
A Performance Monitoring Interface for OpenMP

Bernd Mohra, Allen D. Malonyb, Hans-Christian Hoppec, Frank Schlimbachc,
Grant Haabd, Jay Hoeflingerd, and Sanjiv Shahd

aResearch Centre Jülich, ZAM bUniversity of Oregon
Jülich, Germany Eugene, Oregon USA

b.mohr@fz-juelich.de malony@cs.uoregon.edu

cPallas GmbH dIntel Corporation, KAI Software Lab
Brühl, Germany Champaign, Illinois USA

hans-christian.hoppe@pallas.com grant.haab@intel.com
frank.schlimbach@pallas.com jay.p.hoeflinger@intel.com

sanjiv.shah@intel.com

Abstract. This paper reports on efforts to define a performance monitoring interface for OpenMP that merges
the OMPI and POMP prototype interfaces developed in the past year. The primary goal is to define a clear and
portable API for OpenMP that makes execution events visible to runtime monitoring tools, primarily tools for
performance measurement. The proposed specification is presented, covering many relevant design issues and the
result of discussions among the involved groups. Both successful convergence of ideas, leading to agreement on
proposed specifications, as well as differences in opinion and remaining open issues are documented from our many
discussions. The paper is intended to serve as a preliminary proposal for consideration by the OpenMP Architecture
Review Board and recently formed Tools sub-committee.

1 Introduction

The OpenMP [5] parallel programming standard has been positively received in the scientific community as a means
to achieve portable parallel execution on shared-memory multiprocessor (SMP) systems. The latest version of
the OpenMP application programmer’s interface (API) for C, C++, and Fortran offers a flexible, scalable, and
moderately complete programming environment (compiler directives1, library routines, and environment variables)
for specifying SMP parallel operation. Unfortunately, the current OpenMP specification (Version 2.0) does not offer
any support for performance observation beyond an interface for portable timer access. Lack of such support makes
it difficult to observe performance behavior and to understand how performance properties map to the OpenMP
parallel execution model.

Future acceptance and use of OpenMP will be greatly enhanced by the definition of a common interface for perfor-
mance monitoring. Fortunately, the OpenMP Architecture Review Board (ARB) is interested in the specification of
interfaces for performance monitoring and debugging. This interest is evidenced by the recent formation of an ARB
“Tools” sub-committee which will review and discuss tool interface proposals.

Predating these ARB activities, three groups have designed and demonstrated prototypes of a performance moni-
toring interface for OpenMP. As part of the IST INTONE project [2], Pallas GmbH has developed the OMPI [9]
“performance instrumentation interface.” OMPI is supported by the INTONE Fortran compilation system based on
the Nanos compiler by CEPBA [12] in Barcelona, and by the INTONE C compiler developed by KTH in Sweden.
Both compilers can be downloaded from the INTONE project page. The POMP [4, 10] “performance tool interface”
was developed by Forschungszentrum Jülich, the University of Oregon, and the KAI Software Lab (KSL) of Intel.
POMP is integrated with the Expert [8] performance analyzer and the TAU [3] performance system, and work is
underway at Intel KSL to implement a prototype of the POMP API as part of their ASCI Pathforward contract2. KAI

1We follow the OpenMP specifications using the term ”directive” for both Fortran directives and C/C++ pragmas throughout the paper
2Department of Energy Accelerated Strategic Computing Initiative subcontract number B510239, “ASCI Pathforward Ultrascale Tools Ini-

Software Lab is uniquely qualified to propose standards for a performance API for OpenMP. Kuck and Associates,
Inc (KSL before acquisition by Intel) develops the successful Kap/Pro Tool Set which includes GuideView, the first
OpenMP-focused performance analysis tool.

Presentations on both OMPI and POMP were made to the OpenMP “Futures” committee at their SC 2001 meeting
where there was positive feedback and encouragement to develop the ideas further. The respective groups have
continued to evolve and refine the specifications for OMPI and POMP since that time.

Both proposals differ somewhat in objectives and approach and focus on different aspects of performance mon-
itoring. Since the OpenMP ARB can only adopt one performance monitoring interface for OpenMP, Pallas,
Forschungszentrum Jülich, the University of Oregon, and KAI Software Lab have decided to merge their specifica-
tions into a single proposal, combining the strengths of both and hopefully eliminating their respective weaknesses.
(To remove ambiguity, we adopt the more correct term “performance monitoring interface” in this paper to refer to
both OMPI and POMP.) The result of this effort is reported here.

In Section 2, we introduce the problems and objectives of a performance monitoring interface for OpenMP. Both
projects addressed these in slightly different ways. Section 3 enumerates the issues which need to be addressed for
an OpenMP monitoring interface and describes what we propose as a solution for these issues. Finally, in Section
4, we give conclusions and discuss future work.

2 Problem and Objectives

Experience with the MPI profiling interface (PMPI) [11] demonstrates that a standardized mechanism for instrumen-
tation (in this case, library interposition) can facilitate the implementation of performance measurement and analysis
tools (e.g., [7, 1, 3, 8]). Similar in spirit to PMPI, our goal is to define a simple and portable API for OpenMP that
exposes execution events to runtime monitoring tools used for performance measurement and debugging. However,
OpenMP is not simply a library that can be instrumented through routine interposition techniques. The transforma-
tion of OpenMP directives and runtime routines into a parallel program by an OpenMP compiler poses interesting
instrumentation and monitoring challenges.

First, it is necessary to expose the OpenMP execution dynamics to the performance measurement system. However,
because the OpenMP programming API merely “directs” parallelization and requires a compiler and runtime sys-
tem to make the parallel operation explicit, the task of tracking execution dynamics requires instrumentation that
is closely coupled with OpenMP directive processing. Second, OpenMP directives implicitly define the parallel
execution model that the performance measurement system needs to observe. To correlate execution dynamics with
this model, its semantics must be represented in the execution events. This requires the performance API to expose
information about the dynamic context in which an execution event occurred. Lastly, there is a natural desire in an
OpenMP programming environment to have other kinds of instrumentation (like user-level subroutines) be accom-
plished in a manner consistent with OpenMP. This suggests that a performance monitoring API should support a
mechanism to instrument user-specified, arbitrary regions, including routines.

In the face of these challenges, both OMPI and POMP sought to define a performance monitoring interface with the
following objectives:

• Allow application programmers to specify and control instrumentation consistent with the use of OpenMP.

• Allow alternative instrumentation methods, including source-level, compile-time, and run-time instrumenta-
tion.

• Do not constrain the implementation of OpenMP compilers or runtime systems.

• Allow alternative implementations of the monitoring interface (i.e., monitoring libraries), including for profile-
based and trace-based performance measurement.

• Do not preclude combining OpenMP performance monitoring with other interfaces, in particular, PMPI.

• Make the interface portable across different platforms and usable for different performance tools.

tiative RTS – Parallel System Performance”

• Do not constrain efficient implementations of monitoring libraries.

Since programmers are responsible for inserting OpenMP directives and calling OpenMP runtime routines in their
application, it is reasonable to expect the performance monitoring API to be applied manually at the source level.
Even when source-based directive rewriting tools (e.g., Opari [4]) or OpenMP compilers perform instrumentation
automatically, programmers will still want to have control over instrumentation level and scope, and manual instru-
mentation will continue to be necessary for user-defined events. New instrumentation directives are useful for this
purpose. Thus, because the performance monitoring interface will be seen and used by programmers at the source
level, it is important that it is defined consistently with respect to the OpenMP programming model and API.

From the perspective of a tool implementing the performance monitoring interface (e.g., a performance measurement
system), the interface must provide all the necessary event and context information to do its job. However, it is
important that no specific tool can dictate how the interface is defined and how it operates. The design of the
performance monitoring API must support different intended usages and has to avoid assumptions that would limit
its application. At the same time, issues of implementation efficiency must be considered.

Achieving portability in the interface requires care in both how the API will function with the different languages
OpenMP supports as well as how the API will be implemented in OpenMP compilers and on different execution
platforms. Language concerns relate mainly to the calling interface structure and parameters, but also include the
extension of the OpenMP directive set for performance monitoring. Portability with respect to OpenMP compilers
is primarily an issue of adoption of the performance monitoring API in the compilers. Platform portability of the
API deals with issues of getting the interface to function properly with different compilers and performance tools in
different system environments.

3 Proposed Specification

The following list covers the topics which were discussed within the involved groups in order to define a common
OpenMP monitoring API. We believe that this list covers all necessary issues. It tries to summarize the discussions
and to document the changes/differences in reference to the original proposals [4, 9, 10]. Topics where we could not
reach an agreement or we ran out of time to define a coherent proposal are marked as ”open issues”.

3.1 Event Definition

This section discusses the OpenMP execution events relevant for performance monitoring which are potential points
in the execution where a POMP API call could be made. It is basically a super-set of the events defined in the
original proposals. For an exact definition of the events see Appendix C.

The naming of the events follows the following schema: enter/exit events mark the event locations immediately
before and after the execution of an OpenMP construct or function. begin/end events mark the begin and end of the
function body or of the structured block controlled by the construct. To avoid high overhead for wrapping “small”
constructs with a matching pair of API calls, we propose to define a set of single events (XXX event) as an user
selectable alternative to the pair of enter/exit events (indicated by [...]).

Events related to OpenMP Constructs and Directives:
Parallel enter, Parallel exit, Parallel begin, Parallel end,
Loop enter, Loop exit, Loop chunk begin, Loop chunk end, Loop iter begin, Loop iter end, [Loop iter event],
Workshare enter, Workshare exit, Workshare begin, Workshare end
Sections enter, Sections exit, Section begin, Section end,
Critical enter, Critical exit, Critical begin, Critical end,
Single enter, Single exit, Single begin, Single end,
Barrier enter, Barrier exit, Implicit barrier enter, Implicit barrier exit,
Master begin, Master end,
Ordered enter, Ordered exit, Ordered begin, Ordered end,
Atomic event, Flush event

Events related to OpenMP API calls:
Set lock enter, Set lock exit, [Set lock event],
Set nest lock enter, Set nest lock exit, [Set nest lock event],
Init lock event, Unset lock event, Test lock event, Destroy lock event,
Init nest lock event, Unset nest lock event, Test nest lock event, Destroy nest lock event,
Set num threads event, Get num threads event, Get max threads event, Get thread num event,
Get num procs event, In parallel event, Set dynamic event, Get dynamic event,
Set nested event, Get nested event

Events related to User Function and Regions:
Function enter, Function exit, Function begin, Function end, [Function event],
User region begin, User region end, [User event]

3.2 Context Information Passing

This section describes how context information is associated with the POMP events and how this information is
made available by the instrumentor to the POMP monitoring API. Please note that by instrumentor we mean a
program (e.g. compiler, source-to-source or binary translator) or person (i.e. application developer) which or who
inserts calls to the POMP API into the application code.

The context information actually is the combination of three parts:

1. compile time information: context information known at compile / instrumentation time (e.g., source code
information but also “fixed” attributes of OpenMP constructs like the scheduling strategy). Needs to be passed
by the instrumentor to the POMP library API calls.

2. run time information: context information only known at run time (e.g., number of threads). The instrumen-
tor has to arrange that this is passed to the POMP library at run time as parameters.

3. “library” data: data/information associated with the events by a POMP library (e.g., performance data like
counters or library identifiers). This data is allocated and initialized by the POMP library but needs help of the
instrumentor to provide access to the library data for all events corresponding to the same OpenMP construct
(e.g., enter/exit/begin/end).

The original POMP proposal [4] stored the compile time context information in a standardized fixed data structure
in static memory. This descriptor also provides a zero-initialized library handle. The descriptor and the run time
context information is passed to the POMP event routines. A POMP library can then construct the library data
structures inside the POMP event calls when called for the first time using the compile time and the run time
information. This approach has two main drawbacks: First, it is very difficult to define a fixed data layout which
is portable across different programming languages. Second, the initialization of the library data inside the POMP
event routines requires synchronization, as these routines are possibly called inside parallel regions, which can be a
source of large overhead.

The INTONE project follows a different approach: The compile time information is passed as arguments to context
constructor API routines, which inside the POMP library setup the library data structures (using the passed compile
time information) and bind them to a returned handle. This approach nicely separates construction and usage of
context information in different routines. Passing compile time information as arguments avoids the portability
problems of the POMP approach. However, as the context constructor routines can be called inside parallel regions,
they still require synchronization.

Based on the experiences gained with our existing implementations, we therefore propose the following procedure
for passing context information:

• Compile time context (CTC) information is encoded in a string for maximum portability. Arguments to
POMP event routines are the CTC string, run time context information, and a library handle. Normally, the
instrumentor passes a valid CTC string plus a zero-initialized library handle to the POMP event routines. In
this case, the POMP event routine can initialize the library handle when called for the first time (i.e., if library

handle is zero). As already described, this requires synchronization so all threads get the same, unique handle.
The POMP library implementor is responsible for correct, efficient, and portable synchronization.

• If the instrumentor can arrange to call separate register/define handle calls (POMP Get handle) at program
startup (or in other serial phases of the program), it would pass the CTC string to these routines which return a
new pre-initialized library handle. The POMP event routine then gets passed this pre-initialized library handle,
and its CTC string argument can be invalid (better: NULL). This approach minimizes/avoids synchronization
but is not always applicable. Because of the performance benefits instrumentors are strongly suggested to use
it wherever possible.

An example instrumentation is shown in Appendix A. The optimized scheme is actually quite often applica-
ble: Binary re-writing instrumentors can do this easily. Source-to-source translators or compilers can use the
procedure described in Appendix B.

• When the library handle is NULL, the lifetime of the CTC string must be at least the duration of the POMP
API call. One of library handle or CTC string must be non-NULL at every POMP API call.

Open Issues:

• What context information should be described by the CTC string?

construct context information
ALL region type

start SCL [Source Code Location (file name + line numbers)]
end SCL

plus for hasFirstPrivate
parallel regions hasLastprivate
and hasReduction
workshare constructs hasNowait

hasCopyin
plus for scheduleType
parallel loops hasOrdered
plus for single hasCopyprivate
plus for critical name (if defined)
plus for functions name
and user regions group (e.g., class, namespace, or module name)

• Format of the CTC string

The string could be a list of ”attribute=value” pairs which are separated by a star (’*’) character (which is
very unlikely to appear in function and file names).

"<length>*type=<type>*name=<name>*file=<file>*lines=<start>,<end>*...**"

Notice that the string is terminated by an empty field, e.g. a double star ”**”. The length is required, all other
fields are optional. The terminating double stars are required. Strictly speaking, the length is extraneous given
the termination, but it can be useful to size buffers etc. The length should count only the number of characters
between the first star and the last, inclusive, without counting the C termination \0 or any blank fill characters
in Fortran.

As a consequence, the * character cannot appear inside any of the fields, although we could define an escape
sequence for it following the C trigraph convention.

So the shortest possible string is ”2**”.

3.3 Instrumentation of OpenMP Constructs and Directives

At the defined event locations around OpenMP constructs and directives, the instrumentor inserts calls to POMP
monitoring API routines. The POMP event routines are named POMP <event>() where <event> is one of
the values defined in Section 3.1.

Parameters to the event routines are a library handle and the run time context (RTC) information. The RTC includes
at least the OpenMP thread ID. If the event routine is the “first” POMP call associated with an OpenMP construct
(typically the enter event), it also gets passed the CTC string as the last argument (for maximum portability). All
POMP calls return error codes. So, the typical signatures for POMP event routines look like this:

C/C++: int32 POMP_<event> (POMP_Handle_t* lib_handle,
int32 thread_id,
... /*other RTC parameters*/
char ctc_string[])

Fortran: INTEGER*4 POMP_<event> (lib_handle,
thread_id,
...,
ctc_string)

INTEGER*4 thread_id
INTEGER*<ptrsize> lib_handle
CHARACTER*(*) ctc_string

We propose to use a mixed case naming scheme for the C interface (very much like the one used for MPI) because
this is the only way to ensure that the external name of the Fortran and the C version of the POMP API are different.
This allows to implement the most efficient versions for each language but still enables a shared (common) imple-
mentation if desired. However, this does not agree with the current definition of the OpenMP API routines, which
are all lowercase.

The following table lists the RTC information (besides the thread ID) for OpenMP construct events:

Event RTC parameters NA value
Parallel enter int32 num threads -1

int32 if expr result -1
Loop enter int64 chunk size -1

int64 init iter value
int64 final iter value
int64 incr 0

Loop chunk begin int64 init iter value
int64 final iter value

Loop iter begin int64 iter value
Loop iter event
Section begin int32 section num -1

Open Issues:

• Should it be allowed to pass a set of user-specified values (e.g., program variables or hardware counter) to
user event functions? The CTC string could provide a list of names. The POMP user event functions would
have two additional parameters specifying the number of values and an array of int64 values.

• Need to define error codes for all POMP API functions and document their meaning.

3.4 Instrumentation of OpenMP API Functions

In addition to the OpenMP directives, calls to OpenMP API functions need to be visible to a monitoring tool. It is
left unspecified how the instrumentation is done. Possible methods are, for example, defining wrapper routines or

pre-instrumented vendor runtime routines which arrange to call the necessary event routines at the right places.

As the OpenMP run time functions are “small”, generating enter and exit events for them would produce a large
overhead. Therefore we suggest to only use single events for monitoring OpenMP API functions (see Section 3.1).
Since setting and getting locks can be a more costly operation and a monitoring tool might be interested in measuring
the waiting time for the lock, we define optional enter and exit events for lock functions.

In general, the naming and arguments are handled like for the POMP event routines for directives. The RTC in-
formation is the thread ID plus the omp lock ID for the OpenMP lock functions. OpenMP test lock calls provide
an indicator whether a lock was set. All routines which set or return a value (e.g., omp get dynamic) have a
parameter supplying the value set or returned.

3.5 Instrumentation of Functions and User Regions

Experience shows that it is usually not sufficient to just collect OpenMP related events: the end-user needs a way to
relate performance information to user defined functions or even arbitrary structured blocks.

We propose that an instrumentor (typically, the application developer) insert calls to POMP Function XXX() and
POMP User XXX() POMP calls. Functions are subroutines, functions, procedures, methods, etc. defined by the
programming language. The Function enter/ exit events are for call site instrumentation, while Function begin/ end
events can be used for the instrumentation of a function body. Also, functions typically have multiple entry and exit
points. In contrast, user regions can be arbitrary structured blocks. User regions can be nested but are not allowed
to overlap.

The user has to pass a zero-initialized library handle, the thread ID, and a valid CTC string directly to the event
routine or optionally use the POMP Get handle() calls. If the instrumentor is an automatic tool, providing
automatic instrumentation of all or at least a reasonable set of user functions would be a very useful feature. While
this optional, it should use the proposed API if provided. Finally, to simplify manual instrumentation, it would be
advantageous to allow the definition of user regions through instrumentation directives (see Section 3.9).

Open Issues:

• How to specify (e.g., through additional directives) which user functions should be instrumented (blindly
instrumenting every single function will certainly produce unacceptable overhead).

• Is it useful to distinguish between function call site and function body instrumentation (i.e., having separate
Function enter/ exit and Function begin/ end events)?

• Define a method for the user to pass a set of values to the POMP User region XXX() routines.

3.6 Monitoring Library Control

In addition to POMP functions for defining and recording of execution events, we propose functions for initial-
ization/finalization (to be inserted by the instrumentor at appropriate places) and to signal start/stop of monitoring
activities to the POMP library (inserted by the user).

POMP_Init(), POMP_Finalize(), POMP_On(), POMP_Off()

If possible, the instrumentor should call POMP Init at program startup and POMP Finalize just before program
termination on the master thread only. However, a conforming POMP monitoring library must be able to auto-
initialize and auto-finalize.

Open Issues:

• Should the places where POMP On() and POMP Off() can be called be restricted? For example, what shall
happen to event pairs that are not properly matched at the time of an POMP Off() call?

3.7 Conditional Monitoring Code

We also propose to support user source code lines to be compiled conditionally if POMP instrumentation is re-
quested. If the OpenMP compiler or POMP transformation tool supports a macro preprocessor (e.g., cpp for C,
C++, and sometimes Fortran), it must define the symbol POMP to be used for conditional compilation. Following
OpenMP standard conventions, this symbol is defined to have the decimal value YYYYMM where YYYY and MM are
the year and month designations of the version of the POMP API that the implementation supports. This allows
users to define and use application-, user-, or site-specific extensions to POMP by writing:

#ifdef _POMP
... arbitrary user code ...

#endif

The !P$ sentinel can be used for conditional compilation in Fortran compilation or transformation systems. In
addition, CP$ and *P$ sentinels are accepted only when instrumenting Fortran fixed source form. During POMP
instrumentation, these sentinels are replaced by three spaces, and the rest of the line is treated as a normal Fortran
line. These sentinels also have to comply with the specifications defined in [6].

This is an optional feature as binary / library instrumentation cannot support this. But if a platform does support this
feature, it should do it as described above.

3.8 Instrumentation Control

We think it is important to allow the user to specify the amount of monitoring. There needs to be a way to specify
to what extent a user program is instrumented and also a way to activate/deactivate events at runtime. Ideally, the
specification for both uses is based on the same principles / terms.

Open Issues:

• There is no complete proposal for this feature yet. A starting point could be the following: events can be
categorized into the following groups. For each group, a level of instrumentation/activation is defined:

Group Constructs Levels
Parallel Parallel none, EnterExit, BeginEnd
Loop Do/For none, EnterExit,

(Chunks or IterEvent or IterBeginEnd)
Workshare Section, none, EnterExit, BeginEnd

Workshare, Single
Sync Critical, Ordered none, EnterExit, BeginEnd

Barrier none, EnterExit
Master none, BeginEnd
Atomic, Flush none, Event

User Function, User regions none, (Event or BeginEnd)
Runtime OpenMP run-time none, (Event or EnterExit)

library routines

Levels separated by ”or” are alternatives and don’t include instrumentation for each other. Levels separated
by ”,” do include instrumentation for previous (lower) levels, e.g., for group ”Parallel” this means ”none”
would specify to monitor no events at all, ”EnterExit” specifies to monitor enter and exit events only, and
”BeginEnd” would result in the monitoring of the enter, exit, begin, and end events for parallel regions.

The activation/deactivation can be specified through environment variables (POMP <group>) and through
corresponding POMP API functions.

• While the above proposal works nicely for activation/deactivation of events at run time, it is a pretty clumsy
way to specify the amount of instrumentation for an automatic instrumentor. A more natural way would be to

define a new directive that lets the user specify the extent of instrumentation (as most of OpenMP is specified
by directives).

!$POMP INST group level [file]

This directive applies only to the function body or the static extend of the OpenMP construct immediately
following the directive unless ”file” is specified in which case it applies to the rest of the compilation unit.

However, it is very controversial whether defining new directives is a good idea and acceptable to the OpenMP
ARB. A possible solution would be to mark them as optional, i.e., a POMP compliant instrumentor is not
required to implement them but if it supports them, it has to be done in the way described above.

Disadvantages:

– Directives require new compiler implementation work for industrial compilers. The rest of this proposal
can be handled by minor adjustments to the existing handling of OpenMP directives and new OpenMP
runtime libraries.

– Controlling instrumentation through directives might be too confusing / complex. Is it clear to the user
which OpenMP constructs are exactly affected (especially if they can be arbitrarly nested)?

– Directives require recompilation to switch from collecting performance data to not collecting, or the
other way around. Ideally, only re-linking or a new binary instrumentation should be required.

Advantages:

– The core of OpenMP is defined by directives. So, additional features should use the same mechanism.
– The instrumentation is specified inside the program source text to which it applies to. No separate file

or specification is necessary requiring extra functionality/tools to manage it.
– Directives are the most effective way to allow instrumentation control for selective parts of an applica-

tion. Using environment variables or command line switches only allow to control the instrumentation
of a compilation unit (or even the program) as a whole.

– In some cases, it is desirable to be able to completely remove the instrumentation overhead. A program-
mer does not want to have to live with extra instrumentation calls in the code if instrumentation is turned
off (especially if it is in inner loops).

3.9 Directives for User Defined Events

By combining the features from Sections 3.5 and 3.7, a user can make arbitrary structured blocks visible to the
monitoring tool. However, since the user has to arrange the correct definition of things like CTC strings and library
handles, the scheme seems unnecessarly complex.

The following new directives would greatly simplify the specification / generation of user defined events:

!$POMP USERREGION START (<name> [: <variable-or-value-list>])

!$POMP USERREGION STOP (<name> [: <variable-or-value-list>])

!$POMP USERREGION EVENT (<name> [: <variable-or-value-list>])

These would be translated into the necessary CTC string and library handle generation and event routines by the
instrumentor. Of course, the remarks about new directives stated in the last section also apply here.

3.10 Monitoring of Applications which use nested parallelism

Currently, it is not completely clear how to make sure the proposed POMP monitoring API is able to correctly
monitor OpenMP applications which use nested parallelism. We need some concept of OpenMP team here in order
to gather performance information about threads within a specific team. This probably needs to be defined by the
OpenMP standard before we tackle it here.

4 Conclusions and Future Work

The definition of a robust, open, and implementable performance monitoring interface for OpenMP is not an easy
task. The efforts among the groups represented in this paper point to the difficult technical issues which must be
resolved, as well as to the differences of opinion that can arise, for example, from experiences with performance tool
users. Nevertheless, substantial progress was achieved in the ten areas reported above, and our work will provide a
solid context for future discussion.

With relatively minor open issues remaining, we have reached agreement on event definition, mechanisms for con-
text information passing, instrumentation of OpenMP directives and API functions, instrumentation of user func-
tions/regions, monitoring library control, and conditional monitoring code. The issue of context information has
been particularly interesting, since from a quite contentious debate a solution that is clearly superior to both original
schemes has emerged. The areas of new directives for instrumentation control and for user defined events and nested
parallelism are more challenging and we did not attempt to resolve them here.

Although prototype tools can be developed based on the specification we proposed, which was done before for the
INTONE and POMP work, the long-term goal is to have an API approved by the OpenMP Architecture Review
Board (ARB) and implemented in real compiler systems. The next steps in the process are to work within the ARB
Tools sub-committee to define a monitoring interface specification. To aid in this endeavor, we offer our current
outline of a specification as initial input.

References

[1] J. Hoeflinger et al., “An Integrated Performance Visualizer for MPI/OpenMP Programs,” Workshop on
OpenMP Applications and Tools (WOMPAT 2001), July, 2001.

[2] INTONE (INnovative Tools for OpenMP for Non-Experts). http://www.cepba.upc.es/intone/.

[3] A. Malony, S. Shende, “Performance Technology for Complex Parallel and Distributed Systems,” Proc. 3rd
Workshop on Distributed and Parallel Systems, DAPSYS 2000, (Eds. G. Kotsis, P. Kacsuk), pp. 37–46, 2000.

[4] B. Mohr, A. Malony, S. Shende, F. Wolf, “Design and Prototype of a Performance Tool Interface for OpenMP,”
The Journal of Supercomputing, 23, 105–128, 2002.

[5] OpenMP Forum, “OpenMP: A Proposed Industry Standard API for Shared Memory Programming,” October,
1997. http://www.openmp.org.

[6] OpenMP Forum, “OpenMP Fortran Application Program Interface, Version 2.0,” November 2000. Sections
2.1.3.1 and 2.1.3.2

[7] Pallas GmbH, “VAMPIR: Visualization and Analysis of MPI Resources”.
http://www.pallas.de/pages/vampir.htm.

[8] F. Wolf, B. Mohr, “Automatic Performance Analysis of SMP Cluster Applications,” Tech. Rep. IB 2001-05,
Research Centre Jülich, 2001.

[9] Pallas GmbH, “Public OpenMP Instrumentation Interface Specification,” INTONE – Innovative OpenMP
Tools for Non-Experts, Version 1.7, 2002.

[10] B. Kuhn, A. Malony, B. Mohr, S. Shende, “A Performance Tool Interface for OpenMP,” Report for Accelerated
Strategic Computing Initiative (ASCI), ASCI Path Forward program, Ultrascale Tools Initiative, RTS - Parallel
System Performance, submitted by KAI Software Labs, A Division of Intel America, Inc., August 28, 2001.

[11] Message Passing Interface Forum, “MPI: A MessagePassing Interface Standard,” International Journal of
Supercomputer Applications, Vol. 8, 1994. Special issue on MPI.

[12] European Center for Parallelism of Barcelona (CEPBA). http://www.cepba.upc.es.

A Instrumentation Example

Consider the following example C OpenMP program.

Original Example Program demo.c

1: #include <stdio.h>
2: #include <omp.h>
3:
4: int main() {
5: int id;
6:
7: #pragma omp parallel \
8: private(id)
9: {
10: id = omp_get_thread_num();
11: printf("hello from %d\n", id);
12: }
13: }

The following figure shows how the un-optimized (standard) instrumentation of the example program with POMP
API calls could look like. New inserted lines are marked with *** at the left side. Besides inserting POMP Init()
and POMP Finalize() calls at the beginning and end of the main program, the parallel region is instrumented
with enter, exit, begin, and end events.

Example Standard Instrumentation of demo.c

1: #include <stdio.h>
2: #include <omp.h>
*** #include "pomplib.h"
3:
4: int main() {
5: int id;
*** POMP_Init();
6:
*** { POMP_Handle_t pomp_hd1 = 0;
*** int32 pomp_tid = omp_get_thread_num();
*** POMP_Parallel_enter(&pomp_hd1, pomp_tid, -1, 1,
*** "51*type=pregion*file=demo.c*slines=7,8*elines=12,12**");
7: #pragma omp parallel \
8: private(id)
9: {
*** int32 pomp_tid = omp_get_thread_num();
*** POMP_Parallel_begin(pomp_hd1, pomp_tid);
10: id = omp_get_thread_num();
11: printf("hello from %d\n", id);
*** POMP_Parallel_end(pomp_hd1, pomp_tid);
12: }
*** POMP_Parallel_exit(pomp_hd1, pomp_tid);
*** }
*** POMP_Finalize();
13: }

In addition, there are Implicit barrier enter, Implicit barrier exit, and Get thread num event events, probably initi-
ated by the OpenMP run time system. All POMP event routines get passed a POMP library handle and the thread
ID. The first event of the parallel region (Parallel enter) gets passed a CTC string describing the parallel region. It
is also ensured it gets passed a zero-initialized library handle.

The next figure shows the optimized version of the instrumentation of the same program. Library handles are
initialized at program startup using the POMP Get handle() function which gets passed the CTC string and
returns the initialized library in the first parameter. This saves unnecessary synchronization inside the POMP event
routines.

Example Optimized Instrumentation of demo.c

1: #include <stdio.h>
2: #include <omp.h>
*** #include "pomplib.h"
3:
4: int main() {
5: int id;
*** POMP_Handle_t pomp_hd1 = 0;
*** POMP_Init();
*** POMP_Get_handle(&pomp_hd1,
*** "51*type=pregion*file=demo.c*slines=7,8*elines=12,12**");
6:
*** { int32 pomp_tid = omp_get_thread_num();
*** POMP_Parallel_enter(&pomp_hd1, pomp_tid, -1, 1, NULL);
7: #pragma omp parallel \
8: private(id)
9: {
*** int32 pomp_tid = omp_get_thread_num();
*** POMP_Parallel_begin(pomp_hd1, pomp_tid);
10: id = omp_get_thread_num();
11: printf("hello from %d\n", id);
*** POMP_Parallel_end(pomp_hd1, pomp_tid);
12: }
*** POMP_Parallel_exit(pomp_hd1, pomp_tid);
*** }
*** POMP_Finalize();
13: }

Of course this optimization is easy to do in this simple example. Things get more complicated if the main function
and the instrumented OpenMP construct are in different compilation units. The next section demonstrates how a
source-to-source translator or compiler could implement this alternatives while still maintaining separate compila-
tion.

B Optimized Instrumentation for Multiple Compilation Units

This section describes how a source-to-source translator or compiler can implement the optimized instrumentation
scheme while still maintaining separate compilation. In general, in the following, ### needs to be replaced by some
unique identifier, e.g., a prefix followed by the inode number of the source file.

The described procedure even handles mixed language applications. Another advantages is, that the necessary
library handles can always be numbered from 1 to N as they are file-local global variables or in separate mod-
ules/common blocks.

For each C/C++ file xxx.c:

1. Add the following as the first line to the file:

#include "xxx.c.pomp.inc"

2. Then do the POMP instrumentation as usual, i.e., inserting

POMP_Whatever(pompid#, ...);

where needed. ”#” is replaced by a number from 1 to N as needed. Of course, t is necessary to store all the
compile time context information internally.

3. Then, at the end, generate the "xxx.c.pomp.inc" file based on the collected compile time context data
like this:

#include "pomplib.h"
static int pompid1;
...
static int pompidN;

void POMP_Init_###()
POMP_Get_handle(&pompid1, "ctc string 1");
...
POMP_Get_handle(&pompidN, "ctc string N");

For each Fortran90 file xxx.f90:

1. Insert the following as the first line of each program, function and subroutine. Finding this line should be
doable even in fuzzy parsers as one only need to look for e.g., "subroutine XXX(...)".

use POMP_###

2. Then do the POMP instrumentation as usual, i.e., inserting

call POMP_Whatever(pompid#, ...);

where needed.

3. Then, at the end, generate a "POMP ###.f90" file like this:

module POMP_###
integer, public :: pompid1
...
integer, public :: pompidN

end module POMP_###

4. At the end of this file, also add

subroutine POMP_Init_###()
use POMP_###
call POMP_Get_handle(pompid1, "ctc string 1")
...
call POMP_Get_handle(pompidN, "ctc string N")

end subroutine POMP_Init_###

5. Of course, in addition and before the modified f90 source, the POMP ###.f90 file has to be compiled.

For each Fortran77 file xxx.f:

Here, basically do the same as for Fortran 90, just that instead of a module POMP ###, use a common block
/POMP ###/ and then a ”include” statement to insert this in every function.

1. Insert the following as the first line of each program, function and subroutine.

include ’xxx.f.pomp.inc’

2. Then do the POMP instrumentation as usual.

3. At the end of the file, add

subroutine POMP_Init_###()
include ’xxx.f.pomp.inc’
call POMP_Get_handle(pompid1, "ctc string 1")
...
call POMP_Get_handle(pompidN, "ctc string N")

end subroutine POMP_Init_###

4. Then, at the end, generate a "xxx.f.pomp.inc" file like this:

integer pompid1
...
integer pompidN
common /POMP ###/ pompid1, ..., pompidN

Linking

1. A modified linker or special pre-linker then scans all passed-in object files and libraries (e.g., using nm)
for functions named POMP Init *. Then, a temporary file ”pomp.init.c” is generated with the following
contents:

extern void POMP_Init_###1();
...
extern void POMP_Init_###n();

void POMP_Init_Handles()
POMP_Init_###1();
...
POMP_Init_###n();

This gets compiled and it is linked in addition to the POMP library to the program.

2. Finally, POMP Init() calls POMP Init Handles().

C Performance Event Model for OpenMP

Our goal for a performance event model for OpenMP is to define a set of performance events that will a) represent
completely the semantics of OpenMP parallel execution and b) allow general program-level and user-defined events
to be specified. The performance interface is based on these performance events and is associated with the execution
of OpenMP constructs or function calls/returns.

For OpenMP constructs, there are typically four standard events:

• enter: execution of an OpenMP construct is starting

• begin: execution of the body of an OpenMP construct is starting

• end: execution of the body of an OpenMP construct has finished

• exit: execution of an OpenMP construct has finished

The events are assigned to event levels according to the level of detail or granularity they represent for a particular
construct. Enter/exit events provide the boundary of the overall execution of a given construct. The begin/end events
provide the boundaries of the execution of the user code within the constructs. The exact level assignment depends
also on the OpenMP construct involved. Levels are useful to control the detail of event instrumentation.

The following tables describe the performance events and routines that will be called. The tables are grouped
according to the event groups of Section 3.8. The event is described in the first column along with a prototype of
the POMP function that will called when the event occurs. This prototype is for C programs. The Fortran prototype
may be obtained as described in Section 3.3. The second column describes the event. The third column gives the
group to which the event belongs and the fourth column shows the event levels under which the function should be
called.

OpenMP event /
POMP API Description - called when . . . Group is and Level is
Parallel Enter Event occurs only in the master thread immedi-

ately before a team of threads is formed to start
parallel execution of the parallel region.

Parallel EnterExit or
BeginEnd

POMP Parallel enter(POMP Handle t* handle, int32 thread id,
int32 num threads, int32 if expr result, char ctc[])

Parallel Begin Event occurs in a team thread immediately before
that thread begins its execution in the parallel
region

Parallel BeginEnd

POMP Parallel begin(POMP Handle t handle, int32 thread id)
Parallel End Event occurs in a team thread immediately after

that thread ends its execution in the parallel
region

Parallel BeginEnd

POMP Parallel end(POMP Handle t handle, int32 thread id)
Parallel Exit Event occurs only in the master thread, imme-

diately after all team threads finish parallel exe-
cution of the parallel region and the master
thread leaves the join barrier

Parallel EnterExit or
BeginEnd

POMP Parallel exit(POMP Handle t handle, int32 thread id)

for/do Enter Event occurs in a thread immediately before that
thread enters the OpenMP parallel loop

Loop EnterExit or
Chunks or
IterEvent or
IterBeginEnd

POMP Loop enter(POMP Handle t* handle, int32 thread id,
int64 chunk size, int64 init iter,
int64 final iter, int64 incr, char ctc[])

for/do Chunk Be-
gin

Event occurs in a thread immediately before that
thread enters the chunk of iterations to execute

Loop Chunks

POMP Loop chunk begin(POMP Handle t handle, int32 thread id,
int64 init iter, int64 final iter)

for/do Iter Begin Event occurs in a thread immediately before that
thread enters the indicated iteration

Loop IterBeginEnd

POMP Loop iter begin(POMP Handle t handle, int32 thread id,
int64 iter)

for/do Iter Event Event occurs in a thread immediately before that
thread enters the indicated iteration

Loop IterEvent

POMP Loop iter event(POMP Handle t handle, int32 thread id,
int64 iter)

for/do Iter End Event occurs in a thread immediately after that
thread completes the indicated iteration

Loop IterBeginEnd

POMP Loop iter end(POMP Handle t handle, int32 thread id)
for/do Chunk End Event occurs in a thread immediately after that

thread completes the chunk of iterations to exe-
cute

Loop Chunks

POMP Loop chunk end(POMP Handle t handle, int32 thread id)
for/do Exit Event occurs in a thread immediately after that

thread exits the OpenMP parallel loop construct
Loop EnterExit or

Chunks or
IterEvent or
IterBeginEnd

POMP Loop exit(POMP Handle t handle, int32 thread id)

Table 1: Parallel and Loop Event Groups

OpenMP event /
POMP API Description - called when . . . Group is and Level is
Workshare Enter Event occurs in a thread immediately before that

thread enters the OpenMP workshare construct
Workshare EnterExit or

BeginEnd
POMP Workshare enter(POMP Handle t* handle, int32 thread id, char ctc[])
Workshare Begin Event occurs in a thread immediately before that

thread begins the OpenMP workshare struc-
tured block

Workshare BeginEnd

POMP Workshare begin(POMP Handle t handle, int32 thread id)
Workshare End Event occurs in a thread immediately after that

thread ends the OpenMP workshare structured
block

Workshare BeginEnd

POMP Workshare end(POMP Handle t handle, int32 thread id)
Workshare Exit Event occurs in a thread immediately after that

thread exits the OpenMP workshare construct
Workshare EnterExit or

BeginEnd
POMP Workshare exit(POMP Handle t handle, int32 thread id)

Sections Enter Event occurs in a thread immediately before that
thread enters the OpenMP sections construct

Workshare EnterExit or
BeginEnd

POMP Sections enter(POMP Handle t* handle, int32 thread id, char ctc[])
Section Begin Event occurs in a thread immediately before that

thread begins its execution of the section struc-
tured block

Workshare BeginEnd

POMP Section begin(POMP Handle t handle, int32 section num, int32 thread id)
Section End Event occurs in a thread immediately after that

thread ends its execution of the section struc-
tured block

Workshare BeginEnd

POMP Section end(POMP Handle t handle, int32 thread id)
Sections Exit Event occurs in a thread immediately after that

thread exits the OpenMP sections construct
Workshare EnterExit or

BeginEnd
POMP Sections exit(POMP Handle t handle, int32 thread id)

Single Enter Event occurs in a thread immediately before that
thread enters OpenMP single construct

Workshare EnterExit or
BeginEnd

POMP Single enter(POMP Handle t* handle, int32 thread id, char ctc[])
Single Begin Event occurs in a thread immediately after that

thread has obtained exclusive access to begin its
execution of the single structured block

Workshare BeginEnd

POMP Single begin(POMP Handle t handle, int32 thread id)
Single End Event occurs in a thread immediately after that

thread ends its execution of the single struc-
tured block

Workshare BeginEnd

POMP Single end(POMP Handle t handle, int32 thread id)
Single Exit Event occurs in a thread immediately after that

thread exits the OpenMP single construct
Workshare EnterExit or

BeginEnd
POMP Single exit(POMP Handle t handle, int32 thread id)

Table 2: Workshare Event Group

OpenMP event /
POMP API Description - called when . . . Group is and Level is
Critical Enter Event occurs in a thread immediately before that

thread enters the OpenMP critical construct
Sync EnterExit or

BeginEnd
POMP Critical enter(POMP Handle t* handle, int32 thread id, char ctc[])
Critical Begin Event occurs in a thread immediately after that

thread has obtained exclusive access to begin its
execution of the critical structured block

Sync BeginEnd

POMP Critical begin(POMP Handle t handle, int32 thread id)
Critical End Event occurs in a thread immediately after that

thread ends its execution of the critical struc-
tured block

Sync BeginEnd

POMP Critical end(POMP Handle t handle, int32 thread id)
Critical Exit Event occurs in a thread immediately after that

thread exits the OpenMP critical construct
Sync EnterExit or

BeginEnd
POMP Critical exit(POMP Handle t handle, int32 thread id)

Master Begin Event occurs only in the master thread immedi-
ately before it begins its execution of the master
structured block

Sync BeginEnd

POMP Master begin(POMP Handle t* handle, int32 thread id, char ctc[])
Master End Event occurs only in the master thread immedi-

ately after it ends its execution of the master
structured block

Sync BeginEnd

POMP Master end(POMP Handle t handle, int32 thread id)

Barrier Enter Event occurs in a thread immediately before that
thread enters the explicit OpenMP barrier con-
struct

Sync EnterExit

POMP Barrier enter(POMP Handle t* handle, int32 thread id, char ctc[])
Barrier Exit Event occurs in a thread immediately after that

thread exits the explicit OpenMP barrier con-
struct

Sync EnterExit

POMP Barrier exit(POMP Handle t handle, int32 thread id)

Implicit Barrier En-
ter

Event occurs in a thread immediately before that
thread enters an implicit OpenMP barrier oc-
curring in parallel, do/for, workshare,
sections, and single constructs

Sync EnterExit

POMP Implicit barrier enter(POMP Handle t* handle, int32 thread id,
char ctc[])

Implicit Barrier
Exit

Event occurs in a thread immediately after that
thread exits the implicit OpenMP barrier

Sync EnterExit

POMP Implicit barrier exit(POMP Handle t handle, int32 thread id)

Flush Event Event occurs in a thread immediately after the
flush operation completes for that thread

Sync Event

POMP Flush event(POMP Handle t* handle, int32 thread id, char ctc[])

Atomic Event Event occurs in a thread immediately after that
thread exits the OpenMP atomic region

Sync Event

POMP Atomic event(POMP Handle t* handle, int32 thread id, char ctc[])

Table 3: Sync Group Events for critical, atomic, master, barrier and flush

OpenMP event /
POMP API Description - called when . . . Group is and Level is
Ordered Enter Event occurs in a thread immediately before that

thread enters OpenMP ordered construct
Sync EnterExit or

BeginEnd
POMP Ordered enter(POMP Handle t* handle, int32 thread id, char ctc[])
Ordered Begin Event occurs in a thread immediately after that

thread has entered the code in the ordered struc-
tured block

Sync BeginEnd

POMP Ordered begin(POMP Handle t handle, int32 thread id)
Ordered End Event occurs in a thread immediately after that

thread ends execution of the code in the ordered
structured block

Sync BeginEnd

POMP Ordered end(POMP Handle t handle, int32 thread id)
Ordered Exit Event occurs in a thread immediately after that

thread exits the OpenMP ordered construct
Sync EnterExit or

BeginEnd
POMP Ordered exit(POMP Handle t handle, int32 thread id)

Table 4: Sync Group Events for ordered

OpenMP event /
POMP API Description - called when . . . Group is and Level is
Function Enter Event occurs in a thread immediately before that

thread executes a call to a function
User EnterExit

POMP Function enter(POMP Handle t* handle, int32 thread id, char ctc[])
Function Begin Event occurs in a thread immediately before that

thread begins execution of the function body, after
the function is called

User BeginEnd

POMP Function begin(POMP Handle t* handle, int32 thread id, char ctc[])
Function End Event occurs in a thread immediately after that

thread ends execution of the function body, before
the function returns

User BeginEnd

POMP Function end(POMP Handle t handle, int32 thread id)
Function Exit Event occurs in a thread immediately after the

thread returns from a called function
User ExitEnter

POMP Function exit(POMP Handle t handle, int32 thread id)
Function Event For a very small function, event occurs on entry to

the function
User Event

POMP Function event(POMP Handle t* handle, int32 thread id, char ctc[])

User Region Begin Event occurs in a thread immediately before that
thread begins execution of the user-defined struc-
tured block

User BeginEnd

POMP User region begin(POMP Handle t* handle, int32 thread id,
char ctc[])

User Region End Event occurs in a thread immediately after that
thread ends execution of the user-defined struc-
tured block

User BeginEnd

POMP User region end(POMP Handle t handle, int32 thread id)
User Event Signal a user-defined event User Event
POMP User event(POMP Handle t* handle, int32 thread id, char ctc[])

Table 5: User Event Group

OpenMP event /
POMP API Description - called when . . . Group is and Level is
omp init lock
Event

Event occurs in a thread when the
omp init lock() is called by that
thread

Runtime EnterExit or
Event

POMP Init lock event(POMP Handle t* handle, int32 thread id,
omp lock t lock id, char ctc[])

omp destroy lock
Event

Event occurs in a thread when the
omp destroy lock() is called by that
thread

Runtime EnterExit or
Event

POMP Destroy lock event(POMP Handle t* handle, int32 thread id,
omp lock t lock id, char ctc[])

omp set lock Enter Event occurs when omp set lock() is
called by the thread

Runtime EnterExit

POMP Set lock enter(POMP Handle t* handle, int32 thread id,
omp lock t lock id, char ctc[])

omp set lock Exit Event occurs in a thread immediately after the
omp set lock() completes

Runtime EnterExit

POMP Set lock exit(POMP Handle t handle, int32 thread id,
omp lock t lock id)

omp set lock Event Event occurs in a thread immediately after the
omp set lock() completes

Runtime Event

POMP Set lock event(POMP Handle t* handle, int32 thread id,
omp lock t lock id, char ctc[])

omp unset lock
Event

Event occurs in a thread when the
omp unset lock() is called by that
thread

Runtime EnterExit or
Event

POMP Unset lock event(POMP Handle t* handle, int32 thread id,
omp lock t lock id, char ctc[])

omp test lock
Event

Event occurs in a thread immediately after
omp test lock() completes

Runtime EnterExit or
Event

POMP Test lock event(POMP Handle t* handle, int32 thread id,
omp lock t lock id, int32 was lock set, char ctc[])

Table 6: Runtime Group Events for Lock API functions

OpenMP event /
POMP API Description - called when . . . Group is and Level is
omp init nest lock
Event

Event occurs in a thread when the
omp init nest lock() is called by
that thread

Runtime EnterExit or
Event

POMP Init nest lock event(POMP Handle t* handle, int32 thread id,
omp nest lock t lock id, char ctc[])

omp destroy nest lock
Event

Event occurs in a thread when the
omp destroy nest lock() is
called by that thread

Runtime EnterExit or
Event

POMP Destroy nest lock event(POMP Handle t* handle, int32 thread id,
omp nest lock t lock id, char ctc[])

omp set nest lock Enter Event occurs when
omp set nest lock() is called
by that thread

Runtime EnterExit

POMP Set nest lock enter(POMP Handle t* handle, int32 thread id,
omp nest lock t lock id, char ctc[])

omp set nest lock Exit Event occurs in a thread immediately af-
ter the omp set nest lock() com-
pletes

Runtime EnterExit

POMP Set nest lock exit(POMP Handle t handle, int32 thread id,
omp nest lock t lock id)

omp set nest lockEvent Event occurs in a thread immediately af-
ter the omp set nest lock() com-
pletes

Runtime Event

POMP Set nest lock event(POMP Handle t* handle, int32 thread id,
omp nest lock t lock id, char ctc[])

omp unset nest lock
Event

Event occurs in a thread when the
omp unset nest lock() is called
by that thread

Runtime EnterExit or
Event

POMP Unset nest lock event(POMP Handle t* handle, int32 thread id,
omp nest lock t lock id, char ctc[])

omp test nest lock
Event

Event occurs in a thread immediately af-
ter the omp test nest lock() com-
pletes

Runtime EnterExit or
Event

POMP Test nest lock event(POMP Handle t* handle, int32 thread id,
omp nest lock t lock id, int32 was lock set, char ctc[])

Table 7: Runtime Group Events for Nested Lock API functions

OpenMP event /
POMP API Description - called when . . . Group is and Level is
omp set num threads
Event

Event occurs in a thread when
omp set num threads() is called by
that thread

Runtime Event

POMP Set num threads event(POMP Handle t* handle, int32 thread id,
int32 num threads, char ctc[])

omp get num threads
Event

Event occurs in a thread when
omp get num threads() is called by
that thread

Runtime Event

POMP Get num threads event(POMP Handle t* handle, int32 thread id,
int32 num threads, int32 char ctc[])

omp get max threads
Event

Event occurs in a thread when
omp get max threads() is called by
that thread

Runtime Event

POMP Get max threads event(POMP Handle t* handle, int32 thread id,
int32 num threads, char ctc[])

omp get thread num
Event

Event occurs in a thread when
omp get thread num() is called
by that thread

Runtime Event

POMP Get thread num event(POMP Handle t* handle, int32 thread id,
int32 thread num, char ctc[])

omp get num procs
Event

Event occurs in a thread when
omp get num procs() is called
by that thread

Runtime Event

POMP Get num procs event(POMP Handle t* handle, int32 thread id,
int32 num procs, char ctc[])

omp in parallel
Event

Event occurs in a thread when
omp in parallel() is called by
that thread

Runtime Event

POMP In parallel event(POMP Handle t* handle, int32 thread id,
int32 is parallel, char ctc[])

omp set dynamic
Event

Event occurs in a thread when
omp set dynamic() is called by
that thread

Runtime Event

POMP Set dynamic event(POMP Handle t* handle, int32 thread id,
int32 is dynamic, char ctc[])

omp get dynamic
Event

Event occurs in a thread when
omp get dynamic() is called by
that thread

Runtime Event

POMP Get dynamic event(POMP Handle t* handle, int32 thread id,
int32, is dynamic, char ctc[])

omp set nested Event Event occurs in a thread when
omp set nested() is called by
that thread

Runtime Event

POMP Set nested event(POMP Handle t* handle, int32 thread id,
int32 is nested, char ctc[])

omp get nested Event Event occurs in a thread when
omp get nested() is called by
that thread

Runtime Event

POMP Get nested event(POMP Handle t* handle, int32 thread id,
int32 is nested, char ctc[])

Table 8: Runtime Group Events for Miscellaneous API functions

