3.12.4 Miscellaneous

double min() const;

Returns the minimum of the data set. This operation requiresat least one element in the data
set.

double max() const;

Returns the maximum of the data set. This operation requiresat least one element in the data
set.

double mean() const;

Returns the mean value of the data set. This operation requires at least one element in the
data set.
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double sum() const;

Returns the sum of the elements in the data set. This operation requires at least one element
in the data set.

double var() const;

Returns the variance of the elements in the data set. This operation requires at least one
element in the data set.

3.13 Exceptions

EARL provides two different exception classesRuntimeError andFatalError, which are both
subclasses of classError. A runtime error is thrown if a method is used the wrong way, for example,
by supplying undefined parameters. When a run-time error is thrown, the operation has failed, but
the trace object is still usable. If a fatal error is thrown, the trace object has been corrupted and
cannot be used anymore. Both classes provide a method to obtain an error message, which in most
cases will deliver the name of the internal operation that failed.

std::string get msg() const;

Returns an error message associated with the exception.

3.14 Example

The following small example illustrates how to use theEARL C++API. The program iterates through
the event trace whose name is specified as a command-line argument and prints the location identi-
fier and the type of each event.

#include <earl.h>
#include <iostream>

using namespace earl;
using namespace std;

int main(int argc, char* argv[])
{
try {

// open trace file
EventTrace trace(argv[1]);

// iterate through the trace
for ( int i = 1; i <= trace.get_nevents(); i++ ) {

// retrieve event i
Event event = trace.event(i);

// print the event’s location and type
cout << event.get_loc()->get_id() << ": "
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<< event.get_typestr() << endl;
}

}
catch ( Error error ) {

// print error message and exit
cerr << error.get_msg() << endl;
exit(EXIT_FAILURE);

}
}

4 Buffer Mechanisms

While reading events from the trace file,EARL dynamically builds up a sparse index structure. State
information is stored at fixed intervals in so-called bookmarks to speed up random access to events.
If a particular event is requested,EARL usually need not start reading from the beginning of the
trace file in order to find it. Instead, the interpreter looks for the nearest bookmark and takes the
state information required to correctly interpret the subsequent events from there. Then it starts
reading the trace from that position until it reaches the desired event. The distance of bookmarks
can be set using the following environment variable:

EARL BOOKMARK DISTANCE (default: 10000)

To gain further efficiency,EARL automatically caches the most recently processed events inthe
history buffer. The history buffer always contains a contiguous subsequence of the event trace and
the state information referring to the beginning of this subsequence. Thus, all information related to
events in the history buffer can be completely generated from the buffer including state information.
The size of the history buffer can be set using another environment variable:

EARL HISTORY SIZE (default: 1000 * number of locations)

Note that choosing the right buffer parameters is usually a trade-off decision between access effi-
ciency and memory requirements. In particular, for very long traces with many events or very wide
traces with many processes or threads, a readjustment of these parameters might be recommended.

5 Python API

The PythonAPI is a wrapper around the C++API that has been generated usingSWIG [3]. The
main advantage of the Python interface is that it enables rapid prototyping as well as interactive
programming. To install the files needed for the Python interface, follow the steps explained in
the KOJAK installation instructions. Before using it, make sure thatyour PYTHONPATH includes
the KOJAK library directory$PREFIX/lib. After completing these steps, you can useEARL from
Python by importingEARL using the Python import command.

from earl import *

20



t = EventTrace("trace.elg") # open trace file
for i in range(1, t.get_nevents()): # iterate through the trace

print e # print event i
del t # close trace file

5.1 Differences between the C++ and Python API

The easiest way to become familiar with the PythonAPI is to use it interactively from the
Python shell. The PythonAPI differs form the C++API in that only the classesEventTrace and
P2Statistics have a corresponding Python classes. Objects of all other classes are represented
as Python dictionaries. The dictionary keys correspond to C++ method names and the dictionary
values to the C++ methods’ return values.

The dictionaries are not nested. Instead, references to other objects are expressed using identifiers.
For example, a C++Location object holds pointers to a machine, a node, a process, and a thread.
The equivalent Python dictionary would hold a machine identifier, a node identifier, a process iden-
tifier, and a thread identifier.

>> print t.get_loc(1)
{’thrd_id’: 2, ’mach_id’: 0, ’node_id’: 0, ’id’: 3, ’proc_id’: 0}

In most cases, you can translate from the C++ method name to the Python dictionary key simply by
using the method name without the precedingget . Python attributes holding an identifier generally
end with id. -1 is used to indicate the absence of a certain object. Also, C++methods taking an
argument are not represented in the dictionary. Table 2 and 3list the Python dictionary keys used to
resemble the C++ methods of the various object types.

Events. In dictionaries representing events, pointer attributes are expressed in terms of event po-
sitions. That is, wherever a method of C++ classEvent returns an object of typeEvent, the Python
dictionary contains only the event’s position. Null eventsare represented as-1.

>>> t.event(32)
{’reg_id’: 69, ’loc_id’: 15, ’csite_id’: -1, ’cedgeptr’: 1,
’time’: 0.11698729544878006, ’enterptr’: 28, ’type’: ’ENTER’,
’pos’: 32, ’cnodeptr’: 3}

As shown here, the event attributes referring to other objects just contain their identifiers. Table 3
includes a list of all dictionary keys representing event attributes. Also, metric values carried by an
event can be accessed using the metric name as the key.

Event vectors. Some methods of the C++ classEventTrace use an output argument of type
std::vector<Event> to return a list of events. The equivalent Python method doesnot use an
output parameter. Instead, a Python list with event positions is returned. The events themselves can
be obtained later using theevent() method.

>>> t.stack(100, 0)
[2, 94]
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Table 2: Python dictionary keys representing event attributes.

Event
cedgeptr position of the least recentENTER event visiting the parent call path
cnodeptr position of the least recentENTER event visiting the same call path
csite id call site identifier
enterptr position of theENTER event of the enclosing region instance
loc id location identifier
pos relative position (1-n) within the event trace
reg id region identifier
time time stamp
type event type as a string
� metname� value of metric� metname�
MPI

com id identifier of the communicator associated with a communication operation
dest id destination location identifier of a message
length message length
recvd bytes received during a collective operation
root id root location identifier of anMPI collective operation
sendptr position of theSEND event to a givenRECV event
sent bytes sent during a collective operation
src id source location of a message
tag message tag
OpenMP

forkptr position of theFORK event to a givenJOIN event
lock id identifier of the lock object used for synchronization
lockptr position of theSYNC event that performed the last change of a lock’s own-

ership status

MPI communicators Communicators are represented in Python as lists holding one or more
process identifiers. Hence, wherever a pointer to a communicator object is returned in C++, a list
with process identifiers is returned in Python.
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Metric
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