
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Interner Bericht

Knowledge Specification for
Automatic Performance Analysis

APART Technical Report
Revised Version

Thomas Fahringer, Michael Gerndt, Bernd Mohr,
Felix Wolf, Graham Riley, Jesper Larsson Träff

FZJ-ZAM-IB-2001-08

August 2001

(letzte Änderung: 22.08.2001)

Knowledge Specification for Automatic Performance Analysis

APART Technical Report

Revised Version 1

http://www.fz-juelich.de/apart

Workpackage 2

Identification and Formalization of Knowledge

Thomas Fahringer
Institute for Software Science

University of Vienna
tf@par.univie.ac.at

Michael Gerndt
Institut für Informatik, LRR

Technische Universität München
gerndt@in.tum.de

Bernd Mohr, Felix Wolf
Central Institute for Applied Mathematics

Research Centre Juelich
b.mohr@fz-juelich.de
f.wolf@fz-juelich.de

Graham Riley
Department of Computer Science

University of Manchester
griley@cs.man.ac.uk

Jesper Larsson Träff
C&C Research Laboratories

NEC Europe Ltd.
traff@ccrl-nece.technopark.gmd.de

August 22, 2001

1The ESPRIT IV Working Group on Automatic Performance Analysis: Resources and Tools is funded under
Contract No. 29488

Abstract

The lack of a useful and accurate software infrastructure for measuring, modeling, and analyzing the
performance of a wide variety of programming paradigms and architecture platforms is a critical issue
for performance-oriented program development. Commonly, a cyclic process is employed to tune the
performance of programs which includes the gathering of performance data through measurement and
prediction and the analysis of the data collected on-the-fly or during a postmortem session to yield
summary statistics and histories of program behavior. Usually, this process also involves comparison
of the performance data with that of previous program versions. So far most approaches require the
programmer to control this tedious, time-consuming, and error-prone process which is typically driven
by some informal hypotheses about potential performance problems. Moreover, many tools are platform
and language dependent and cannot correlate performance data gathered at lower levels (for example,
from hardware counters) with higher-level programming paradigms. Further, they tend to focus only
on specific program and machine behavior, and do not provide sufficient support to infer important
performance properties.
In this report we describe a novel approach to the formalization of performance bottlenecks and the
data required to detect them with the aim of supporting automatic performance analysis for a large
variety of programming paradigms and architectures. We present the APART Specification Language
(ASL) developed as part of the APART Esprit IV Working Group on Automatic Performance Analysis:
Resources and Tools. This language allows the description of performance-related data through the
provision of an object-oriented specification model and supports definition of performance properties in
a novel formal notation. Performance-related data can either be static (gathered at compile-time, e.g.
code regions, control and data flow information, predicted performance data, etc.) or dynamic (gathered
at run-time, e.g. timing events, performance summaries, etc.) and is used as a basis for describing
performance properties. A performance property (e.g. load imbalance, communication, cache misses,
etc.) characterizes a specific type of performance behavior which may be present in a program. Checks
for which properties are present in (the execution of) a program are given by a set of conditions defined
over the performance-related data. Conditions have an associated confidence level which indicates the
degree of certainty in the diagnosis of the presence of the performance property. Performance properties
also have an associated severity measure (usually an expression), the magnitude of which specifies the
importance of the property in terms of its contribution to limiting the performance of the program. The
severity can be used to focus effort on the important performance issues during the (manual or automatic)
performance tuning process.
In the second year of APART, ASL has been extended by new concepts that include templates and
metaproperties. Templates are used to describe similar performance properties with a generic represen-
tation. Commonly only the cost function in a property is used to parameterize a template which has
the advantage of very compact and easy to understand performance properties. Moreover, in order to
support the specification of performance properties based on other performance properties, we invented
metaproperties. By incorporating this concept we can formulate properties based on performance-related
data and components (condition, confidence, and severity) of existing performance properties. ASL has
been further extended by patterns to describe compound events that indicated the existence of perfor-
mance properties which can only be detected in event traces.
Our approach is very general and can be efficiently employed to describe many performance properties
for a large variety of programming paradigms and architectures. We illustrate our approach by applying
it to some of the most important programming paradigms for performance-oriented scientific computing
including MPI, OpenMP, and HPF.

ii

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Overall Design . 2
1.3 Related Work . 3

2 Performance Related Data Specification 7
2.1 Specification Language . 7
2.2 Standard Class Library . 7
2.3 Paradigm Specific Data Models . 9

2.3.1 MPI Classes . 9
2.3.2 HPF Classes . 12
2.3.3 OpenMP Classes . 14

3 Performance Property Specification 19
3.1 Specification Language . 19
3.2 Property Templates and Metaproperties . 23
3.3 Properties Based on Pattern Matching in Traces . 24

3.3.1 Abstractions . 24
3.3.2 Example: MPI Related Abstractions . 25
3.3.3 Specifying Compound Events . 25
3.3.4 Compound Events in ASL . 26
3.3.5 Pattern Matches . 26
3.3.6 Example: MPI Related Compound Events . 27
3.3.7 Using Patterns in Property Definitions . 28
3.3.8 Summary . 28

3.4 Paradigm Related Property Specification . 28
3.4.1 MPI . 28

3.4.1.1 MPI global definitions . 30
3.4.1.2 TotalCost . 30
3.4.1.3 CommCost, SyncCost, IoCost . 31
3.4.1.4 CacheCost . 31
3.4.1.5 DominatingCommFunction . 32
3.4.1.6 DominatingCommCall . 32
3.4.1.7 FrequentCommunication . 33
3.4.1.8 BigMessages . 33
3.4.1.9 LateSender . 33
3.4.1.10 LateReceiver . 34
3.4.1.11 UnevenMpDistribution . 34

iii

iv CONTENTS

3.4.1.12 LoadImbalanceAtBarrier . 34
3.4.1.13 SlowSlaves . 35
3.4.1.14 OverloadedMaster . 35
3.4.1.15 WrongOrder . 36
3.4.1.16 FrequentCommInProcess . 37
3.4.1.17 FrequentCommOnAllProcesses . 37
3.4.1.18 CacheMissesPerInstance . 38
3.4.1.19 Property for all instances of a region . 39
3.4.1.20 Property template for some instances . 40
3.4.1.21 FrequentCommSomeProcesses . 41

3.4.2 HPF . 41
3.4.2.1 HPF global definitions and templates . 41
3.4.2.2 template costs . 42
3.4.2.3 costs . 42
3.4.2.4 communication costs . 42
3.4.2.5 forall synchronization costs . 43
3.4.2.6 io costs . 43
3.4.2.7 parallel organization costs . 43
3.4.2.8 redist costs . 44
3.4.2.9 serialization costs . 45
3.4.2.10 uneven work distribution . 46
3.4.2.11 inspector costs . 46

3.4.3 OpenMP . 46
3.4.3.1 OpenMP global definitions . 47
3.4.3.2 Template costs . 47
3.4.3.3 template rel costs . 48
3.4.3.4 costs . 48
3.4.3.5 measurable costs . 48
3.4.3.6 unmeasurable costs . 49
3.4.3.7 non parallelized code . 49
3.4.3.8 synchronization . 49
3.4.3.9 irregular sync across instances . 50
3.4.3.10 load imbalance . 50
3.4.3.11 remote accesses . 50
3.4.3.12 remote access to variable . 51
3.4.3.13 multiple transfer of same data . 51
3.4.3.14 wrong page distribution for variable . 52
3.4.3.15 parallel organization . 52

4 Conclusions and Future Work 54

A Unified Modeling Language Class Diagrams 57

B APART Base Class Library 59

C MPI Property Specification 61

D HPF Property Specification 71

E OpenMP Property Specification 77

Chapter 1

Introduction

1.1 Overview

Performance-oriented program development can be a daunting task. In order to achieve high or at least
respectable performance on today’s multiprocessor systems, careful attention to a plethora of system and
programming paradigm details is required. Commonly, programmers go through many costly and time
consuming cycles of experimentation involving the gathering and analysis (a-priori and post-mortem) of
performance data, detection of performance problems, and code refinements. Clearly, the programmer
must be intimately familiar with many aspects related to this experimental process. Although there exist
a large number of tools to assist the programmer in performance experimentation, the responsibility for
taking the majority of strategic decisions still lies with the programmer. It is particularly distressing that
many performance tools remain platform and language dependent, cannot correlate performance data
gathered at a lower level with higher-level programming paradigms, focus only on specific program and
machine behavior, and do not provide sufficient support to infer important performance properties.
In this report we describe a novel approach to the task of formalizing the description of performance bot-
tlenecks and the data required to detect them with the aim of supporting automatic performance analysis
for a large variety of programming paradigms and architectures. This research has been performed as
part of APART Esprit IV Working Group on Automatic Performance Analysis: Resources and Tools
(APART, http://www.fz-juelich.de/apart).
In the remainder of this report we use the following terminology:

Performance-Related Data: Performance-related data defines information that can be used to de-
scribe performance properties of a program. There are two classes of performance related data.
First, static data specifies information that can be determined without executing a program on a
target machine. Static data is useful in order to specify dynamic performance related data and to
formalize performance properties. Examples include code versions, program regions, source files,
control and data flow information, loop scheduling information, predicted performance data, and in-
formation on the programming paradigm (e.g. master-slave, divide-and-conquer, bulk-synchronous,
etc.). Second, dynamic performance related data describes the dynamic behavior of a program dur-
ing execution on a target machine. This includes timing events, performance summaries and metrics,
and communication patterns that are statically undetectable, etc.

Performance Property: A performance property (e.g. load imbalance, communication, cache misses,
redundant computations, etc.) characterizes a specific performance behavior of a program and
can be checked by a set of conditions. Conditions are associated with a confidence value (between
0 and 1) indicating the degree of confidence about the existence of a performance property. In
addition, for every performance property a severity measure is provided the magnitude of which
specifies the importance of the property. The severity can be used to focus effort on the important
performance issues during the (manual or automatic) performance tuning process. Performance
properties, confidence and severity are defined over performance-related data.

Performance Problem: A performance property is a performance problem, iff its severity is greater
than a user- or tool-defined threshold.

1

2 CHAPTER 1. INTRODUCTION

Performance Bottleneck: A program has a unique performance bottleneck which is its most severe
performance property. If this bottleneck is not a performance problem, then the program’s perfor-
mance is acceptable and does not need any further tuning.

For example, during performance analysis, a specific code region may be examined to determine the
existence of a performance property denoted communication. The condition for this property holds if
any process executing the region invokes communication (that is, if communication time for the region
is greater than zero). The confidence value is 1, since measured communication time represents a proof
for the presence of this property. The severity of the property may be calculated as the percentage
of the communication time in the region relative to the execution time of the entire program. If the
severity is above a user- or tool-defined threshold, then the communication performance property defines
a performance problem. If this performance problem is the most severe of all the performance problems
in the program, then it is the performance bottleneck. Commonly, a programmer may try to eliminate,
or at least to alleviate, this bottleneck before examining any other performance problems.
This report introduces the APART Specification Language (ASL) which allows the description of
performance-related data through the provision of an object-oriented specification model and which
supports the definition of performance properties in a novel formal notation. Our object-oriented specifi-
cation model is used to declare – without the need to compute – performance information. It is similar to
Java, uses only single inheritance and does not require methods. A novel syntax has been introduced to
specify performance properties. Moreover, ASL has been extended in the second year of APART by new
concepts that include templates and metaproperties. Templates are used to describe similar performance
properties with a generic representation. Commonly only the cost function in a property is used to
parameterize a template which has the advantage of very compact and easy to understand performance
properties. Moreover, in order to support the specification of performance properties based on other
performance properties, we invented metaproperties. By incorporating this concept we can formulate
properties based on performance-related data and components (condition, confidence, and severity) of
existing performance properties. ASL has been further upgraded by the ability to describe patterns.
Compound events can be specified which indicate the existence of performance properties that can only
be found in event traces.
The organization of this report is as follows. We continue this chapter with the presentation of an
overall design of an automatic performance analysis environment that incorporates the specification of
performance properties. Related work is discussed in Section 1.3. In the next chapter, Chapter 2, we
describe our object oriented specification model for performance-related data by using UML (unified
modeling language) class diagrams. We apply this model to some of the most important programming
paradigms in current use including MPI, OpenMP, and HPF. In Chapter 3 we describe our syntax for
performance property specification including the syntax for templates, metaproperties, and patterns.
Again, paradigm related property specifications are presented for MPI, OpenMP, and HPF. Conclusions
and Future work are discussed in Chapter 4. In the Appendix we give an overview of UML, and summarize
performance related data and performance properties.

1.2 Overall Design

Performance property specification as described in this report can be considered as part of a possible
design for an automatic performance analysis environment. This environment comprises three components
(see Figure 1.1):

Performance Property Specification defines information about performance properties for the cur-
rent programming paradigm and machine, in combination with proof conditions and severity data.

Performance Process Specification reflects the knowledge applied in tuning the performance of pro-
grams including, for example, how many hypotheses about performance problems are evaluated.
This evaluation can be based on stepwise refinement, i.e. the process specification determines which
hypotheses are evaluated first before more precise hypotheses are examined. For example, it may
be useful to prove that message passing is significant in a subroutine before examining individual
MPI calls. More detailed analysis may require considerably more performance-related data.

1.3. RELATED WORK 3

Automated
Performance Tool

Data Supply
Tool

Supplied Data
Specification

Data Supply
Tool

Supplied Data
Specification

Data Supply
Tool

Supplied Data
Specification

Performance Property
 Specification

Performance Process
Specification

Data Supply
Tool

Supplied Data
Specification

Figure 1.1: Design of an integrated automatic performance analysis environment.

Supplied Data Specification describes, for a particular tool, which of the performance-related data re-
quired for performance property specification can be obtained from that tool. Moreover, query com-
mands to access this data can be indicated. Examples for such tools are PARADYN [MCCHI 95],
SCALA [FaScPa 99], TAU [MoBrMa 94], and VAMPIR [NaArWeHoSo 96], etc. Based on the sup-
plied data specifications, an automated performance analysis environment can use existing tools to
access relevant data in the search for performance problems and bottlenecks.

An integrated system combining all three components should substantially alleviate the task of re-
targeting performance tools to new architectures and programming paradigms, facilitate the develop-
ment of new performance tools and also enable the enhancement of existing tools by providing access to
a wealth of performance information and analysis capabilities.

1.3 Related Work

The specification of performance problems as presented in this report is a novel approach. Relatively few
existing performance analysis tools and related projects apply specification languages in the context of
performance analysis.
The most well-known automatic performance analysis tool is Paradyn [MCCHI 95]. Paradyn performs an
automatic online analysis using dynamic instrumentation for monitoring. The Performance Consultant
(PC) searches for performance bottlenecks according to the W 3 Search Model: each potential bottleneck
is expressed in terms of why there is a problem, where in the application the problem is found (i.e., a
focus), and when the problem occurs, i.e., in which phase(s) of the execution.
Hypotheses are conditions of the form metric,focus > threshold, where metric is a time-varying function
that characterizes some aspect of a parallel program performance, such as CPU utilization or num-
ber of synchronization operations, and focus is the program location where the metric is measured.
While metrics can be defined via the Metric Description Language (MDL) [Paradyn 98] the set of bot-
tleneck hypotheses is currently predefined. It includes CPUbound, Excessive Sync Waiting Time, Exces-
siveIOBlockingTime, and TooManySmallIOOps. The metric description specifies among other things the
measurement basis (counter or timer), the aggregate operator (average, sum, minimum, or maximum)
and the instrumentation actions.
The Autopilot [Re 98] project integrates dynamic performance instrumentation and on-the-fly perfor-
mance data reduction with configurable, malleable resource management algorithms, and a real-time
adaptive control mechanism that automatically chooses and configures resource management algorithms
based on application request patterns and observed system performance. The goal is the creation of an
infrastructure for building resilient, distributed and parallel applications. The Autopilot infrastructure

4 CHAPTER 1. INTRODUCTION

is built on the lessons and software from the successful Pablo performance environment [Re 93] and the
experiences with adaptive file systems.
A rule-based specification of performance bottlenecks and the analysis process was developed within the
context of the SVM-Fortran project [BeGeKr 96]. The performance analysis tool OPAL [GeKrOz 95]
supports post-mortem analysis and used in combination with the monitoring system SAM, it realizes an
incremental performance analysis process. New measurements can be requested based on the user’s insight
in the performance behavior. The measurements are executed during the next program run without
having to recompile the code. Based on experience gained in applying this tool to real applications, a
rule-based design for the automation of OPAL was developed [GeKr 97]. The rule base consists of a
defined set of parameterized hypothesis with proof rules and refinement rules. The proof rules determine
whether a hypothesis is valid based on the measured performance data. The refinement rules specify
which new hypotheses are generated from a proven hypothesis. Therefore, the refinement rules specify
the analysis process while the proof rules specify the knowledge about bottlenecks.
Another approach is to define a performance bottleneck as an event pattern or compound event which
may occur during execution of a parallel program. Such patterns have to be detected in an event trace
provided by tools like PAT [GaMo 98] after program termination. The compound event is built from
primitive events such as those associated with entering a program region or sending a message.
EDL [BaWi 83] allows the definition of compound events based on extended regular expressions. Primitive
events are clustered to higher-level events by certain formation operators. Relational expressions over
the attributes of the constituent events place additional constraints on valid event sequences obtained
from the regular expression. Abstraction mechanisms allow the reuse of already defined event patterns
to form custom hierarchies of events.
EARL [WoMo 98] describes event patterns in a more procedural fashion as scripts in a high-level event-
trace-analysis language, which is implemented as an extension of common scripting languages like Tcl, Perl
or Python. Frequently used higher-level events like region instances or message transfers are represented
by links among their constituent events, which can be easily traversed by a script. In addition, EARL
supports navigation through function-call stacks and message queues of a chosen execution state of the
parallel program, enabling compact specification and efficient detection of the requested compound event.
Besides these tools and specification concepts for performance problems, a few others tools have been
developed supporting automatic performance analysis.
KAPPA-PI [EsMaLu 98] is an automatic performance analyzer for PVM-programs developed at the
Universitat Autonoma de Barcelona . It is a post-execution tool, implemented in PERL, that evaluates
traces generated by the Tape/PVM monitoring library or by the VAMPIR MPI trace library. Based on
a predefined list of performance bottlenecks, it searches for performance problems and their causes. In
addition to trace data, it analyzes the source code using pattern matching.
One additional design, POIROT, was published by Robert Helm and Allen Malony [HeMa 95]. The design
is based on the concept of heuristic classification. The main properties of a program run are extracted
from trace data by a process called abstraction. These properties are matched against a database of
possible performance bottlenecks and the selected bottleneck is refined to fit additional properties of
the program run. Performance data are gathered via an environment interface that makes POIROT
independent of intricate details of the programming environment, e.g., how to instrument a program.
FINESSE [Mu 99, Mu 00] is a prototype environment designed to support rapid development of parallel
programs for single-address-space computers by both expert and non-expert programmers. The envi-
ronment provides semi-automatic support for systematic, feedback-guided identification and reduction
of the various classes of overhead associated with parallel execution. FINESSE automatically identifies
code regions with significant overhead, classifies and quantifies this overhead and ranks regions according
to their execution time. FINESSE also suggests possible improvements which should lead to improved
implementations.
P 3T [Fa 95, Fa 96] is a static performance estimator for data parallel programs which guides the selec-
tion of efficient data distribution strategies and profitable code transformations. This tool tries to answer
three fundamental questions: 1. What performance bottlenecks exist? 2. Where are these these perfor-
mance bottlenecks in the input program? 3. What must be done in order to gain performance? P 3T
automatically computes a variety of performance parameters including work distribution, number of data
transfers, amount of data transferred, transfer times, network contention, number of cache misses, and
computation times. Through a graphical user interface the programmer can optionally specify for each of

1.3. RELATED WORK 5

these parameters a specific threshold which implies a bottleneck. The default option is that P 3T visual-
izes every computed performance parameter relative to the worst-case value found in the entire program.
Color-coded performance visualization directly guides the user to all bottlenecks of a program found
by P 3T . A list of code transformations is suggested to eliminate or alleviate each specific performance
bottleneck.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Performance Related Data
Specification

A necessary prerequisite for automatic performance analysis is the availability of sufficient information
to allow the examination of the performance behavior of an application on a given architecture.
Performance-related data can be obtained either statically, by using, for instance, program analysis tools,
or dynamically with the aid of monitoring tools. Dynamic information collection requires the application
to be executed on a target machine, whereas accessing static information does not. Examples of static
data include, code versions, program regions, source files, control and data flow information, predicted
performance data, and information on the programming paradigm (e.g. master-slave, divide-and-conquer,
bulk-synchronous, etc.). Timing events, performance summaries and metrics, and communication pat-
terns that are statically undetectable represent dynamic information.
A key issue in our work on automatic performance analysis is to find a well-suited representation of static
and dynamic information such that we can exploit performance-related data obtained from many different
sources (e.g. performance tools, program analysis tools, databases, user provided data, etc.). Moreover,
it is of paramount importance to be able to relate performance information derived from different sources.
These abilities will alleviate current difficulties encountered in the specification of performance properties
and support the task of automatically searching for performance bottlenecks.
In this section, we introduce a specification language for describing performance-related data. We first
present class libraries, in UML notation (see Appendix A), for performance-related data that is program-
ming paradigm independent. Thereafter, specialized class libraries and examples are presented for the
following programming paradigms: MPI, HPF, and OpenMP.

2.1 Specification Language

Figure 2.1 shows the syntax for specifying both static and dynamic performance-related data in Backus
Naur form. Performance-related data is described by a set of classes following an object-oriented style with
single-inheritance. Among others, class members can be of type FLOAT (e.g., for timing measurements),
BOOLEAN (e.g., for flags), INT (e.g., for counting events), STRING (e.g., for naming applications or
files), DATETIME (time at which some event occurs), and reference (e.g. for named enum types and class
names). An identifier is described by ident. SETOF and ENUM enable set and enumeration notations.
Syntax variables in the syntax diagrams ending with “-list” identify a colon-separated list of one or
more elements. For example, string-list represents a list of character constants such as ”DO, FORALL,
WHILE”.

2.2 Standard Class Library

In this section we describe a library of classes that represent static and dynamic information for per-
formance property analysis. We distinguish two sets of classes. First, the set of base classes which

7

8 CHAPTER 2. PERFORMANCE RELATED DATA SPECIFICATION

class-def is CLASS ident [EXTENDS ident]’{’ member-def ∗ ’}’ ’;’
member-def is type ident ’;’
type is FLOAT

or BOOLEAN
or INT
or STRING
or DATETIME
or set-type
or enum-type
or reference

set-type is SETOF type
enum-type is ENUM ident ’{’ string-list ’}’

Figure 2.1: Syntax for describing performance-related data.

is independent of any programming paradigm, and secondly, programming paradigm-dependent classes
comprising shared memory, data parallel, and message passing paradigms. The programming paradigm
dependent classes are shown for HPF (High Performance Fortran [HPF 93]), OpenMP (shared memory
paradigm [DaMe 98]), and MPI (Message Passing Interface [SnOtHUWaDo 98]) which are implementa-
tions of the shared memory, data parallel and message passing paradigm, respectively.
Note that we expect that most data models described with this language will have a similar overall
structure. This similarity was captured in the design of the base classes. Future data models can build
specialized classes in form of subclasses.
The data models presented for MPI, HPF, and OpenMP are intended to be examples. They cover typical
program, machine, and performance data available in programming environments for those paradigms.
Since they have been defined without a concrete programming environment with performance tools pro-
viding performance-related data in mind, it is possible, that those models do not fit the readers favorite
programming environment.
Note that we do not claim that our class library is complete. Our classes, and in particular their attributes,
can be extended to include other static and dynamic information to model relevant performance aspects
of a large variety of programming paradigms.
Figure 2.2 shows the UML representation of the base classes which are programming paradigm indepen-
dent. Initially, there is an application for which performance analysis has to be done. Every application
has a name and may possibly have a number of implementations, each with a unique version number.
Versions may differ with respect to their source files and experiments. Every source file (the contents of
which are stored in a generic string) has one or several static code regions each of which is uniquely speci-
fied by start pos (position where region begins in the source file) and end pos (position where region ends
in the source file). A position in a region is defined by a line and column number with respect to the given
source file. Among other things, regions can be continuous sequences (e.g., entire programs or loops) or
parts (e.g., expressions or even data references) of source-code lines. Regions can have sub-regions. For
instance, we can represent all procedures or loops of a region by using its sub regions attribute.
Experiments – denoting the second attribute of a version – are described by the time (start time) when
the experiment started and the number of processors (nr processors) that were available to execute the
version. Furthermore, an experiment is also associated with a static description of the machine (e.g.
number of processors available) that is used for the experiment. Every experiment includes also dynamic
data, i.e. a set of region summaries (profile) and a set of events (trace). The class RegionSummary
describes performance information across all processes employed for the experiment. Region summaries
are associated with the appropriate region. The class Events represents information about individual
events occurring at runtime, such as sending a message to another process. Each event has a time stamp
attribute determining when the event occurred and a process attribute determining in which process the
event occurred.

2.3. PARADIGM SPECIFIC DATA MODELS 9

Application

name : String

Event

timestamp : float
process : Process

Machine

nr_processors : int

Experiment

start_time : DateTime
nr_processors : int

1

0..*

1

trace 0..*

1

system

1

RegionSummary

1

0..*

1

profile 0..*

Version

version_no : int

1

1..*

1

versions 1..*

1

0..*

1

experiments 0..*

SourceFile

name : String
contents : String

1..*

1..*

1..*

files 1..*

Region

start_pos : Position
end_pos : Position0..*

1

sub_regions

0..*

1

1

region

1

0..*regions 0..*

Figure 2.2: Base classes of performance-related data models.

2.3 Paradigm Specific Data Models

2.3.1 MPI Classes

In this section we describe static and dynamic information for MPI which is an implementation of the
message passing paradigm. Figure 2.3 outlines the classes for describing static information. A new class
MPIApplication is derived from Application. It provides an additional attribute Paradigm which relates
to the paradigm implemented, e.g. master-slave, divide-and-conquer, and bulk-synchronous.
Regions in an MPI program are modeled by two classes Function and FuncCall. Function has two
attribute specifying the number of call sites in the function and the function name. FuncCall has three
attributes identifying the called function, the caller, and the role in the paradigm, e.g. master/slave
send/receive operation.
MPIFunction is a more specialized class derived from Function. Special types of MPI functions are rep-
resented by MPICommFunc, MPISyncFunc, and MPIioFunc. The set of MPI communication functions
is further subdivided into MPIp2pFunc and MPICollFunc. Although MPI Barrier is also a collective
function it is represented by MPISyncFunc and not by MPICollFunc.
MPIp2pFunc provides more specific information about the point-to-point communication. An attribute
type determines whether the underlying communication is based on a send or receive operation. The
communication mode (e.g. buffered, synchronous, ready) is denoted by attribute mode. Blocking or
nonblocking communication can be defined by attribute semantics.
MPICollFunc refers to various collective operations. This class comprises an attribute type for the type
of collective operation (e.g. reduction or broadcast). The precise semantics of the above mentioned MPI
communication modes and types can be found in [SnOtHUWaDo 98].
Figures 2.4 and 2.5, respectively, describe summary and event information which reflects the dynamic
behavior of MPI. Class MPISummary in Figure 2.4 extends the base classRegionSummary (see Figure 2.2)
and determines profile information. An object of this class can either determine information for a single
process or information for all processes. In the latter case, the Proc attribute is set to ALLPROCESSES.
The information provided in MPISummary is:

10 CHAPTER 2. PERFORMANCE RELATED DATA SPECIFICATION

start_pos : Position
stop_pos : Position

Region

MPIFunction

NumCallSites : int
Name : String

Function

CalledFunc : Function
Caller : Function
Role : ParadigmRole

FuncCall

MPIioFunc

Type : CommType
Mode : CommMode
Semantics : CommSemantics

MPIp2pFunc

Type : CollType

MPICollFunc

1

Calls

*

name : String

Application

Paradigm : ParadigmType

MPIApplication

MPICommFunc MPISyncFunc

Figure 2.3: Regions in the MPI data model.

RegionSummary

Proc : Process
Excl : float
Incl : float
CommTime : float
SyncTime : float
IoTime : float
IdleTime : float
MessageLength : int
NrExecutions : int
L1DCacheMisses : int
L1ICacheMisses : int
L2CacheMisses : int
IntInstr : int
FpInstr : int
LoadInstr : int
StoreInstr : int

MPISummary

Figure 2.4: Summaries in the MPI data model

2.3. PARADIGM SPECIFIC DATA MODELS 11

timestamp : float
process : Process

Event

region : Region

Enter Tag : int
Length : int
Destination : Process

Send

Tag : int
Length : int
Sender : Process

Receive

Communic : Communicator
Length : int

Collective

Region : Region
Incl : float
Excl : float
CommTime : float
SyncTime : float
IoTime : float
IdleTime : float
MessageLength : int
L1DCacheMisses : int
L1ICacheMisses : int
L2CacheMisses : int
IntInstr : int
FpInstr : int
LoadInstr : int
StoreInstr : int

Exit

Figure 2.5: Events in the MPI data model.

• Excl: execution time excluding time spent in called routines

• Incl: execution time

• CommTime: communication time

• SyncTime: barrier synchronization time

• IoTime: input/output time

• IdleTime: idle time

• MessageLength: sum of the length of all messages sent

• NrExecutions: number of executions of a given region

• L1DCacheMisses: number of L1 data cache misses

• L1ICacheMisses: number of L1 instruction cache misses

• L2CacheMisses: number of L2 cache misses

• IntInstr: number of executed integer operations

• FpInstr: number of executed floating point operations

• LoadInstr: number of executed load operations

• StoreInstr: number of executed store operations

12 CHAPTER 2. PERFORMANCE RELATED DATA SPECIFICATION

Figure 2.5 describes dynamic events for MPI programs as they are generated by the VAMPIRtrace library
provided by Pallas. Five specialized subclasses of the event base class are introduced for MPI: Enter,
Exit, Send, Receive and Collective.
The Enter and Exit events are generated when the execution of a region, e.g. function or loop, is started
or terminated, respectively. The events provide a reference to that region. The exit event provides the
same performance data as the region summary information. Therefore, individual executions or instances
of regions can be checked for the same behavior. If a send or receive operation is executed, asend or receive
event is generated that specifies additional information, i.e. the tag and length of the message as well
as the sender or destination respectively. An additional event is also generated during the execution of
collective operations. This event specifies the communicator which identifies the partners in the collective
operation, and determines the sum of the lengths of all messages sent by the executing process.
The event data model for MPI is used for the specification of pattern of events in Section 3.3.

2.3.2 HPF Classes

Region
start_pos : Position
end_pos : Position

Dependence
src : Region
dst : Region
type : dep_type
direction : dep_dir
distance : int
level : int

HPFRegion
dirs : setof hpf_directive

0..*

deps

0..*

HPFArrayDimension
decl : HPFDataDeclaration
size : int
type : hpf_distr_type
block_size : int
align : HPFArrayDimension

HPFDataDeclaration
name : String
data_type : String
rank : int
type : hpf_var_arr
alloc : hpf_alloc
format : hpf_distr_format

0..*

decls

0..*

0..*dims 0..*

Figure 2.6: Static performance-related information for HPFRegions .

In this section we describe the class libraries for HPF which is an implementation of the data parallel
programming paradigm. Class HPFRegion extends Region (see Figure 2.2) and comprises the following
attributes (Figure 2.7) representing static performance-related information:

• dirs describes HPF directives such as PROCESSORS, DISTRIBUTED, ALIGN, RESHAPE, IN-
DEPENDENT, etc.

• deps specifies data dependences implied by code regions.

• decls specifies HPF data declarations for scalars and arrays. Attribute alloc denotes whether data
has been declared DYNAMIC or STATIC. For arrays there is additional data provided for every
dimension including size of dimension, distribution and alignment information.

Figure 2.7 displays several subclasses which extend HPFRegion:

• HPFProcedure:

• HPFLoop:

• HPFIfBlock:

2.3. PARADIGM SPECIFIC DATA MODELS 13

HPFLoop

ltype : hpf_loop_type

HPFProcedureCall

HPFArrayAssignment

HPFIfBlock

HPFBasicBlock

HPFProcedure

HPFRegion

dirs : setof hpf_directive

Figure 2.7: Subclasses of HPFRegion.

• HPFBasicBlock:

• HPFProcedureCall:

• HPFArrayAssignment:

Class HPFLoop can be further specified by attribute ltype (e.g. DO, INDEPENDENT, and FORALL).

RegionSummary

HPFSummary
nr_executions : int
duration : float
comm_time : float
dep_comm_time : float
align_comm_time : float
sync_time : float
idle_time : float
io_time : float
compiler_ovh_time : float
inspector_time : float
redistr_time : float
nr_cache_misses : int

HPFProcessSummary
process : Process
nr_executions : int
duration : float
comm_time : float
dep_comm_time : float
align_comm_time : float
sync_time : float
idle_time : float
io_time : float
compiler_ovh_time : float
inspector_time : float
redistr_time : float
nr_cache_misses : int

HPFRegionSummary

1sums 1 1..* proc_sums1..*

Process
process_id : int

1..*processes 1..*

Figure 2.8: Dynamic performance-related information (summaries) in the HPF data model.

Dynamic performance-related data is described by class HPFRegionSummary in Figure 2.8 with the
following attributes:

• processes specifies the set of processes executing a region

• sums reflects performance summary information across all processes executing the region

• proc sums indicates performance summary information for a region with respect to individual pro-
cesses.

Class HPFSummary contains several performance attributes which are average values across all processes
with respect to a specific region:

14 CHAPTER 2. PERFORMANCE RELATED DATA SPECIFICATION

• nr executions: number of times the region has been executed

• duration: time spent in executing the region

• comm time: communication time

• dep comm time: communication time caused by data dependences

• align comm time: communication time caused by data alignment

• comm time: communication time

• sync time: synchronization time

• idle time: idle time

• io time: input/output time

• compiler ovh time: compiler overhead time

• inspector time: time spent in inspector/executor phase (compiler inserted code to handle irregular
problems)

• redistr time: time spent in redistribution of arrays

• nr cache misses: number of cache misses.

Class HPFProcessSummary contains all attributes of class HPFSummary restricted to average values for
a specific process.

2.3.3 OpenMP Classes

Figure 2.9 shows the classes that model static information for OpenMP programs. Class SmRegion is a
subclass of Region (see Figure 2.2) and contains an attribute with data dependence information about the
modeled region. SmRegion is then further refined by two subclasses ParallelRegion and SequentialRegion
which, respectively, describe parallel and sequential regions. Note that in OpenMP a master thread is
responsible for the execution of sequential regions and is also responsible for engaging other threads in the
execution of parallel regions. Typically, for efficiency reasons, threads will sit in some form of idle pool
while the master executes sequential regions, rather than threads being continually created and destroyed
by the master in an explicit fork/join model. Currently we have defined four sequential regions including:

• Function

• IfBlock

• BasicBlock, and

• FunctionCall

which respectively, refer to a function, IF-THEN-ELSE construct, basic block (single-entry-exit code
regions – [AhSeUl 88]), and a function call in the OpenMP program. When a master thread encounters
a parallel region it releases a set of threads from an idle pool (they typically are waiting on a region entry
barrier) in order to execute the region in parallel. Parallel regions include a boolean variable no wait exit
which denotes whether or not the region is terminated by an explicit exit barrier operation. A specific
execution of a region corresponds to a region instance. The following parallel regions are modeled:

• PRegion correspond to OpenMP’s parallel region which is a block of code whose instances are
executed by all threads in a replicated mode.

• PSection refer to OpenMP’s parallel sections each of which is executed by a specific thread in
parallel.

2.3. PARADIGM SPECIFIC DATA MODELS 15

Region

start_pos : Position
end_pos : Position

PDo

scheduling_strategy : scheduling_type

PSection

PRegion

SequentialRegion

SmRegion

Dependence

src : Region
dst : Region
type : dep_type
direction : dep_dir
distance : int
level : int

0..*

deps

0..*

Function

IfBlock

BasicBlock

FunctionCall

ParallelRegion

no_wait_exit : boolean

Figure 2.9: OpenMP classes for static information

• PDo relates to OpenMP’s parallel DO construct whose iterations are executed by a set of threads in
parallel. The DO loop’s iterations can be distributed in various ways including STATIC(CHUNK),
DYNAMIC(CHUNK), and GUIDED(CHUNK) onto the set of threads (as defined in the OpenMP
standard). The distribution is specified in class PDo. STATIC(CHUNK) distribution means that
the set of iterations are consecutively distributed onto the threads in blocks of CHUNK size (re-
sulting in block and cyclic distributions). DYNAMIC(CHUNK) distribution implies that iterations
are distributed in blocks of CHUNK size to threads on a first-come-first-served basis. GUIDED
(CHUNK) means that blocks of exponentially decreasing size are assigned on a first-come-first-
served basis. The size of the smallest block is determined by CHUNK size.

Figure 2.10 shows the OpenMP class library for dynamic information. Class SmRegionSummary extends
class RegionSummary (see Figure 2.2) and comprises three attributes: nr executions specifies the number
of times a region has been executed by the master thread, sums describes summary information across all
region instances, and instance sums relates to summary information for a specific region instance. The
attributes of class SmSums include:

• duration: time needed to execute region by master thread

• non parallelized code: time needed to execute non-parallelized code

• seq fraction: non parallelized code
duration

• nr remote accesses: number of accesses to remote memory by load and store operations in ccNUMA
machines [CuSiGu 99]

• scheduling: time needed for scheduling operations (e.g. scheduling of threads)

• additional calc: time needed for additional computations in parallelized code (e.g. to enforce a
specific distribution of loop iterations) or for additional computations (e.g. where it is cheaper for
all threads to compute a value rather than communicate it, possibly with synchronization costs)

16 CHAPTER 2. PERFORMANCE RELATED DATA SPECIFICATION

RegionSummary

SmRegionSummary

nr_executions : int

SmSums

duration : float
non_parallelized_code : float
seq_fraction : fload
nr_remote_accesses : int

scheduling : float
additional_calc : float
cross_thread_dep_crtl : float
cross_thread_dep_wait : float
region_wait : float
region_ctrl : float
nr_cache_misses : int

1

sums

1

SmThreadSums

thread_no : int

region_wait : float
nr_remote_accesses : int
additional_calc : float
cross_thread_dep_crtl : float
cross_thread_dep_wait : float
nr_cache_misses : int

0..*thread_sums 0..*

SmInstanceSums

nr_threads : int
duration : float
non_parallelized_code : float
seq_fraction : fload
nr_remote_accesses : int
scheduling : float
additional_calc : float
cross_thread_dep_crtl : float
cross_thread_dep_wait : float
region_wait : float
region_ctrl : float
nr_cache_misses : int

0..*

instance_sums

0..*

SmThreadInstanceSums

thread_no : int
region_wait : float
nr_remote_accesses : int
additional_calc : float
cross_thread_dep_crtl : float
cross_thread_dep_wait : float
nr_cache_misses : int

0..* thread_sums0..*

VariableRemoteAccesses

var_name : String
nr_remote_accesses : int
size : int

0..*

accessed_variables

0..*

0..*

accessed_variables

0..*

0..*

accessed_variables

0..*

0..*

accessed_variables

0..*

PageRemoteAccesses

nr_remote_accesses : int
page_no : int

0..*page_sums 0..*

Figure 2.10: OpenMP classes for dynamic information

2.3. PARADIGM SPECIFIC DATA MODELS 17

• cross thread dep ctrl: synchronization time except for entry and exit barriers and waiting in locks

• cross thread dep wait: synchronization waiting time except waiting in entry or exit barrier

• region wait: waiting time in entry or exit barrier

• region ctrl: time needed to execute region control instructions (e.g. controlling barriers)

• nr cache misses: number of cache misses

• thread sums: summary data for every thread executing the region

• accessed variables: set of remote access counts for individual variables referenced in that region

Note that attributes duration and region ctrl are given with respect to the master thread, whereas all
other attributes are average values across all threads that execute a region. Summary data (described by
class SmThreadSums) for every thread executing a region is specified by thread sums in SmSums. The
attributes of SmThreadSums are a subset of class SmSums attributes and refer to summary information
for specific threads identified by a unique thread number (thread no).
In addition to the number of remote accesses in a region, the number of remote accesses is collected
for individual variables that are referenced in that region. This information is modeled by the class
VariableRemoteAccesses with the attributes var name, nr remote accesses, and size which denotes the
total size of the variable in bytes. This information can be measured if address range specific monitor-
ing is supported, e.g. [KaLeObWa 98]. The last attribute of this class is page sums which is a set of
page-level remote access counters. For example, the remote access counters on SGI Origin 2000 pro-
vide such information [CuSiGu 99]. With the help of additional mapping information, i.e. mapping
variables to addresses, this information can be related back to program variables. Each object of class
PageRemoteAccesses determines the page no and the number of remote accesses.
The second attribute of SmRegionSummary is given by instance sums which is described by a class SmIn-
stanceSums. This class specifies summary information for a specific region instance. SmInstanceSums
contains all attributes of SmSums and the number of threads executing the region instance. Finally,
class SmThreadInstanceSums describes summary information for a given region instance with respect to
individual threads.

18 CHAPTER 2. PERFORMANCE RELATED DATA SPECIFICATION

Chapter 3

Performance Property Specification

A performance property characterizes an aspect of the dynamic behavior of an application. In the context
of automatic performance analysis we need to specify only performance properties describing inefficient
behavior.
A performance property typically occurs in a specific context. This context can include the program
region, a specific process, or a specific instance of that region in a specific process. For example, a
property message passing can exist for specific regions, such as a subroutine and a message passing
statement, or for a specific instance of a region, e.g. an instance of a subroutine in a process.
The existence of a property can be checked by evaluating appropriate conditions based on static and
dynamic performance-related data. It is clearly possible that different conditions might exist at the same
time, especially if conditions may only give an indication for the existence of that property. Whether a
condition proves the existence or indicates the existence is determined by the confidence expression of
the property (see below).
Which condition is evaluated might depend on the required information. For example, on shared virtual
memory machines thrashing of pages is a major problem. A very good indication for thrashing is a big
number of page faults. But, this is not a proof. To be able to prove its existence, individual page fault
events have to be traced which may perturbate program execution much more than profiling and huge
amounts of data can be generated.
As mentioned above, for each condition, a confidence value between 0 and 1 indicates the confidence in
this check. A tool might use this information to first do a fast and simple check with a lower confidence
based on already existing information before requesting more detailed information.
The last feature of a performance property is the severity expression. It returns a value indicating the
importance of the property in relation to other performance properties.
Performance properties of parallel programs belong to different categories. For example, synchronization
and message passing belong to the execution time category, while memory overhead belongs to the
memory category. The severity expression of the properties in a single category can easily be normalized
so that a global ranking of those properties is possible. For properties of different categories it is difficult
or impossible to do that. We currently favor the concept of having global conversion functions between
categories. Those conversion functions could easily be adapted to the programmer’s preferences while
the individual severity expressions need not be changed.

3.1 Specification Language

This section introduces the syntax constructs of the APART specification language for specifying perfor-
mance properties. The syntax for the structure of the whole specification is shown in Figure 3.1. The
specification consists of the performance-related data model specification followed by the performance
property specifications. The latter section might include property templates and metaproperties which
are defined in Section 3.2.
The performance property part consists of a set of global definitions followed by the property speci-
fications. The definitions specify functions or constants that can be used in the individual property

19

20 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

performance-property-spec is PERFORMANCE DATA
class-def ∗

PERFORMANCE PROPERTIES
[LET

def ∗
IN]

(property OR template) ∗
END

Figure 3.1: Overall structure of the specification including the performance-related data model and the
performance properties.

property is PROPERTY pp-name ’(’ arg-list ’)’ ’{’
[LET

def ∗
IN]

pp-condition
pp-confidence
pp-severity

’};’
or PROPERTY template-name ’<’ ident-list ’>’ pp-name ’;’

pp-condition is CONDITION ’:’ conditions ’;’
conditions is condition

or condition OR conditions
condition is [’(’ cond-id ’)’]bool-expr

pp-confidence is CONFIDENCE ’:’ MAX ’(’ confidence-list ’)’ ’;’
or CONFIDENCE ’:’ confidence ’;’

confidence is [’(’ cond-id ’)’ ’->’] arith-expr

pp-severity is SEVERITY ’:’ MAX ’(’ severity-list ’)’ ’;’
or SEVERITY ’:’ severity ’;’

severity is [’(’ cond-id ’)’ ’->’] arith-expr

Figure 3.2: Property specification syntax.

3.2. PROPERTY TEMPLATES AND METAPROPERTIES 21

def is function-def
or const-def

function-def is type ident ’(’ arg-list ’)’ ’=’ expr ’;’
const-def is type ident ’=’ expr ’;’
expr is set-expr

or arith-expr
or bool-expr

arg is type ident

Figure 3.3: Definition of functions and constants facilitating subsequent specifications.

specifications to make them more readable.
The syntax shown in Figure 3.2 defines two different ways for specifying properties either via a property
specification of by instantiation of a property template. A property specification defines the name of the
property, its context via a list of parameters, and the condition, confidence, and severity expressions. Each
property specification can also include local definitions that are then available in subsequent specifications
of the property.
The property specification is based on a set of parameters. These parameters specify the property’s
context and parameterize the expressions.
While the context of a property was defined above, the use of additional parameters will be shown by an
example. The severity specification will typically be based on a parameter specifying the ranking basis
(rank basis). If, for example, a representative test run of the application has been monitored, the time
spent in message passing should be compared to the total execution time. If, instead, a short test run
is the basis for performance evaluation since the application has a cyclic behavior, the message passing
overhead should be compared to the execution time of the shortened loop. Then the loop region is the
appropriate rank basis.
The condition specification consists of a list of conditions. A condition is a predicate that can be prefixed
by a condition identifier (cond-id). The identifiers have to be unique with respect to the property since
the confidence and severity specifications can refer to the conditions via those condition identifiers.
The confidence specification is an expression that computes the maximum of a list of confidence values.
Each confidence value is computed via an arithmetic expression resulting in a value in the interval of 0
and 1. The value can be guarded by a condition identifier introduced in the condition specification. The
condition identifier represents the value of the condition. This confidence value is computed only if the
condition evaluates to TRUE.
The severity specification has the same structure as the confidence specification. It computes the maxi-
mum of the individual severity values of the conditions.
Figure 3.3 specifies the syntax of definitions that either can be local to a property or global to all
properties. Two types of definitions are allowed: definitions of functions and constants. The right-hand
side of both definitions are boolean, arithmetic, or set expressions.
Figure 3.4 defines the syntactical structure of boolean expression, also called predicates. Predicates can
be built from other predicates with the standard boolean operations. An atomic predicate is either a
reference to a boolean attribute or an external function returning a boolean value. Functions can be
supplied by the environment. Information in the data model can be accessed via references.
Set expressions (Figure 3.5) can also be built with standard operations. Here, the terminal symbols ’+’,
’/’, and ’-’ denote set union, set intersection and subtraction, respectively. The language also supports
the union and intersection operators for sets of sets, as well as the UNIQUE function. It selects a unique
value from the set given as argument.
Figure 3.6 introduces the syntax of arithmetic expressions. In addition to the standard syntax, we allow
arithmetic operations that work on elements of sets.

22 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

bool-expr is bool-expr AND bool-expr
or bool-expr OR bool-expr
or NOT bool-expr
or ’(’ bool-expr ’)’
or quantifier-list SUCH THAT bool-expr
or function-name ’(’ expr-list ’)’
or reference
or arith-expr relop arith-expr

quantifier is FORALL bound-variable-list
or EXISTS bound-variable-list
or NEXISTS bound-variable-list

bound-variables is ident-list IN set-expr
relop is ’>’

or ’<’
or ’==’
or ’! =’
or ’>=’
or ’<=’

reference is ident
or ident’.’reference

Figure 3.4: Syntax for predicates.

set-expr is set-expr ’+’ set-expr
or set-expr ’/’ set-expr
or set-expr ’-’ set-expr
or ’(’ set-expr ’)’
or reference
or function-name ’(’ parm-list ’)’
or ’{’ [set-expr WHERE]ident IN set-expr [WITH bool-expr]’}’
or set-op ’(’ set-expr ’)’

set-op is UNION
or INTERSECTION
or UNIQUE

parm is expr

Figure 3.5: Syntax for set expressions.

arith-expr is arith-expr ’+’ arith-expr
or arith-expr ’-’ arith-expr
or arith-expr ’*’ arith-expr
or arith-expr ’/’ arith-expr
or ’(’ arith-expr ’)’
or reference
or function-name ’(’ parm-list ’)’
or arith-set-op ’(’ arith-expr WHERE ident IN set-expr ’)’

arith-set-op is SUM
or COUNT
or MAX
or MIN
or STDEV

Figure 3.6: Syntax for arithmetic expressions.

3.2. PROPERTY TEMPLATES AND METAPROPERTIES 23

template is PROPERTY TEMPLATE template-name
’<’ template-parameter-list ’>’ ’(’ arg-list ’)’ ’{’

[LET
def ∗

IN]
pp-condition
pp-confidence
pp-severity

’};’

template-parameter is function-parameter
or property-parameter

function-parameter is type ident ’(’ type-list ’)’
property-parameter is PROPERTY pp-name ’(’ type-list ’)’

Figure 3.7: Template specification syntax.

3.2 Property Templates and Metaproperties

Based on experience with ASL we observed many similar performance properties both within and across
different programming paradigms. Frequently properties differ only in accessed performance data but
are similar or identical with respect to condition, confidence, and severity. For this purpose we introduce
the concept of property templates which are used to support generic descriptions of similar performance
properties.
Figure 3.7 defines the syntax of property templates. Property templates are parameterized properties.
The parameters are function parameters or property parameters. If a template has only function parame-
ters, new properties can be defined by substituting the function parameters. If a template has additional
property parameters, properties can be defined based on the template by substituting the function and
property parameters. Those properties are called metaproperties to reflect that they are dependent on
other properties.
In the following we show the example template cost per process. The template has one function parameter
- enclosed by “<” and “>” - which reflects a special cost category. The cost category is specified in the
definition of the properties based on the template.

PROPERTY TEMPLATE CostPerProcess <float CostFunc(MPISummary)>
(Region r, Experiment e, Process p, Region RankBasis)

LET
cost = CostFunc(summary(r,e,p))

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(RankBasis,e);

}

float IoCostFunc(MPISummary rs) = rs.IoTime;
float SyncCostFunc(MPISummary rs) = rs.SyncTime;
float CommCostFunc(MPISummary rs) = rs.CommTime;

PROPERTY CostPerProcess <IoCostFunc> IoCostPerProcess;
PROPERTY CostPerProcess <SyncCostFunc> SyncCostPerProcess;
PROPERTY CostPerProcess <CommCostFunc> CommCostPerProcess;

The parameter function of the template is defined separately. In the above example they are defined as
IoCostFunc, SyncCostFunc, and CommCostFunc. Property IoCostPerProcess is then defined by PROP-
ERTY CostPerProcess <IoCostFunc> IoCostPerProcess based on template CostPerProcess. Similar is

24 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

done for properties SyncCostPerProcess and CommCostPerProcess.
The other new concept in ASL are metaproperties. In contrast to normal properties, the definition of
metaproperties is based on already defined properties.
In the following example we define a property template PropertyOnAllProcesses that specifies that the
property PropertyPerProcess holds across the set of all processes. Its condition is fulfilled if the condition
of property PropertyPerProcess and the corresponding severity hold across all processes involved in an
experiment. Note that functions condition and confidence access the CONDITION and SEVERITY
components of a property passed as parameter. A metaproperty IoCost is then defined by PROPERTY
PropertyOnAllProcesses <IoCostPerProcess> IoCost.

PROPERTY TEMPLATE PropertyOnAllProcesses
<PROPERTY x(Region, Experiment, Process, Region)>

(Region r, Experiment e, Region RankBasis) {

CONDITION: Forall p IN e.processors SUCH THAT
condition(x(r,e,p,RankBasis)) AND
confidence(x(r,e,p,RankBasis)) ==1;

CONFIDENCE: 1;
SEVERITY: max(severity(x(r,e,p,RankBasis)) WHERE p in e.processes)

}

PROPERTY PropertyOnAllProcesses <IoCostPerProcess> IoCost;
PROPERTY PropertyOnAllProcesses <SynCostPerProcess> SyncCost;
PROPERTY PropertyOnAllProcesses <CommCostPerProcess> CommCost;

3.3 Properties Based on Pattern Matching in Traces

The kind of available performance data has a large influence on the informative value of performance
properties that can be defined using this data. Summary information as collected by profiling tools is
sufficient to describe a multitude of frequently occurring performance properties. However, there are
performance properties that are not visible in this kind of information. A much more detailed view on
the behavior of a parallel application can be gained by using event traces. This allows to prove the
presence of performance properties in the application by looking for compound events in an event trace.
This section presents an ASL language construct PATTERN intended to formally describe compound events
that indicate the presence of performance properties in parallel applications. It is based on a framework
defining two categories of abstractions, which can be used to provide programming model specific building
blocks, on top of which a general specification of compound events is possible. The abstractions should
represent entities of the underlying programming model such as MPI messages and are useful to measure
their influence on the performance behavior. The resulting specifications can be easily transformed into
an appropriate detection algorithm. A detailed description of this framework can be found in [WoMo 00].

3.3.1 Abstractions

An event trace is considered as a sequence E = {e1, . . . , emax} of events in chronological order. Each event
is an instance of a certain event type having an associated set of attributes. The framework comprises the
following categories of abstractions, which are created for event traces related to a specific programming
model:

• System states

• Pointer attributes

Compound events representing performance properties often exhibit some form of locality within the event
trace. Usually the constituents of such a compound event depend on some context, which is represented
by the state of the whole running parallel system at the time when the compound event occurs. In most
cases, this system state is characterized by a set of ongoing activities in contrast to activities that are

3.3. PROPERTIES BASED ON PATTERN MATCHING IN TRACES 25

already finished. An example for such a system state is the set of messages being in transfer at a given
moment. A system state is a mapping S : E → P(E) that maps an event ei ∈ E from the event trace
onto a subset S(ei) ⊆ E of the events from the event trace. A system state S(ei) of an event ei should
reflect one aspect of the execution state of the application after the event ei took place, so system states
depend only on historic data and not on future events. A system state is inductively defined by a set of
transition rules. Depending on the event type of the current event ei+1, a transition rule defines how a
state S(ei+1) is created from its predecessor state S(ei).
Another useful abstraction is to link related events together, so that one can navigate from an event to
another related event. This permits to navigate along a path of related events and to define relationships
among constituents of a compound event using such paths. A natural way of representing such links is
to provide event attributes with pointer semantics. Pointer attributes added to the attributes already
associated with the event types are the second category of abstractions defined in the framework. The
additional attributes are simply defined using the previously mentioned system states.

3.3.2 Example: MPI Related Abstractions

The dynamic view of an MPI application comprises events related to the control flow as well as to
communication. So the ASL specification model contains two event classes Enter and Exit for entering
and leaving a region as well as two event classes Send and Receive for sending and receiving a point-to-
point message. All these event classes are derived from base class Event. Enter and Exit events provide
an attribute denoting the region, to which they refer; Send and Receive events provide attributes denoting
the source and destination location of the message as well as attributes describing the message itself.
We describe the activities performed by an MPI application at a given moment in terms of two different
higher-level concepts: region instances and messages. The region instances being executed at a moment
can be easily represented by the set of Enter events that determine their beginnings. So we define for
each event e and each location l a system state Rs(e,l) and call it the region stack for location l. 1

In a similar way, we can describe the set of messages currently being in transfer by the set of their Send
events. So we define for each event e and for each pair of locations s and d a system state Mq(e,s,d)
and call it the message queue for messages being in transfer from source s to destination d.
In addition, we define for each event a pointer attribute pointing to the Enter event of the region instance,
in which the event took place. The pointer attribute is expressed in ASL as a function enterptr(e) of
an event e. We also define an ASL function sendptr(e), which provides a link from a Receive event to
its corresponding Send event.
Now, we have powerful abstractions, which we can use to access the dynamic program entities involved
in inefficiency situations.

3.3.3 Specifying Compound Events

A compound event comprises a set of constituents. This set can be divided into fractions constituting
logical groups within the compound event. The fractions themselves are connected by functional depen-
dencies, which allow to calculate one group as a function of other groups. There is one distinct group
made up by one single event, which is called the root event. The root event does not depend on any
other group, it is solely characterized by a condition requiring a certain type. So, the whole dependency
graph forms a tree emanating from the root event. The search algorithm for locating a compound event
in an event trace just looks for events having the correct type and tries to evaluate the dependency tree.
If it succeeds, a compound-event instance has been found (i.e, it has been instantiated). If it fails, the
algorithm can continue at another point in the trace. Apart from the dependencies, which are used to
instantiate the different fractions of the compound event, there may be conditions that characterize the
compound event as a whole and that are not needed for locating its fractions. We refer to these additional
conditions as constraints of the compound event.

1The transition rules can be easily implemented in ASL using a recursive definition.

26 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.3.4 Compound Events in ASL

Compound events are specified in ASL using the ASL pattern construct. Its name is motivated by thinking
of compound events as event patterns. Its syntax is defined in Fig. 3.8.

pattern is PATTERN p-name ’(’ arg-list ’)’ ’{’
[LET

def ∗
IN]

p-roottype
p-instantiation
p-constraint
p-export

’};’

arg is type ident
p-roottype is ROOTTYPE ’:’ ident ’;’
p-instantiation is INSTANTIATION ’:’ const-def ∗
p-constraint is CONSTRAINT ’:’ bool-expr
p-export is EXPORT [m-name]’:’ const-def ∗

Figure 3.8: Pattern specification syntax

Compound event specifications can be parameterized by declaring formal parameters in the arg-list. These
parameters as well as the local definitions from the optional LET clause can be used in the subsequent
parts of the compound-event specification. The ROOTTYPE clause contains the type of the root event.
The fractions of the compound event are defined in the INSTANTIATION clause. Fractions consisting of
only a single element are expressed by simple constant definitions. Fractions consisting of more than
one element have to be defined using a set type. A condition representing additional compound-event
properties that are not needed for instantiation can be placed in the CONSTRAINT clause. The EXPORT
clause defines attributes whose values are computed from the constituents of a compound-event instance.
The attributes can be accessed through match objects that correspond to compound-event instances. How
to obtain these match objects is explained in the following section. So, the export clause implicitly defines
a class, to which these match objects will belong. If necessary, the class can be given a name m-name.
The root event as well as the complete event trace can be referenced in an ASL pattern by the two
keywords ROOT and TRACE. In a future implementation, these keywords are bound to the current root
event and the event trace being investigated by the search algorithm.
The pattern construct should not be seen as an alternative to the property construct. It is rather an
instrument to increase its expressiveness as we will see later.

3.3.5 Pattern Matches

The ASL pattern construct is used to specify two things. Firstly, it specifies a compound event, that is
a set of events being connected by some relationships and fulfilling some constraints. This first aspect is
collectively expressed by the roottype, the instantiation, and the constraint clause. Secondly, the pattern
specifies a class m-name of match objects, which are computed from compound-event instances and which
are used to represent performance-relevant metrics such as idle times. This second aspect is expressed
by the export clause.
ASL provides an intrinsic function to obtain the match objects computed from all compound event
instances occurring in an event trace:

setof m-name PATTERN MATCHES(p-name (arg-list), setof Event trace);

The function takes two arguments. The first argument is an ASL pattern provided with its own argument
list according to its definition. The second argument is the event trace to be analyzed, which is represented
by a set of events. When the function is invoked, the TRACE keyword mentioned in the preceding section

3.3. PROPERTIES BASED ON PATTERN MATCHING IN TRACES 27

is bound to this set. The function returns the set of match objects corresponding to all compound-event
instances according to the ASL pattern.

3.3.6 Example: MPI Related Compound Events

In this section we give an example of utilizing the ASL pattern construct for specifying compound events
that indicate the existence of performance properties.
Our example describes the situation that occurs, when an MPI Recv operation is posted before the
corresponding MPI Send has been started. Figure 3.9 shows the time lines of two MPI processes involved
in this inefficiency situation. The receiver remains idle during the interval between the two calls instead
of doing useful computation.

time

lo
ca

tio
ns

s1

ROOT

wasted

MPI_Recv

MPI_Send

e1

e2
Enter

Exit

Send

Receive

Message

sendptr

enterptr

Figure 3.9: Late sender compound event

The ASL specification of this compound event is shown in Fig. 3.10. It consists of four fractions ROOT,
s1, e1, and e2, each containing only a single event. The root event or fraction is just the event indicating
the message arrival (i.e., an event of type Receive), which is expressed by the roottype clause.

PATTERN LateSender(Region r) {

ROOTTYPE: Receive;

INSTANTIATION:
Send s1 = sendptr(ROOT);
Enter e1 = enterptr(ROOT);
Enter e2 = enterptr(s1);

CONSTRAINT:
EXISTS e IN Rs(ROOT, ROOT.process_id) SUCH THAT e.region == r AND
enterptr(ROOT).region == MPI_Recv AND
enterptr(s1).region == MPI_Send AND
e2.timestamp > e1.timestamp;

EXPORT:
float idle_time = e2.timestamp - e1.timestamp;

}

Figure 3.10: Late sender specification in ASL

The other three events are the event of sending the message (s1), the event of entering the MPI Send
region (e2), and the event of entering the MPI Recv region (e1). They are defined in the instantiation
clause using the previously defined pointer attributes as shown in Fig. 3.9.

28 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

PROPERTY late_sender(Region r, Experiment e, Region rank_basis){

LET
float idle_time = SUM m.idle_time
WHERE m IN PATTERN_MATCHES(LateSender(r), e.trace);

IN
CONDITION: idle_time>0;
CONFIDENCE: 1;
SEVERITY: idle_time/duration(rank_basis, e);

}

Figure 3.11: Late sender property using a pattern

The first sub-proposition of the conjunction in the constraint clause requires the root event to occur
when the process of the root event is executing in region r. This is expressed by using the region-stack
abstraction. Region r is supplied as a parameter of the pattern. The next two sub-propositions require
the involved region instances to be MPI Recv and MPI Send. The last sub-proposition describes the
necessary temporal displacement between the two function calls.
The export clause makes this displacement accessible through an attribute idle time.

3.3.7 Using Patterns in Property Definitions

The purpose of patterns is to make the very detailed information contained in event traces available to
property definitions. In order to meet our goal, we define a late sender property using the previously
explained pattern in Fig. 3.11.
This property refers to a region r that creates late-sender instances during its execution. The confidence
is 1, since our criterion is safe. The severity corresponds to the time lost by the sum of all late-sender
instances. The time lost by individual late-sender instances is exported by the idle time attribute of
the pattern.

3.3.8 Summary

Event traces provide a very fine grained view on the performance behavior of a parallel application.
Based on this view, performance properties that cannot be represented by profiling data can be specified
in terms of compound events. For this reason, ASL provides a language construct pattern, which allows
to specify complex performance properties by means of event traces. For a more detailed description we
refer to [WoMo 00].

3.4 Paradigm Related Property Specification

This section presents the current set of performance properties for the selected programming paradigms.
This set is not intended to be a full catalog of performance properties but is a collection of typical
examples showing the applicability of the language features.

3.4.1 MPI

This section demonstrates the features of the APART specification language in the context of the message
passing paradigm. Although most of the properties are independent of the specific message passing library,
the terminology used is based on MPI.
The following MPI-related performance properties are presented:

• TotalCost

• CommCost

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 29

• SyncCost

• IoCost

• DominatingCommFunction

• DominatingCommCall

• FrequentCommunication

• BigMessages

• LateSender

• LateReceiver

• UnevenMpDistribution

• LoadImbalanceAtBarrier

• SlowSlaves

• MessagesInWrongOrder

• FrequentCommInProcess

• FrequentCommOnAllProcesses

• FrequentCommSomeProcesses

The following memory-related performance properties are presented:

• L1DCacheMisses

• L1ICacheMisses

• L2CacheMisses

• L1DCacheMissesPerInstance

• L1ICacheMissesPerInstance

• L2CacheMissesPerInstance

• L1DCacheMissesInAllInstancesInProcess

• L1ICacheMissesInAllInstancesInProcess

• L2CacheMissesInAllInstancesInProcess

• L1DCacheMissesInSomeNotAllInstancesInProcess

• L1ICacheMissesInSomeNotAllInstancesInProcess

• L2CacheMissesInSomeNotAllInstancesInProcess

• L1DCacheMissesInAllInstancesInAllProcess

• L1ICacheMissesInAllInstancesInAllProcess

• L2CacheMissesInAllInstancesInAllProcess

30 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.1.1 MPI global definitions

MPISummary Summary(MPIRegion r, Experiment e)=
UNIQUE({sumr IN e.profile WITH sumr.region==r AND sumr.Proc==ALLPROCESSES});

MPISummary Summary(MPIRegion r, Experiment e, Process p)=
UNIQUE({sumr IN e.profile WITH sumr.region==r AND sumr.Proc==p});

Setof MPISummary ProcessProfiles(MPIRegion r, Experiment e)=
{sumr IN e.profile WITH sumr.region==r AND sumr.Proc!=ALLPROCESSES}

float Duration(MPIRegion r, Experiment e)= Summary(r,e).Incl;

float Duration(MPIRegion r, Experiment e, Process p)= Summary(r,e,p).Incl;

In most property specifications it is necessary to access the summary data of a given region for a given
experiment. Therefore, we defined the Summary function that returns the appropriate MPISummary
object. Summary is an overloaded function. Depending on the existence of the process parameter it
selects summary information for a single process or for all processes. It is based on the set operation
UNIQUE that selects arbitrarily one element from the set argument which has cardinality one due to
the design of the data model.
The second function Duration returns the inclusive execution time for a single process or for all processes.
For all MPI performance properties the severity is computed by relating some portion of the execution
time to the duration of a given RankBasis region in the experiment.

3.4.1.2 TotalCost

PROPERTY TEMPLATE Cost <float CostFunc(Region r, Experiment e)>
(Region r, Experiment e, Region RankBasis){

LET
Cost = CostFunc(r,e)

IN
CONDITION: Cost > 0;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

float AllCostFunc(Region r, Experiment e) =
summary(r,e).CommTime +
summary(r,e).SyncTime +
summary(r,e).IoTime;

PROPERTY Cost<AllCostFunc> TotalCost;

The most general performance property TotalCost characterizes the region as having some performance
overheads or costs. The costs of a region can be subdivided into time for communication, time for
synchronization, i.e. barrier synchronization, and time for I/O.
The definition of this property is based on the property template Cost . The template has a single function
parameter which defines the cost category.
A region has this property if Cost is greater than 0. Clearly the confidence in that condition is one. The
severity of this property is the fraction of the time spent for costs compared to the duration of ranking
basis, typically the duration of the main program. Note, that CommTime, SyncTime, IoTime, and
Duration are sums of the time spent in each process.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 31

The severity of this property may be larger than the severity of the individual properties for each of the
categories. This may lead to the selection of the TotalCost property as a performance problem according
to the predefined severity threshold while the individual properties, i.e. CommCost , SyncCost , and
IoCost may not be marked as performance problems.

3.4.1.3 CommCost, SyncCost, IoCost

float CommCostFunc(Region r, Experiment e)= Summary(r,e).CommTime;
float SyncCostFunc(Region r, Experiment e)= Summary(r,e).SyncTime;
float IoCostFunc(Region r, Experiment e)= Summary(r,e).IoTime;

PROPERTY Cost<CommCostFunc> CommCost;
PROPERTY Cost<SyncCostFunc> SyncCost;
PROPERTY Cost<IoCostFunc> IoCost;

These properties determine whether a region includes communication, barrier synchronization, or IO,
respectively.

3.4.1.4 CacheCost

PROPERTY TEMPLATE CacheCost <float CostFunc(Region, Experiment)>
(Region r, Experiment e, Region RankBasis) {

LET
float Costs=CostFunc(r,e);

IN
CONDITION: Costs>0;
CONFIDENCE: 1;
SEVERITY: Cost/(Summary(RankBasis,e).LoadInstr

+ Summary(RankBasis,e).StoreInstr) ;
}

L1DCacheCostFunc(Region r, Experiment e)= Summary(r,e).L1DCacheMisses;
L1ICacheCostFunc(Region r, Experiment e)= Summary(r,e).L1ICacheMisses;
L2CacheCostFunc(Region r, Experiment e)= Summary(r,e).L2CacheMisses;

PROPERTY CacheCost<L1DCacheCostFunc> L1DataCacheMisses;
PROPERTY CacheCost<L1ICacheCostFunc> L1InstCacheMisses;
PROPERTY CacheCost<L2CacheCostFunc> L2CacheMisses;

These properties determine whether cache misses are a performance problem for a given region. In
contrast to other properties, the severity is the percentage of the cache misses at the load and store
instructions. If all properties should be ranked according to severity, this definition has to be replaced
to reflect the execution time lost during cache misses. This time can be estimated based on some mean
value for a cache miss.

32 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.1.5 DominatingCommFunction

PROPERTY DominatingCommFunction(MPIFunction r, Experiment e, Region RankBasis){
LET

setof MPISummary CommSummaries=
{x IN e.profile
WITH

x.Proc==ALLPROCESSES
AND

typeof(x.region)==MPICommFunc};
float MaxCommTime = MAX(sum.Incl WHERE sum IN CommSummaries);

IN
CONDITION: typeof(r)==MPICommFunc AND Duration(r,e)==MaxCommTime;
CONFIDENCE: 1;
SEVERITY: MaxCommTime/Duration(RankBasis,e);

}

The MPI communication function with the maximum communication time has the DominatingComm-
Function property. The constantCommSummaries specifies the set of summary objects of communication
functions, i.e. it excludes MPI barrier . The constant MaxCommTime is the maximum execution time of
all MPI communication functions. typeof(obj) denotes the type of a class such that obj is an instance of
that class.
The condition of this property checks whether the region is a communication function, and whether
its duration is equal to MaxCommTime. If this condition is fulfilled, this function is the dominating
communication function. Its severity is the fraction of the communication time in relation to the execution
time of the RankBasis .

3.4.1.6 DominatingCommCall

PROPERTY DominatingCommCall(FuncCall r, Experiment e, Region RankBasis){
LET

setof MPISummary CommSummaries=
{x IN e.profile
WITH

x.Proc==ALLPROCESSES AND typeof(x.region)==FuncCall
AND

typeof(x.region.CalledFunc)==MPICommFunc};
float MaxCommTime = MAX(sum.Incl WHERE sum IN CommSummaries);

IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc AND

Duration(r,e)==MaxCommTime;
CONFIDENCE: 1;
SEVERITY: MaxCommTime/Duration(RankBasis,e);

}

Frequently it is more interesting to the programmer to identify the region of the code where most of the
communication takes place. This property is very similar to the previous one except that it determines
the dominating call site of communication functions.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 33

3.4.1.7 FrequentCommunication

PROPERTY FrequentCommunication (FuncCall r, Experiment e, Region RankBasis){
LET
float Cost = Duration(r,e);

IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc AND Cost>0 AND

Cost/Summary(r,e).NrExecutions<SmallMessagesThreshold;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

A communication statement has the property FrequentCommunication if small messages are communi-
cated. The condition compares the execution time per execution with the maximum communication time
for small messages. Whether messages are called big depends on the opinion of the tool designer or the
application programmer. Therefore, this threshold should be a parameter of the performance tool.

3.4.1.8 BigMessages

PROPERTY BigMessages (FuncCall r, Experiment e, Region RankBasis){
LET
float Cost = Summary(r,e).CommTime;
int AvrgLength = summary(r,e).MessageLength/

summary(r,e).NrExecutions;
IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc AND Cost>0 AND

AvrgLength>BigMessagesThreshold;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

The BigMessages property is fulfilled by a communication statement if the average message length is
greater than a predefined threshold.

3.4.1.9 LateSender

PROPERTY LateSender(FuncCall r, Experiment e, Region RankBasis){

LET
float IdleTime = summary(r,e).IdleTime;

IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc

AND r.CalledFunc.Name == MPI_Receive AND IdleTime>0;
CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e);

}

Only point-to-point receive operations can have the LateSender property. Therefore, the region parameter
in the parameter list must be of type FuncCall .
The condition checks that the statement is a receive statement and the idle time is greater than zero.
The severity of this property compares the idle time to the duration of RankBasis .

34 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.1.10 LateReceiver

PROPERTY LateReceiver(FuncCall r, Experiment e, Region RankBasis){

LET
float IdleTime = Summary(r,e).IdleTime;

IN
CONDITION: typeof(r.CalledFunc)==MPIp2pFunc

AND r.CalledFunc.Name == MPI_SEND
AND r.Semantics == Blocking AND idle_time>0;

CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e);

}

This property can only be proven for send operations that are blocking. Nonblocking operations just
setup the transmission and terminate. The severity compares idle time with the duration of RankBasis .

3.4.1.11 UnevenMpDistribution

PROPERTY UnevenMpDistribution(FuncCall r, Experiment e,
Region RankBasis)

{
LET

float deviation=stdev(s.Incl WHERE s IN ProcessProfiles(r,e));
IN

CONDITION: typeof(r.CalledFunc)==MPICommFunc AND
deviation > uneven_threshold * summary(r,e).Incl/

e.nr_processors;
CONFIDENCE: 1;
SEVERITY: summary(r,e).Incl/Duration(RankBasis,e);

}

Any communication statement can have the UnevenMpDistribution property. The constant deviation
determines the standard deviation of the execution time of the processes. The condition checks whether
the deviation is greater than a threshold multiplied with the mean execution time.

3.4.1.12 LoadImbalanceAtBarrier

PROPERTY LoadImbalanceAtBarrier(FuncCall r, Experiment e, Region RankBasis){
LET

float MaxTime=max(x.Incl WHERE x IN ProcessProfiles(r,e));
float MinTime=min(x.Incl WHERE x IN ProcessProfiles(r,e));
float MaxWait=MaxTime - MinTime;

IN
CONDITION: (COND1) r.CalledFunc.Name==MPI_Barrier AND

max_wait>0
|| (COND2) r.CalledFunc.Name==MPI_Barrier AND

summary(r,e).IdleTime>0;
CONFIDENCE: 1;
SEVERITY: MAX((COND1)->MaxWait/(Duration(RankBasis,e)/e.nr_processors),

(COND2)->Summary(r,e).IdleTime/Duration(RankBasis,e));
}

The LoadImbalanceAtBarrier property has two conditions. The first condition can be evaluated if the idle
times cannot be measured, while the second condition is based on the idle times. While the confidence
value is equal for both conditions, the severity is specified by different formulas. If the first condition is
satisfied, the severity is determined by dividing MaxWait time by the mean duration of each process. If

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 35

the second condition is fulfilled, the sum of the idle times in all processes is compared to the sum of the
individual execution times.

3.4.1.13 SlowSlaves

PROPERTY SlowSlaves (FuncCall r, MPIApplication a,
Experiment e, Region RankBasis){

LET
float IdleTime = summary(r,e).IdleTime;

IN
CONDITION: a.Paradigm == MasterSlave AND r.Role == ReceiveMaster AND

IdleTime>0;
CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e),

}

Both properties, SlowSlaves and OverloadedMaster described below, are related to the master slave
paradigm. In this paradigm, four communication statements are special statements. In the master,
a send operation distributes the task to the slaves and a receive operation collects the results. Those
statements play the SendMaster and ReceiveMaster role. In the slaves, a receive operation (ReceiveSlave
role) accepts tasks and a send operation (SendSlave role) returns the results.
The SlowSlaves property can be proven for the ReceiveMaster statement. It identifies a situation where
the master waits for results instead of doing useful work.

3.4.1.14 OverloadedMaster

PROPERTY OverloadedMaster(FuncCall r, MPIApplication a,
Experiment e, Region RankBasis){

LET
float IdleTime = summary(r,e).IdleTime/(e.NrProcessors-1);

IN
CONDITION: (a.Paradigm == MasterSlave AND

(r.Role == ReceiveSlave OR r.Role == SendSlave)) AND
IdleTime>0;

CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e);

}

The OverloadedMaster property can be proven for the ReceiveSlave and the SendSlave operations. If the
slaves have to wait for new tasks or for the delivery of the results of finished tasks, the master is too
slow.

36 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.1.15 WrongOrder

PATTERN WrongOrder(FuncCall r) {

ROOTTYPE: Receive;
INSTANTIATION:

Send SendMsg = sendptr(ROOT);
Enter EnterSend = enterptr(SendMsg);
Enter EnterRecv = enterptr(ROOT);
Exit ExitRecv = UNIQUE({

ev IN TRACE
WITH enterptr(ev) == EnterRecv
});

Exit ExitSend = UNIQUE({
ev IN TRACE
WITH enterptr(ev) == EnterSend
});

CONSTRAINT:
EXISTS e IN Rs(ROOT, ROOT.Process) SUCH THAT e.Region==r AND
EXISTS s IN Mq(ROOT, SendMsg.Process, ROOT.Process)

SUCH THAT s.Timestamp < SendMsg.Timestamp;
EXPORT:

cost = (ExitSend.Timestamp EnterSend.Timestamp) +
(ExitRecv.Timestamp EnterRecv.Timestamp);

}

The pattern identifies a situation in the trace of an MPI program, where a message is received although
an older message sent from the same sender to the same destination was not yet received at that time.
Thus the two messages were sent in the wrong order. The ROOT of the pattern is a receive event. The
constraint checks first that ROOT is actually the receive statement passed to the pattern. The constraint
checks also that there is a message in the set of currently active messages sent from the same sender to
the same receiver. This message must have been sent before the send operation started that transferred
the received message.

PROPERTY MessagesInWrongOrder(FuncCall r, Experiment e, Region RankBasis){
LET

float Cost= SUM(i.cost WHERE i IN
PATTERN_MATCHES(WrongOrder(r), e));

IN
CONDITION: Cost>0;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

The property checks whether time was lost due to messages sent in wrong order.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 37

3.4.1.16 FrequentCommInProcess

PROPERTY FrequentCommInProcess(Function r, Experiment e, Process p
Region RankBasis){

LET
float cost = Summary(r,e,p).Incl;

IN
CONDITION: typeof(r)==MPICommFunc AND cost>0 AND

cost/Summary(r,e,p).NumPasses < SmallMessagesThreshold;
CONFIDENCE: 1;
SEVERITY: cost/duration(RankBasis,e,p);

}

This property is assigned to a communication function and a process if only small messages are sent in
that process via that function.

3.4.1.17 FrequentCommOnAllProcesses

PROPERTY TEMPLATE OnAllProcesses< PROPERTY x(Region, Experiment,
Process, Region>(Region r, Experiment e, Region RankBasis) {

CONDITION: FORALL p IN e.Processes
SUCH THAT

condition(x(r,e,p,RankBasis))
AND

confidence(x(r,e,p,RankBasis))==1;
CONFIDENCE: 1;
SEVERITY: max(severity(x(r,e,p,RankBasis)))*e.NrProcessors;

}

PROPERTY OnAllProcesses<FrequentCommProcess> FrequentCommOnAllProcesses;

Property FrequentCommOnAllProcesses is a metaproperty. It is based on property FrequentCommProcess
defined above. The property template OnAllProcesses facilitates the specification of the new property.
The general check that the condition and confidence are fulfilled for all processes is specified in the
template. This template can easily be applied to specify similar more global properties based on process-
level properties.

38 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.1.18 CacheMissesPerInstance

PROPERTY TEMPLATE CacheCostPerInstance <float CostFunc(Exit)>
(Exit re, Region RankBasis) {

LET
float costs=CostFunc(re);

IN
CONDITION: costs>0;
CONFIDENCE: 1;
SEVERITY: cost/(re.LoadInstr + re.StoreInstr) ;

}

L1DCacheCostInstFunc(Exit re)= re.L1DCacheMisses;
L1ICacheCostInstFunc(Exit re)= re.L1ICacheMisses;
L2CacheCostInstFunc(Exit re) = re.L2CacheMisses;

PROPERTY CacheCostPerInstance<L1DCacheCostInstFunc> L1DCacheMissesPerInstance;
PROPERTY CacheCostPerInstance<L1ICacheCostInstFunc> L1ICacheMissesPerInstance;
PROPERTY CacheCostPerInstance<L2CacheCostInstFunc> L2CacheMissesPerInstance;

The property template is used to defined properties that identify cache misses in an individual execution
of a region. Such an instance in a process is represented in the data model by a pair of Entry and Exit
events.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 39

3.4.1.19 Property for all instances of a region

PROPERTY TEMPLATE AllInstancesInProcess
<PROPERTY x(RegionExit)>(Region r, Experiment e,

Process p, Region RankBasis) {
LET
Setof Exit AllRe = {re IN e.Trace WITH re.Process==p

AND re.Region==r}
IN
CONDITION: FORALL re IN AllRe

SUCH THAT
condition(x(re))

AND
severity(x(re))>0.25;

CONFIDENCE: 1;
SEVERITY: max(severity(x(re)));

}

PROPERTY AllInstancesInProcess <L1DCacheMissesPerInstance>
L1DCacheMissesInAllInstancesInProcess;

PROPERTY AllInstancesInProcess <L1ICacheMissesPerInstance>
L1ICacheMissesInAllInstancesInProcess;

PROPERTY AllInstancesInProcess <L2CacheMissesPerInstance>
L2CacheMissesInAllInstancesInProcess;

PROPERTY OnAllProcesses <L1DCacheMissesInAllInstancesInProcess>
L1DCacheMissesInAllInstancesInAllProcesses;

PROPERTY OnAllProcesses <L1ICacheMissesInAllInstancesInProcess>
L1ICacheMissesInAllInstancesInAllProcesses;

PROPERTY OnAllProcesses <L2CacheMissesInAllInstancesInProcess>
L2CacheMissesInAllInstancesInAllProcesses;

This property template specifies that the property passed as parameter holds for all instances of a region
in a specific process. As examples, properties about cache misses in all instances in a single process and
in all processes are specified via the property templates AllInstancesInProcess and OnAllProcesses .

40 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.1.20 Property template for some instances

PROPERTY TEMPLATE SomeNotAllInstances< PROPERTY x(Region, Experiment,
Process, Region>(Region r, Experiment e, Region RankBasis) {
LET

Setof Exit AllRe = {re IN e.Trace WITH re.Process==p
AND re.Region==r}

IN
CONDITION: (EXISTS re IN AllRe

SUCH THAT
condition(x(re))

AND
severity(x(re))>0.25)

AND
(NOT FORALL re IN AllRe

SUCH THAT
condition(x(re))

AND
severity(x(re))>0.25)

);
CONFIDENCE: 1;
SEVERITY: max(severity(x(re)));

}

PROPERTY SomeNotAllInstancesOfProcess <L1DCacheMissesPerInstance>
L1DCacheMissesInSomeNotAllInstances;

PROPERTY SomeNotAllInstancesOfProcess <L1ICacheMissesPerInstance>
L1ICacheMissesInSomeNotAllInstances;

PROPERTY SomeNotAllInstancesOfProcess <L2CacheMissesPerInstance>
L2CacheMissesInSomeNotAllInstances;

This property template specifies that the property passed as parameter holds for some but not all instances
of a region in a specific process.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 41

3.4.1.21 FrequentCommSomeProcesses

PROPERTY TEMPLATE SomeNotAllProcesses< PROPERTY x(Region, Experiment,
Process, Region>(Region r, Experiment e, Region RankBasis) {

CONDITION: (EXISTS p IN e.Processes
SUCH THAT

condition(x(r,e,p,RankBasis))
AND

confidence(x(r,e,p,RankBasis))==1)
AND
(NOT FORALL p IN e.Processes

SUCH THAT
condition(x(r,e,p,RankBasis))

AND
confidence(x(r,e,p,RankBasis))

);
CONFIDENCE: 1;
SEVERITY: max(severity(x(r,e,p,RankBasis)))*e.NrProcessors;

}

PROPERTY SomeNotAllProcesses<FrequentCommProcess>
FrequentCommSomeProcesses;

The property template SomeNotAllProcesses specifies that the property passed as parameter is fulfilled
only in some of the processes. In this example, the FrequentCommSomeProcesses is deduced from this
template based on the property FrequentCommProcess.

3.4.2 HPF

This section introduces performance properties of data parallel programs in the context of HPF.
The following performance properties are presented:

• costs

• communication costs

• forall synchronization costs

• io costs

• parallel organization costs

• redist costs

• serialization costs

• uneven work distribution

• inspector cost

3.4.2.1 HPF global definitions and templates

In this section we define a function summary returns an object to HPFRegionSummary. This object
reflects summary information for a specific region and experiment and is used by most HPF properties.

42 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

HPFRegionSummary summary(HPFRegion r, Experiment e)=
UNIQUE({sumr IN e.profile | sumr.region==r});

float duration(Region r, Experiment e)=summary(r,e).sums.duration;

Function duration denotes the execution time of a region which is the arithmetic mean across all processes
that execute the region.
For all HPF performance properties the severity is computed by relating some aspect of the the execution
time to the duration of a given rank basis region in the experiment.
In the following we define a template for generic costs which can be used for various HPF performance
properties.

3.4.2.2 template costs

PROPERTY TEMPLATE costs <float cost_func(HPFRegionSummary)>
(HPFRegion r, Experiment e, Region RankBasis)

LET
cost = cost_func(summary(r,e))

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(rank_basis,e);

}

3.4.2.3 costs

float par_costs(RegionSummary rs) = rs.sums.comm_time +
rs.sums.sync_time + rs.sums.compiler_ovh_time + rs.sums.io_time;

PROPERTY costs <par_costs> cost;

The most general performance property cost specifies that a region implies some performance costs. The
costs of a region described by cost function par costs can be subdivided into communication, synchro-
nization, compiler overhead, and input/output time. Template costs is used to define this performance
property According to the template’s definition the region accounts for this property if cost sum is greater
than 0. The confidence for this condition is one.
The severity of this property is the fraction of the time spent for costs compared to the duration of ranking
basis, typically the duration of the main program. Note, that comm time, sync time, compiler ovh time
io time, and duration are summary figures across all processes executing the region.
The severity of this property is larger than the severity of the individual properties for each of the cat-
egories. This may lead to the selection of the cost property as a performance problem according to
the predefined severity threshold while the individual properties, i.e. communication costs , synchroniza-
tion costs , and io costs , may not be marked as performance problems.

3.4.2.4 communication costs

float comm_costs(RegionSummary rs) = rs.sums.comm_time;

PROPERTY costs <comm_costs> communication_costs;

This property determines whether a region implies communication. Its condition and severity is based
on comm time which is the arithmetic mean across all processes executing region r. The severity is the

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 43

communication time divided by the execution time of the ranking basis. Again this property is defined
based on template costs.

3.4.2.5 forall synchronization costs

PROPERTY forall_synchronization_costs (HPFRegion r, Experiment e, Region rank_basis){
LET
float forall_sync_time = summary(r,e).sums.sync_time;

IN
CONDITION: typeof(summary(r,e).region)==HPFLoop AND

summary(r,e).region.ltype == FORALL AND
forall_sync_time > 0;

CONFIDENCE: 1;
SEVERITY: forall_sync_time/duration(rank_basis,e);

}

FORALL loops may invoke synchronization within and between loop body statements which is specified
by property forall synchronization costs . The severity is the fraction of the synchronization costs at the
execution time of the ranking basis.

3.4.2.6 io costs

float io_time(RegionSummary rs) = rs.sums.io_time;

PROPERTY costs <io_time> io_costs;

Property io costs – defined based on template costs – of a region reflects whether or not any process
spends some time in input/output operations. The severity is the fraction of the input/output costs at
the execution time of the ranking basis.

3.4.2.7 parallel organization costs

PROPERTY parallel_organization_costs(Region r, Experiment e, Region
rank_basis) {

CONDITION: COUNT(procs WHERE procs IN summary(r,e).processes) > 1 ;

CONFIDENCE: 1;

SEVERITY: summary(r,e).compiler_ovh_time / duration(rank_basis,e);
}

Execution of a parallel region may be associated with some extra costs implied by a parallelizing compiler.
For instance, execution of a statement may be conditional depending on which process is executing the
statement. The condition for this property is that a region is executed by more than process. The severity
is the time needed to execute the extra code inserted by the compiler.

44 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.2.8 redist costs

PROPERTY redist_costs (HPFRegion r,Experiment e,Region rank_basis) {
LET
redist1 = summary(r,e).sums.impl_redistr_time;
redist2 = summary(r,e).sums.expl_redistr_time;
IN
CONDITION:

(Cond1)
((typeof(summary(r,e).region)==HPFProcedure)

AND
(EXISTS dec IN summary(r,e).region.decls
SUCH THAT

dec.format==PRESCRIPTIVE OR dec.format==TRANSCRIPTIVE)
AND

(redist1 > 0))
OR

(Cond2)
((typeof(summary(r,e).region)==HPFRedistribute)

AND
(EXISTS dec IN summary(r,e).region.decls
SUCH THAT dec.alloc == DYNAMIC)
AND

(redist2 > 0))
CONFIDENCE: MAX((Cond1)->0.8, (Cond2)->1.0);
SEVERITY: MAX((Cond1)->redist1 / duration(rank_basis,e),

(Cond2)->redist2 / duration(rank_basis,e));
}

Property redist costs specifies the time spent in redistributing data inside (redistribution of dummy
arrays and dynamic arrays) or outside of procedures (redistribution of dynamic arrays). We include
two different conditions for this property to hold each of which is associated with its own confidence
value. The first condition ensures that a region is a procedure. If the procedure has prescriptive or
transcriptive mapping and impl redistr time is non-zero then redistribution may occur at the procedure
boundary. The second condition covers the case where DYNAMIC arrays are redistributed based on the
HPF REDISTRIBUTE directive which causes expl redistr time to be non-zero. A close integration between
performance measurement tool and HPF compiler is needed in order to associate measured performance
data with the location in the HPF program that causes redistribution. Commonly, the more conditions
are included for a property the more options are available to determine whether a property holds and
the more refined information about the cause of the property is supplied. For instance, if prediction fails,
then monitoring could be employed to prove a certain performance property. For property redist costs,
we include two conditions with more detailed information than if only a single value for all redistribution
costs would be provided.
In the following code excerpt, the first and second loop nest, respectively, favor column- and row-wise
distribution. An HPF REDISTRIBUTE directive is used to redistribute array A row-wise between the two
loop nests.

!HPF$ DISTRIBUTE A(*,BLOCK)

DO i=1,n

DO j=1,n

A(i,j) = A(i-1,j)+A(i,j)

END DO

END DO

!HPF$ REDISTRIBUTE(BLOCK,*) A(BLOCK,*)

DO i=1,n

DO j=1,n

A(i,j) = A(i,j-1)+A(i,j)

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 45

END DO

END DO

Clearly, for this example array redistribution enables perfect load balance with no communication inside
of loops. However, assume that the second loop is insignificant in terms of computational overhead or is
not executed at all. Then array redistribution may imply higher communication costs than performance
that can be gained.
The confidence of property redist costs is the maximum confidence value across both conditions as specified
above. Note that for this property we assume that measuring implicit redistribution (condition 1) may
be less precise than timings of explicit redistribution (condition 2) due to a lack of compiler information.
The severity is the maximum across the time spent in, respectively, implicit and explicit redistribution
of data relative to the execution time of the region selected as the rank basis.

3.4.2.9 serialization costs

PROPERTY serialization_costs (HPFRegion r, Experiment seq, Experiment par, Region rank_basis){

LET
float par_comp_costs = summary(r,par).sums.duration -

summary(r,par).sums.comm_time -
summary(r,par).sums.sync_time -
summary(r,par).sums.idle_time -
summary(r,par).sums.compiler_ovh_time -
summary(r,par).sums.io_time;

IN
CONDITION: par_comp_costs > (duration(r,seq) * loop_serial_threshold)
CONFIDENCE: 1;
SEVERITY: par_comp_costs / (duration(rank_basis,par);

}

Property serialization costs reflects whether parallelism has been exploited by a given region. seq and
par , respectively, correspond to a single and multiprocessor experiment.
par comp costs defines the parallel computation costs implied by a region which excludes communication,
synchronization, idle, compiler overhead, and input/output time. This figure is then compared against
the sequential execution time. The severity is given by par comp cost divided by the parallel execution
time of the rank basis .

46 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.2.10 uneven work distribution

Property uneven_work_distribution (HPFRegion r, Experiment seq, Experiment par,
Region rank_basis) {

LET
int nr_processes = COUNT(procs WHERE procs IN summary(r,par).processes);
float opt_duration = duration(r,seq)/nr_processes;

float deviation = SQRT(SUM (EXP(proc_sum.duration -
proc_sum.comm_time -
proc_sum.sync_time -
proc_sum.idle_time -
proc_sum.compiler_ovh_time -
proc_sum.io_time - opt_duration, 2)
WHERE proc_sum IN summary(r,par).proc_sums))

IN
CONDITION: (deviation / opt_duration) > uneven_threshold
CONFIDENCE: 1;
SEVERITY: summary(r,par).sums.duration / duration(rank_basis,par)

}

Property uneven work distribution specifies how even the computations of a parallel program have been
distributed across all processes executing a region. The standard deviation of the computational costs
of every process with respect to the optimal duration (sequential execution time divided by number
of processes) is computed. The condition is then given as the variation coefficient compared against a
threshold. The severity is defined as the execution time divided by the rank basis .

3.4.2.11 inspector costs

float inspector_time(RegionSummary rs) = rs.sums.inspector_time;

PROPERTY costs <inspector_time> inspector_costs;

One parallelization strategy for irregular HPF programs implies for each loop (region) a preprocessing
(inspector) and an executor phase. The inspector phase – commonly highly execution time intensive
– is responsible for the analysis of access patterns and calculation of communication schedules. The
executor phase gathers remote data, executes the loop and scatters data to the owning processes. A
crucial aspect of this parallelization strategy deals with the problem to reuse the communication schedule
of the inspector phase which in many cases is loop invariant.
Property inspector costs denotes the average time spent in the inspector phase across all involved pro-
cesses. This property is again defined based on template costs with the given severity and confidence
figures.

3.4.3 OpenMP

This section introduces performance properties of shared memory programs. The following performance
properties are presented:

• costs

• measurable costs

• unmeasurable costs

• non parallelized code

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 47

• synchronization

• irregular sync across instances

• load imbalance

• remote accesses

• remote access to variable

• multiple transfer of same data

• wrong page distribution for variable

• parallel organization

3.4.3.1 OpenMP global definitions

SmRegionSummary summary(Region r, Experiment e)=
UNIQUE({s IN e.profile WITH s.region==r});

float sync(Region r, Experiment e)=summary(r,e).sums.region_wait +
summary(r,e).sums.region_ctrl +
summary(r,e).sums.cross_thread_dep_wait +
summary(r,e).sums.cross_thread_dep_ctrl;

float duration(Region r, Experiment e)=summary(r,e).sums.duration;

float remote_access_time(Region r, Experiment e)=
summary(r,e).sums.nr_remote_accesses
* e.system.remote_access_time;

The following property specifications make use of those four functions. The summary function determines
the summary information for a given region and a given experiment.
The sync function determines the overhead for synchronization in a given region. It computes the sum
of the relevant attributes in the summary class.
The duration function returns the execution time of a region. The execution time is determined by the
execution time of the master thread in the OpenMP model.
The remote access time function estimates the overhead for accessing remote memory based on the mea-
sured number of accesses and the mean access time of the parallel machine.
In the following we define two templates for generic costs. One to be used for parallel costs which
are evaluated relative to a serial execution which, therefore requires both a sequential and a parallel
experiment, and one for costs which are evaluated with reference to a single (parallel) experiment. These
can be used to define various OpenMP performance properties.

3.4.3.2 Template costs

PROPERTY TEMPLATE costs <float cost_func(Region r, Experiment e)>
(Region r, Experiment e, Region RankBasis){

LET
cost = cost_func(r,e)

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(rank_basis,e);

}

48 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.3.3 template rel costs

PROPERTY TEMPLATE rel_costs
<float cost_func(Region r, Experiment seq,Experiment par)>
(Region r, Experiment seq, Experiment par, Region RankBasis){

LET
cost = cost_func(r,seq,par)

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(rank_basis,par);

}

3.4.3.4 costs

float par_costs(Region r, Experiment seq, Experiment par) = duration(r,par) -
(duration(r,seq)/par.nr_processors);

PROPERTY rel_costs <par_costs> costs;

This property specifies that the speedup of the application is not linear. It uses information from two
experiments, a sequential run and a parallel run, to compute the costs of parallel execution. Those costs
determine the severity of the property.

3.4.3.5 measurable costs

float par_costs(Region r, Experiment e) =
summary(r,e).sums.non_parallelized_code +
sync(r,e) +
remote_access_time(r,e) +
summary(r,e).sums.scheduling +
summary(r,e).sums.additional_calc;

PROPERTY costs <par_costs> measurable_costs;

Performance analysis tools only help in analyzing measurable costs. A region has the measurable costs
property if the sum of those costs is greater than zero. The severity of this property is the fraction of
those costs relative to the execution time of rank basis .

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 49

3.4.3.6 unmeasurable costs

Property unmeasurable_costs(Region r, Experiment seq, Experiment e, Region rank_basis){
LET

float total_costs = duration(r,e) - (duration(r,seq)/e.nr_processors);
float costs = summary(r,e).sums.non_parallelized_code +

sync(r,e) +
remote_access_time(r,e) +
summary(r,e).sums.scheduling +
summary(r,e).sums.additional_calc;

IN
CONDITION: total_costs-costs>0;

CONFIDENCE: 1;

SEVERITY: total_costs(r,e)/duration(rank_basis,e);
}

The total cost of the parallel program is the sum of the measurable and the unmeasurable overhead. The
unmeasurable costs property determines whether an unmeasurable overhead exists. Its severity is the
fraction of this overhead in relation to the execution time of rank basis . If this fraction is high, further
tool-supported performance analysis might not be very helpful.

3.4.3.7 non parallelized code

float non_parallel_code(Region r, Experiment e) =
summary(r,e).sums.non_parallelized_code;

PROPERTY costs <non_parallel_code> non_parallelized_code;

Non-parallelized code is a very severe problem for application scaling. In the context of analyzing a
given program run, its severity is determined in the usual way. If the focus of the analysis is more on
application scaling the severity should stress the importance of this property.

3.4.3.8 synchronization

PROPERTY costs <sync> synchronization;

This property uses the globally defined function sync defined in Section 3.4.3.1.
A region has the synchronization property if any synchronization overhead occurs during its execution.
One of the obvious reasons for high synchronization cost is load imbalance.

50 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

3.4.3.9 irregular sync across instances

Property irregular_sync_across_instances
(Region r, Experiment e, Region rank_basis){

LET
float inst_sync(SmInstanceSums sum)=sum.region_wait +

sum.region_ctrl +
sum.cross_thread_dep_wait +
sum.cross_thread_dep_ctrl ;

IN
CONDITION: stdev(inst_sync(inst_sum)

WHERE inst_sum IN summary(r,e).instance_sums)
> irreg_behaviour_threshold * sync(r,e)/r.nr_executions;

CONFIDENCE: 1;

SEVERITY: sync(r,e)/duration(rank_basis,e);
}

The synchronization property defined above is assigned to regions with synchronization. If the dynamic
behaviour of an application changes over the execution time - load imbalance, for example, might occur
only in specific phases of the simulation - the whole synchronization overhead might result from specific
instances of the region. A region with the irregular synch across instances property has an irregular
distribution of the synchronization overhead across different instances. The severity is equal to the
severity of the synchronization property since the irregular synch across instances property is only a
more detailed explanation.

3.4.3.10 load imbalance

float load_imb_cost(Region r, Experiment e) =
summary(r,e).sums.region_wait;

PROPERTY costs <load_imb_cost> load_imbalance;

Work is unevenly distributed to threads in the region. This manifests itself in region wait time. If the
region wait time cannot be measured, the property can also be proven based on the execution time of
the thread with the longest duration minus the average duration.

3.4.3.11 remote accesses

PROPERTY costs <remote_access_time> remote_accesses;

An important property for code on ccNUMA machines is access to remote memory. Remote memory
access implements communication among parallel threads. Since usually only the number of accesses can
be measured, the severity is estimated based on the mean access time. This property uses the global
function remote access time defined in Section 3.4.3.1.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 51

3.4.3.12 remote access to variable

Property remote_access_to_variable
(Region r, Experiment e, String var, Region rank_basis)

{
LET

VariableRemoteAccesses var_sum =
UNIQUE({info IN summary(r,e).sums.accessed_variables

WITH info.var_name==var});
IN

CONDITION: var_sum.nr_remote_accesses > 0;

CONFIDENCE: 1;

SEVERITY: var_sum.nr_remote_accesses * e.system.remote_access_time
/duration(rank_basis,e);

}

The previous property identifies regions with remote accesses. This property is more specific since its
context also includes a specific variable. The property indicates whether accesses to a variable in this
region result in remote accesses. It is based on address-range-specific remote access counters, such as the
counters provided in the SGI Origin 2000 on page level. The severity of this property is based on the time
spent in remote accesses to this variable. Since this property is very useful in explaining a severe remote
access overhead for the region, it might be ranked with respect to this region during a more detailed
analysis.

3.4.3.13 multiple transfer of same data

Property multiple_transfer_of_same_data
(Region r, Experiment e, String var, Region rank_basis)

{
LET

VariableRemoteAccesses var_info =
UNIQUE({info IN summary(r,e).sums.accessed_variables

WITH info.var_name==var});
IN

CONDITION: (Cond1)
(var_info.nr_remote_accesses * e.nr_processors > var_info.size
/ e.system.cache_line_size*summary(r,e).nr_executions)

OR
(Cond2)

(var_info.nr_remote_accesses * e.nr_processors
> 0.5 * var_info.size / e.system.cache_line_size

* summary(r,e).nr_executions);

CONFIDENCE: MAX((Cond1)->1, (Cond2)->0.5);

SEVERITY: var_info.nr_remote_accesses * e.system.remote_access_time
/duration(rank_basis,e);

}

This property indicates that the same coherence unit, e.g. cache line in ccNUMA-systems, is transferred
multiple times between processors. Some of the transfers might be unnecessary.

52 CHAPTER 3. PERFORMANCE PROPERTY SPECIFICATION

The conditions in this property compare the number of remote accesses in all threads to the number of
cache lines in the data structure. Is the number of remote accesses is larger than the number of cache
lines multiplied by the number of executions of that region, i.e. the maximum number of accesses without
transferring elements twice, the property is proven with a confidence of one. Is the number of remote
accesses only larger than half the potential accesses (Cond2) the confidence is 0.5.
The severity is the same in both cases, i.e. the estimated loss in execution time.

3.4.3.14 wrong page distribution for variable

Property wrong_page_distribution_for_variable
(Region r, Experiment e, String var, Region rank_basis)

{
LET

VariableRemoteAccesses var_sum(String var,setof VariableRemoteAccesses info_set) =
UNIQUE({info IN info_set WITH info.var_name==var});

IN
CONDITION:

EXISTS
thr_sum IN summary(r,e).thread_sums,
thr_psum IN var_sum(var,thr_sum.accessed_variables).page_sums,
glo_psum IN {s IN var_sum(var,summary(r,e).accessed_variables).page_sums

WITH s.page_no==thr_psum.page_no}
SUCH THAT

thr_psum.nr_remote_accesses!=0
AND

thr_psum.nr_remote_accesses==glo_psum.nr_remote_accesses;

CONFIDENCE: 0.5;

SEVERITY: var_sum(var,summary(r,e).accesses_variables).nr_remote_accesses
* e.system.remote_access_time/duration(rank_basis);

}

The property identifies a specific reason for remote memory accesses. The condition checks whether
remote accesses to at least one of the pages of the variable occur in only a single process. The remote
access counts of the other threads for this page have to be zero.
This condition is only an indication for a possibly wrong page distribution. The confidence value is lower
than one since it might be possible that another thread executing in the node where the page is allocated
accesses this page. If the page would be migrated, remote accesses would then occur for this thread. Since
local access counts are not available in that data model, a more precise condition cannot be determined.
The severity of the property depends on the average number of remote accesses in the threads.

3.4.3.15 parallel organization

Property parallel_organization(Region r, Experiment e, Region rank_basis) {

CONDITION: typeof(summary(r,e).region)==ParallelRegion
AND summary(r, e).nr_executions > 1 ;

CONFIDENCE: 1;

SEVERITY: summary(r,e).nr_executions *
e.system.parallel_region_cost / duration(rank_basis,e);

}

Execution of a parallel region is associated with costs for ”going parallel”. The severity of these costs
depends on the number of instances of the parallel region.

3.4. PARADIGM RELATED PROPERTY SPECIFICATION 53

The condition for this property is that the number of executions for a region is greater than one. The
severity is the time associated with initiating a parallel regions (sum of region ctrl time) relative to the
execution time of the region selected as the ranking basis. It is assumed that the average cost associated
with a parallel region (basically the barrier time) is stored as a machine constant (possibly dependent
upon p, the number of processors).

Chapter 4

Conclusions and Future Work

This report has described the specification language (ASL) that will be used in the APART working group
to describe performance problems in parallel programs. ASL provides constructs to specify performance-
related data as an object model, and constructs to describe performance properties, including conditions
to prove existence, confidence expressions to support fuzzy information, and severity measures which
allows the ranking of performance problems. ASL has been extended by new concepts that include
templates and metaproperties. Templates are used to describe similar performance properties with a
generic representation. Moreover, in order to support the specification of performance properties based
on other performance properties, we invented metaproperties. By incorporating this concept we can
formulate properties based on performance-related data and components (condition, confidence, and
severity) of existing performance properties. ASL has been further extended by patterns to describe
compound events that indicated the existence of performance properties which can only be detected in
event traces.
The examples presented in this report are data models and performance properties of implementations
of three major programming paradigms: MPI, HPF, and OpenMP. Currently, for a specific performance
analysis environment on a specific parallel machine, specialized specifications have to be developed since
the performance-related data available in the environment must be taken into account.
Since the data models for the three paradigms do have a common structure, and this common structure
will very likely show up in real performance analysis environments, it is covered by a set of base classes
that can be reused in new designs. The list of base classes will be extended in the future to cover other
common aspects, such as classes representing typical regions, and classes for a standard set of trace
events.
Also, in the future, we would like to test the specification techniques in the context of other programming
paradigms, such as object oriented programming, distributed applications, multimedia applications, and
databases. We would like to verify whether the language is powerful enough to describe the performance
properties found in these environments.
The specification language presented in this report will have to be supplemented by other specification
notations. For example, a notation is required to describe the data supplied by existing analysis tools
in the target performance analysis environment. Also required is a notation to provide the means for
specifying the analysis process of automated performance analysis tools. Both specifications have been
introduced in Section 1.2. Besides the coordinated design of these languages, the issue of the efficient
translation of the specifications into data and/or code for use by automated analysis tools needs to be
investigated. We anticipate that this latter topic might well lead to a design for all the languages that is
tailored more towards tool implementation.

54

Bibliography

[AhSeUl 88] A. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques and Tools. Series in
Computer Science. Addison Wesley, 1988.

[BaWi 83] P. Bates, J.C. Wileden: High-Level Debugging of Distributed Systems: The Behavioral Ab-
straction Approach, The Journal of Systems and Software, Vol. 3, pp. 255-264, 1983

[BeGeKr 96] R. Berrendorf, M. Gerndt, A. Krumme: A Programming Environment for Parallel Com-
puters with Global Address Space, Workshop on High-Level Programming Models and Supportive
Environments (HIPS ’96), in combination with IPPS ’96, IEEE, pp. 10-16, 1996

[CuSiGu 99] D. E. Culler and J. P. Singh. Parallel Computer Architecture: A Hardware/Software Ap-
proach . Morgan Kaufmann Publisher Inc., 1999.

[DaMe 98] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for shared-
memory programming. IEEE Computational Science & Engineering, 5(1):46–55, January/March
1998.

[EsMaLu 98] A. Espinosa, T. Margalef, E. Luque: Automatic Performance Evaluation of Parallel Pro-
grams, Sixth Euromicro Workshop on Parallel and Distribued Processing, 1998

[FaScPa 99] Thomas Fahringer, Bernhard Scholz, and Mario Pantano. Execution-Driven Performance
Analysis for Distributed and Parallel Systems. Institute for Software Technology and Parallel Systems,
University of Vienna, Liechtensteinstr. 22, A-1090 Wien. Technical Report, June, 1999.

[Fa 95] T. Fahringer. Estimating and Optimizing Performance for Parallel Programs. IEEE Computer,
28(11), pp. 47-56, Nov. 1995.

[Fa 96] T. Fahringer. Automatic Performance Prediction of Parallel Programs. Kluwer Academic Pub-
lishers, Boston, USA, ISBN 0-7923-9708-8, March, 1996.

[GeKr 97] M. Gerndt, A. Krumme: A Rule-based Approach for Automatic Bottleneck Detection in Pro-
grams on Shared Virtual Memory Systems, Second Workshop on High-Level Programming Models
and Supportive Environments (HIPS ’97), in combination with IPPS ’97, IEEE, 1997

[GeKrOz 95] M. Gerndt, A. Krumme, S. Özmen: Performance Analysis for SVM-Fortran with
OPAL, Proceedings Int. Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA’95), Athens, Georgia, pp. 561-570, 1995

[HeMa 95] B.R. Helm, A.D. Malony: Automating Performance Diagnosis: a Theory and Architecture,
International Workshop on Computer PerformanceMeasurement and Analysis (PERMEAN ’95), 1995

[HPF 93] High Performance FORTRAN Language Specification. Technical Report, Version 2.0.δ, Rice
University, Houston, TX, October 1996.

[KaLeObWa 98] Hockauf, R.; Karl, W.; Leberecht, M.; Oberhuber, M.; Wagner, M.: Exploiting Spatial
and Temporal Locality of Accesses: A New Hardware-Based Monitoring Approach for DSM Systems.
In: D. Pritchard, Jeff Reeve (Eds.): Euro-Par’98 Parallel Processing / 4th International Euro-Par
Conference Southampton, UK, September 1-4, 1998 Proceedings. Springer-Verlag, Heidelberg, Lecture
Notes in Computer Science Vol.1470, 1998, pp. 206-215

55

56 BIBLIOGRAPHY

[MCCHI 95] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic,
K. Kunchithapadam, T. Newhall: The Paradyn Parallel Performance Measurement Tool, IEEE Com-
puter, Vol. 28, No. 11, pp. 37-46, 1995

[GaMo 98] J. Galarowicz, B. Mohr: Analyzing Message Passing Programs on the Cray T3E with PAT
and VAMPIR, Fourth European CRAY-SGI MPP Workshop Garching/München, Research Centre
Juelich Technical Report, FZJ-ZAM-IB-9809, 1998

[MoBrMa 94] B. Mohr and D. Brown and A. Malony. TAU: A portable parallel program analysis envi-
ronment for pC++. CONPAR, Linz, Austria, 1994.

[NaArWeHoSo 96] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach VAMPIR:
Visualization and Analysis of MPI Resources. Supercomputer 12(1), pp. 69-80, 1996.

[Paradyn 98] Paradyn Project: Paradyn Parallel Performance Tools: User’s Guide, Paradyn Project,
University of Wisconsin Madison, Computer Sciences Department, 1998

[Mu 99] Nandini Mukhopadhyay (Mukherjee). On the effectiveness of feedback-guided parallelisation.
PhD Thesis, University of Manchester, Department of Computer Science, September, 1999.

[Mu 00] N. Mukherjee, G.D. Riley and J.R. Gurd. FINESSE: A Prototype Feedback-guided Performance
Enhancement System, Accepted for PDP2000, to be held in Rhodes in January 2000.

[Re 93] D. A. Reed, R. A. Aydt, R. J. Noe, P.C. Roth, K. A. Shields, B. W. Schwartz, L.F. Tavera.
Scalable Performance Analysis: The Pablo Performance Analysis Environment. In Proc. of Scalable
parallel Libraries Conf., Ieee Computer Society, pp. 104-113, 1993.

[Re 98] R. Ribler, J. Vetter, H. Simitci, D. A. Reed. Autopilot: Adaptive Control of Distributed Appli-
cations. In Proc. of the 7th IEEE Symposium on High-Performance Distributed Computing, 1998.

[RuJaBo 99] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Re-
frence Manual. Object Technology Series. Addison Wesley Longman, Reading, Mass., 1999.

[SnOtHUWaDo 98] M. Snir, St. Otto, St. Huss-Lederman, D. Walker, J. Dongarra: MPI - The Complete
Reference, MIT Press, ISBN 0-262-69216-3, 1998

[WoMo 98] F. Wolf, B. Mohr: EARL - A Programmable and Extensible Toolkit for Analyzing Event
Traces of Message Passing Programs, 7th International Conference on High-Performance Computing
and Networking (HPCN’99), A. Hoekstra, B. Hertzberger (Eds.), Lecture Notes in Computer Science,
Vol. 1593, pp. 503-512, 1999

[WoMo 00] F. Wolf, B. Mohr: Specifying Performance Properties Using Compound Runtime Events,
Technical Report, ESPRIT IV Working Group APART, August 2000.

Appendix A

Unified Modeling Language Class
Diagrams

The object models are presented as Unified Modelling Language (UML) class diagrams [RuJaBo 99],

http : //www.rational.com/uml

and as textual property specification documents. Figure A.1 shows a simple UML class diagrams. The
boxes represent classes, the class name is shown in the upper part and the class’s attributes in the lower
part. The attributes are represented by its name followed by its type. Closed arrows represent the
specialization of generalization relationship. For example, SaloonCar and Caravan are a specializations
or subclasses of Car.
UML diagrams provide two other types of relationships: associations and aggregations. Associations are
represented by plain lines and open arcs. In contrast to a plain line, an arc defines that the association in
navigable in this direction. The name for accessing the associated object is written near to this object,
in the diagrams in Figure A.1 the potential drivers of a car are identified via Drivers. In addition, the
cardinality of the associated objects can be specified at the end points of an association or aggregation.
For example, each car can have 1 or more potential drivers and each person can drive 0 or more cars.
Aggregations are represented as lines or arcs with a diamond near to the aggregate class. An aggregation
is a has a-relationship. The diagrams in Figure A.1 specifies that a car has four wheels. An aggregation
relationship is used instead of an association if the destruction of the aggregate object also leads to the
destruction of the attribute objects.
The UML is a very powerful specification language. The above paragraphs only explain those feature
that are used in the performance model diagrams. When designing and implementing software, UML

SaloonCar Caravan

Wheel

Radius : float

Person

Name : String

Car

Color : String

1

4

1

Wheels 4

1..*

Drivers

1..*

0..*

Figure A.1: Object model in the Unified Modelling Language (UML)

57

58 APPENDIX A. UNIFIED MODELING LANGUAGE CLASS DIAGRAMS

specification are automatically translated into appropriate programming language constructs, such as
classes in Java or C++ and SQL specifications for relational databases. In a similar procedure the
diagrams of performance-related data models can be transferred into the APART specification language.

Appendix B

APART Base Class Library

//***
//
// APART Base Classes
//
//***

class Application {
String name; //Name of application
setof Version versions; //Versions

}

class Version {
int version_no; //Version number
setof SourceFile files; //Source files
setof Experiment experiments; //Multiple experiments

}

// Classes SourceFile and Region model pure static information

class SourceFile {
String name; //File name
String contents; //File contents
setof Region regions; //Regions included in file

}

class Region {
Position start_pos; //Start position (line, column) in file
Position end_pos; //End position
setof Region sub_regions; //Regions nested in that region
setof Region successors; //Successor regions according to region
setof Region predecessors; //Predecessor regions according to region

//control flow
}

//The following classes are used to model dynamic performance
//information. It includes the summary data per region
//(entire run, all processes) and the traces of the processes.

59

60 APPENDIX B. APART BASE CLASS LIBRARY

class Experiment {
DateTime start_time; //Start time of the experiment
int nr_processors; //Number of used processors
setof RegionSummary profile; //Summed up information for events
setof Event trace; //Trace records for individual events
Machine system; //Machine chracterization

}

class Event {
float timestamp; //Timestamp of event
Process process_id; //Process number

}

class RegionSummary {
Region region; //Region with measured data

}

//The following classes are utility classes for the different
//programming paradigms.

class Dependence {
Region src; //Source of dependence
Region dst; //Destination of dependence
GeneralTypes.dep_type type; //Type of data dependence
GeneralTypes.dep_dir direction;//Direction of dependence
int distance; //Distance of dependence
int level; //Loop level that carries dependence

}

class GeneralTypes{
enum dep_dir { ’<’, ’>’, ’=’); //Direction of dependence
enum dep_type{ True, Anti, Output); //Type of dependence

}

class LoopHeader { //Describes loop bounds
String lower; //Lower bound
String upper; //Upper bound
String stride; //Stride of loop

}

class Position {
int line; //Line in file
int col; //Column in that line

}

class Process {
int process_id; //Process number

}

class Machine { //Generic parallel machine
int nr_processors; //All physical processors

}

Appendix C

MPI Property Specification

//***
// APART Example Property Specification
//
// Message Passing Paradigm Performance Data Model
//
//***

PERFORMANCE DATA

//***
//MPI static information
//***

class MPIApplication extends Application {
MPITypes.ParadigmType Paradigm; //defines implemented paradigm

}

class Function extends Region {
int NumCallSites; //call sites in function
String Name; //function name
Setof FuncCall Calls; //call sites in function

}

class FuncCall extends Region {
Function CalledFunc; //called function
Function Caller; //calling function
MPITypes.ParadigmRole role; //role of this region in paradigm

}

class MPIFunction extends Function {
}

class MPICommFunc extends MPIFunction {
}

class MPISyncFunc extends MPIFunction {
}

class MPIioFunc extends MPIFunction {
}

61

62 APPENDIX C. MPI PROPERTY SPECIFICATION

class MPIp2pFunc extends MPICommFunc {
MPITypes.CommType type; //e.g. send, receive
MPITypes.CommMode mode; //buffered, synchronous, ready
MPITypes.CommSemantics semantics; //blocking, nonblocking

}

class MPICollFunc extends MPICommFunc {
MPITypes.CollType type; //reduction, broadcast

}

//***
//MPI dynamic information: Summary data
//***

class MPISummary extends RegionSummary {
Process Proc; //process or ALLPROCESSES
float Excl; //exclusive execution time
float Incl; //inclusive execution time
float CommTime; //communication time
float SyncTime; //synchronization time
float IoTime; //IO time
float IdleTime; //idle time in communication
int MessageLength; //sum of sent/received messages
int NrExecutions; //number of region instances
int L1DCacheMisses; //level 1 cache misses
int L1ICacheMisses; //instruction cache misses
int L2CacheMisses; //level two cache misses
int Instinstr; //integer instructions
int FpInstr; //floating point instructions
int LoadInstr; //load instructions
int StoreInstr; //store instructions

}

//***
//MPI dynamic information: Events
//***

class Enter extends Event {
Region region; //entered region

}

class Exit extends Event {
Region region; //left region
float Excl; //exclusive execution time
float Incl; //inclusive execution time
float CommTime; //communication time
float SyncTime; //synchronization time
float IoTime; //IO time
float IdleTime; //idle time in communication
int MessageLength; //sum of sent/received messages
int NrExecutions; //number of region instances
int L1DCacheMisses; //level 1 cache misses
int L1ICacheMisses; //instruction cache misses
int L2CacheMisses; //level two cache misses

63

int Instinstr; //integer instructions
int FpInstr; //floating point instructions
int LoadInstr; //load instructions
int StoreInstr; //store instructions

}

class Send extends Event {
int Tag; //message tag
int Length; //message length
Process Destination; //target process

}

class Receive extends Event {
int Tag; //message tag
int Length; //message length
Process Sender; //source process

}

class Collective extends Event {
Communicator Communic; //active communicator
int Length; //total length of all messages

}

class Communicator {
setof Process processes;

}

//***
//MPI utility classes
//***

class MPITypes {
enum CommMode {Buffered, Sync, Ready};
enum CollType {Reduction, Broadcast};
enum CommType {Send, Recv, SendRecv};
enum CommSemantics {Blocking, Nonblocking};
enum ParadigmType {MasterSlave, DivideConquer, Farming};
enum ParadigmRole {MasterSend, MasterRecv, SlaveSend, SlaveRecv};

}

//***
// APART Example Property Specification
//
// Message Passing Paradigm Performance Properties
//
//***

PERFORMANCE PROPERTIES

LET

MPISummary Summary(MPIRegion r, Experiment e, Process p)=
UNIQUE({sumr IN e.profile WITH sumr.region==r AND sumr.Proc==p});

Setof MPISummary ProcessProfiles(MPIRegion r, Experiment e)=
{sumr IN e.profile WITH sumr.region==r AND sumr.Proc!=ALLPROCESSES}

64 APPENDIX C. MPI PROPERTY SPECIFICATION

float Duration(MPIRegion r, Experiment e)= Summary(r,e).Incl;

float Duration(MPIRegion r, Experiment e, Process p)= Summary(r,e,p).Incl;

IN
PROPERTY TEMPLATE Cost <float CostFunc(Region r, Experiment e)>

(Region r, Experiment e, Region RankBasis){
LET

Cost = CostFunc(r,e)
IN

CONDITION: Cost > 0;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

float AllCostFunc(Region r, Experiment e) =
summary(r,e).CommTime +
summary(r,e).SyncTime +
summary(r,e).IoTime;

float CommCostFunc(Region r, Experiment e)= Summary(r,e).CommTime;
float SyncCostFunc(Region r, Experiment e)= Summary(r,e).SyncTime;
float IoCostFunc(Region r, Experiment e)= Summary(r,e).IoTime;

PROPERTY Cost<AllCostFunc> TotalCost;
PROPERTY Cost<CommCostFunc> CommCost;
PROPERTY Cost<SyncCostFunc> SyncCost;
PROPERTY Cost<IoCostFunc> IoCost;

PROPERTY TEMPLATE CacheCost <float CostFunc(Region, Experiment)>
(Region r, Experiment e, Region RankBasis) {

LET
float Costs=CostFunc(r,e);

IN
CONDITION: Costs>0;
CONFIDENCE: 1;
SEVERITY: Cost/(Summary(RankBasis,e).LoadInstr

+ Summary(RankBasis,e).StoreInstr) ;
}

L1DCacheCostFunc(Region r, Experiment e)= Summary(r,e).L1DCacheMisses;
L1ICacheCostFunc(Region r, Experiment e)= Summary(r,e).L1ICacheMisses;
L2CacheCostFunc(Region r, Experiment e)= Summary(r,e).L2CacheMisses;

PROPERTY CacheCost<L1DCacheCostFunc> L1DataCacheMisses;
PROPERTY CacheCost<L1ICacheCostFunc> L1InstCacheMisses;
PROPERTY CacheCost<L2CacheCostFunc> L2CacheMisses;

PROPERTY DominatingCommFunction(MPIFunction r, Experiment e, Region RankBasis){
LET

setof MPISummary CommSummaries=
{x IN e.profile
WITH

x.Proc==ALLPROCESSES
AND

65

typeof(x.region)==MPICommFunc};
float MaxCommTime = MAX(sum.Incl WHERE sum IN CommSummaries);

IN
CONDITION: typeof(r)==MPICommFunc AND Duration(r,e)==MaxCommTime;
CONFIDENCE: 1;
SEVERITY: MaxCommTime/Duration(RankBasis,e);

}

PROPERTY DominatingCommCall(FuncCall r, Experiment e, Region RankBasis){
LET
setof MPISummary CommSummaries=

{x IN e.profile
WITH
x.Proc==ALLPROCESSES AND typeof(x.region)==FuncCall

AND
typeof(x.region.CalledFunc)==MPICommFunc};

float MaxCommTime = MAX(sum.Incl WHERE sum IN CommSummaries);
IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc AND

Duration(r,e)==MaxCommTime;
CONFIDENCE: 1;
SEVERITY: MaxCommTime/Duration(RankBasis,e);

}

PROPERTY FrequentCommunication (FuncCall r, Experiment e, Region RankBasis){
LET
float Cost = Duration(r,e);

IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc AND Cost>0 AND

Cost/Summary(r,e).NrExecutions<SmallMessagesThreshold;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

PROPERTY BigMessages (FuncCall r, Experiment e, Region RankBasis){
LET
float Cost = Summary(r,e).CommTime;
int AvrgLength = summary(r,e).MessageLength/

summary(r,e).NrExecutions;
IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc AND Cost>0 AND

AvrgLength>BigMessagesThreshold;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

PROPERTY LateSender(FuncCall r, Experiment e, Region RankBasis){

LET
float IdleTime = summary(r,e).IdleTime;

IN
CONDITION: typeof(r.CalledFunc)==MPICommFunc

AND r.CalledFunc.Name == MPI_Receive AND IdleTime>0;
CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e);

}

66 APPENDIX C. MPI PROPERTY SPECIFICATION

PROPERTY LateReceiver(FuncCall r, Experiment e, Region RankBasis){

LET
float IdleTime = Summary(r,e).IdleTime;

IN
CONDITION: typeof(r.CalledFunc)==MPIp2pFunc

AND r.CalledFunc.Name == MPI_SEND
AND r.Semantics == Blocking AND idle_time>0;

CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e);

}

PROPERTY UnevenMpDistribution(FuncCall r, Experiment e,
Region RankBasis)

{
LET

float deviation=stdev(s.Incl WHERE s IN ProcessProfiles(r,e));
IN

CONDITION: typeof(r.CalledFunc)==MPICommFunc AND
deviation > uneven_threshold * summary(r,e).Incl/

e.nr_processors;
CONFIDENCE: 1;
SEVERITY: summary(r,e).Incl/Duration(RankBasis,e);

}

PROPERTY LoadImbalanceAtBarrier(FuncCall r, Experiment e, Region RankBasis){
LET

float MaxTime=max(x.Incl WHERE x IN ProcessProfiles(r,e));
float MinTime=min(x.Incl WHERE x IN ProcessProfiles(r,e));
float MaxWait=MaxTime - MinTime;

IN
CONDITION: (COND1) r.CalledFunc.Name==MPI_Barrier AND

max_wait>0
|| (COND2) r.CalledFunc.Name==MPI_Barrier AND

summary(r,e).IdleTime>0;
CONFIDENCE: 1;
SEVERITY: MAX((COND1)->MaxWait/(Duration(RankBasis,e)/e.nr_processors),

(COND2)->Summary(r,e).IdleTime/Duration(RankBasis,e));
}

PROPERTY SlowSlaves (FuncCall r, MPIApplication a,
Experiment e, Region RankBasis){

LET
float IdleTime = summary(r,e).IdleTime;

IN
CONDITION: a.Paradigm == MasterSlave AND r.Role == ReceiveMaster AND

IdleTime>0;
CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e),

}

PROPERTY OverloadedMaster(FuncCall r, MPIApplication a,
Experiment e, Region RankBasis){

LET
float IdleTime = summary(r,e).IdleTime/(e.NrProcessors-1);

67

IN
CONDITION: (a.Paradigm == MasterSlave AND

(r.Role == ReceiveSlave OR r.Role == SendSlave)) AND
IdleTime>0;

CONFIDENCE: 1;
SEVERITY: IdleTime/Duration(RankBasis,e);

}

PATTERN WrongOrder(FuncCall r) {

ROOTTYPE: Receive;
INSTANTIATION:

Send SendMsg = sendptr(ROOT);
Enter EnterSend = enterptr(SendMsg);
Enter EnterRecv = enterptr(ROOT);
Exit ExitRecv = UNIQUE({

ev IN TRACE
WITH enterptr(ev) == EnterRecv
});

Exit ExitSend = UNIQUE({
ev IN TRACE
WITH enterptr(ev) == EnterSend
});

CONSTRAINT:
EXISTS e IN Rs(ROOT, ROOT.Process) SUCH THAT e.Region==r AND
EXISTS s IN Mq(ROOT, SendMsg.Process, ROOT.Process)

SUCH THAT s.Timestamp < SendMsg.Timestamp;
EXPORT:

cost = (ExitSend.Timestamp EnterSend.Timestamp) +
(ExitRecv.Timestamp EnterRecv.Timestamp);

}

PROPERTY MessagesInWrongOrder(FuncCall r, Experiment e, Region RankBasis){
LET
float Cost= SUM(i.cost WHERE i IN

PATTERN_MATCHES(WrongOrder(r), e));
IN
CONDITION: Cost>0;
CONFIDENCE: 1;
SEVERITY: Cost/Duration(RankBasis,e);

}

PROPERTY FrequentCommInProcess(Function r, Experiment e, Process p
Region RankBasis){

LET
float cost = Summary(r,e,p).Incl;

IN
CONDITION: typeof(r)==MPICommFunc AND cost>0 AND

cost/Summary(r,e,p).NumPasses < SmallMessagesThreshold;
CONFIDENCE: 1;
SEVERITY: cost/duration(RankBasis,e,p);

}

PROPERTY TEMPLATE OnAllProcesses< PROPERTY x(Region, Experiment,
Process, Region>(Region r, Experiment e, Region RankBasis) {

68 APPENDIX C. MPI PROPERTY SPECIFICATION

CONDITION: FORALL p IN e.Processes
SUCH THAT

condition(x(r,e,p,RankBasis))
AND

confidence(x(r,e,p,RankBasis))==1;
CONFIDENCE: 1;
SEVERITY: max(severity(x(r,e,p,RankBasis)))*e.NrProcessors;

}

PROPERTY OnAllProcesses<FrequentCommProcess> FrequentCommOnAllProcesses;

PROPERTY TEMPLATE CacheCostPerInstance <float CostFunc(Exit)>
(Exit re, Region RankBasis) {

LET
float costs=CostFunc(re);

IN
CONDITION: costs>0;
CONFIDENCE: 1;
SEVERITY: cost/(re.LoadInstr + re.StoreInstr) ;

}

L1DCacheCostInstFunc(Exit re)= re.L1DCacheMisses;
L1ICacheCostInstFunc(Exit re)= re.L1ICacheMisses;
L2CacheCostInstFunc(Exit re) = re.L2CacheMisses;

PROPERTY CacheCostPerInstance<L1DCacheCostInstFunc> L1DCacheMissesPerInstance;
PROPERTY CacheCostPerInstance<L1ICacheCostInstFunc> L1ICacheMissesPerInstance;
PROPERTY CacheCostPerInstance<L2CacheCostInstFunc> L2CacheMissesPerInstance;

PROPERTY TEMPLATE AllInstancesInProcess
<PROPERTY x(RegionExit)>(Region r, Experiment e,

Process p, Region RankBasis) {
LET

Setof Exit AllRe = {re IN e.Trace WITH re.Process==p
AND re.Region==r}

IN
CONDITION: FORALL re IN AllRe

SUCH THAT
condition(x(re))

AND
severity(x(re))>0.25;

CONFIDENCE: 1;
SEVERITY: max(severity(x(re)));

}

PROPERTY AllInstancesInProcess <L1DCacheMissesPerInstance>
L1DCacheMissesInAllInstancesInProcess;

PROPERTY AllInstancesInProcess <L1ICacheMissesPerInstance>
L1ICacheMissesInAllInstancesInProcess;

PROPERTY AllInstancesInProcess <L2CacheMissesPerInstance>
L2CacheMissesInAllInstancesInProcess;

PROPERTY OnAllProcesses <L1DCacheMissesInAllInstancesInProcess>
L1DCacheMissesInAllInstancesInAllProcesses;

PROPERTY OnAllProcesses <L1ICacheMissesInAllInstancesInProcess>

69

L1ICacheMissesInAllInstancesInAllProcesses;
PROPERTY OnAllProcesses <L2CacheMissesInAllInstancesInProcess>

L2CacheMissesInAllInstancesInAllProcesses;

PROPERTY TEMPLATE SomeNotAllInstances< PROPERTY x(Region, Experiment,
Process, Region>(Region r, Experiment e, Region RankBasis) {
LET
Setof Exit AllRe = {re IN e.Trace WITH re.Process==p

AND re.Region==r}
IN
CONDITION: (EXISTS re IN AllRe

SUCH THAT
condition(x(re))

AND
severity(x(re))>0.25)

AND
(NOT FORALL re IN AllRe

SUCH THAT
condition(x(re))

AND
severity(x(re))>0.25)

);
CONFIDENCE: 1;
SEVERITY: max(severity(x(re)));

}

PROPERTY SomeNotAllInstancesOfProcess <L1DCacheMissesPerInstance>
L1DCacheMissesInSomeNotAllInstances;

PROPERTY SomeNotAllInstancesOfProcess <L1ICacheMissesPerInstance>
L1ICacheMissesInSomeNotAllInstances;

PROPERTY SomeNotAllInstancesOfProcess <L2CacheMissesPerInstance>
L2CacheMissesInSomeNotAllInstances;

PROPERTY TEMPLATE SomeNotAllProcesses< PROPERTY x(Region, Experiment,
Process, Region>(Region r, Experiment e, Region RankBasis) {

CONDITION: (EXISTS p IN e.Processes
SUCH THAT

condition(x(r,e,p,RankBasis))
AND

confidence(x(r,e,p,RankBasis))==1)
AND
(NOT FORALL p IN e.Processes

SUCH THAT
condition(x(r,e,p,RankBasis))

AND
confidence(x(r,e,p,RankBasis))

);
CONFIDENCE: 1;
SEVERITY: max(severity(x(r,e,p,RankBasis)))*e.NrProcessors;

}

PROPERTY SomeNotAllProcesses<FrequentCommProcess>
FrequentCommSomeProcesses;

END

70 APPENDIX C. MPI PROPERTY SPECIFICATION

Appendix D

HPF Property Specification

//***
// APART Example Property Specification
//
// Data Parallel Programming Paradigm Performance Data Model
//
//***

PERFORMANCE DATA

//***
//HPF static information
//***

class HPFRegion extends Region {
setof Dependence deps; // data dependence information of this region
setof HPFDirective dirs; // HPF directives
setof HPFDataDeclaration decls; // HPF declarations

}

//Examples for HPF regions

class HPFProcedure extends HPFRegion { // Procedure is function or subroutine
}

class HPFLoop extends HPFRegion {
HPFLoopType ltype; // type of loop

}

class HPFIfBlock extends HPFRegion {

}

class HPFBasicBlock extends HPFRegion {

}

class HPFProcedureCall extends HPFRegion {

}

71

72 APPENDIX D. HPF PROPERTY SPECIFICATION

class HPFArrayAssignment extends HPFRegion {

}

//***
//HPF dynamic information: summary data
//***

class HPFRegionSummary extends RegionSummary {
setof Process processes; // set of processes executing this region
HPFSummary sums; // performance summary across all processes
setof HPFProcessSummary process_sums; // performance summary per process

}

class HPFSummary {
// summary information (arithmetic mean) across all
// processes for a given region

int nr_executions;
// average number of times this region has been executed
// across all processes executing this region

float duration; // execution time
float comm_time; // communication time
float dep_comm_time; // communication time caused by data dependences
float align_comm_time; // communication time caused by data alignment
float sync_time; // barrier, reduce, allreduce, ...
float idle_time; // idle time
float io_time; // input/output time
float compiler_ovh_time; // compiler overhead time
float inspector_time; // time for inspector phase
float redistr_time; // time for redistribution of data structures
int nr_cache_misses; // number of cache misses

}

class HPFProcessSummary {
// performance summary (arithmetic mean) for
// individual process across all region instances

Process process; // process identification

int nr_executions;
// number of times this region has been executed by process

float duration; // execution time
float comm_time; // communication time
float dep_comm_time; // communication time caused by data dependences
float align_comm_time; // communication time caused by data alignment
float sync_time; // barrier, reduce, allreduce, ...
float idle_time; // idle time
float io_time; // input/output time
float compiler_ovh_time; // compiler overhead time
float inspector_time; // time for inspector phase
float redistr_time; // time for redistribution of data structures
int nr_cache_misses; // number of cache misses

}

//***

73

//HPF untility classes
//***

class HPFTypes {
enum hpf_directive { PROCESSORS, DISTRIBUTE, ALIGN, RESHAPE, INDEPENDENT,DYNAMIC,...};
enum hpf_loop_type { DO, INDEPENDENT, FORALL,...};
enum hpf_var_arr {VARIABLE, ARRAY};
enum hpf_distr_type {BLOCK, CYCLIC, "*", ":"}
enum hpf_distr_format {PRESCRIPTIVE, DESCRIPTIVE, TRANSCRIPTIVE, INHERIT}
enum hpf_alloc {DYNAMIC, STATIC};

}

class HPFDataDeclaration {
String name; // name of data
String data_type; // type of data (int, float, ...)
int rank; // rank of data
HPFTypes.hpf_var_arr type; // type of data (variable or array)
HPFTypes.hpf_alloc alloc; // allocation type
HPFTypes.hpf_distr_format format; // prescriptive, descriptive, transcriptive,

// inherit distribution format
setof ArrayDimension dims; // more information for each dimension of arrays

}

class ArrayDimension {
HPFDataDeclaration decl; // declaration of associated array
int size; // size of dimension
setof Process processes; // set of processes onto which dimension is mapped
HPFTypes.hpf_distr_type type; // data distribution type
int block_size; // for CYCLIC(block_size) or BLOCK(block_size)
ArrayDimension align; // aligned with some other array dimension

}

class HPFDirective {
HPFTypes.hpf_directive hpf_dir; // HPF directives

}

class HPFLoopType {
HPFTypes.hpf_loop_type ltype; // HPF loop type

}

//***
// APART Example Property Specification
//
// Data Parallel Programming Paradigm Performance Properties
//
//***

PERFORMANCE PROPERTIES

LET

HPFRegionSummary summary(HPFRegion r, Experiment e)=
UNIQUE({sumr IN e.profile | sumr.region==r});

74 APPENDIX D. HPF PROPERTY SPECIFICATION

float duration(Region r, Experiment e)=summary(r,e).sums.duration;

IN

PROPERTY TEMPLATE costs <float cost_func(HPFRegionSummary)>
(HPFRegion r, Experiment e, Region RankBasis)

LET
cost = cost_func(summary(r,e))

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(rank_basis,e);

}

float comm_costs(RegionSummary rs) = rs.sums.comm_time;
PROPERTY costs <comm_costs> communication_costs;

Property forall_synchronization_costs (HPFRegion r, Experiment e, Region rank_basis){
LET

float forall_sync_time = summary(r,e).sums.sync_time;
IN

CONDITION: typeof(summary(r,e).region)==HPFLoop AND
summary(r,e).region.ltype == FORALL AND
forall_sync_time > 0;

CONFIDENCE: 1;
SEVERITY: forall_sync_time/duration(rank_basis,e);

float io_time(RegionSummary rs) = rs.sums.io_time;
PROPERTY costs <io_time> io_costs;

Property parallel_organization_costs(Region r, Experiment e, Region
rank_basis) {

CONDITION: COUNT(procs WHERE procs IN summary(r,e).processes) > 1 ;

CONFIDENCE: 1;

SEVERITY: summary(r,e).compiler_ovh_time / duration(rank_basis,e);
}

Property redist_costs (HPFRegion r,Experiment e,Region rank_basis) {
LET
redist1 = summary(r,e).sums.impl_redistr_time;
redist2 = summary(r,e).sums.expl_redistr_time;
IN
CONDITION:

(Cond1)
((typeof(summary(r,e).region)==HPFProcedure)

AND
(EXISTS dec IN summary(r,e).region.decls
SUCH THAT

dec.format==PRESCRIPTIVE OR dec.format==TRANSCRIPTIVE)

75

AND
(redist1 > 0))

OR
(Cond2)

((typeof(summary(r,e).region)==HPFRedistribute)
AND

(EXISTS dec IN summary(r,e).region.decls
SUCH THAT dec.alloc == DYNAMIC)
AND

(redist2 > 0))
CONFIDENCE: MAX((Cond1)->0.8, (Cond2)->1.0);
SEVERITY: MAX((Cond1)->redist1 / duration(rank_basis,e),

(Cond2)->redist2 / duration(rank_basis,e));
}

Property serialization_costs (HPFRegion r, Experiment seq, Experiment par, Region rank_basis){
LET
float par_comp_costs = summary(r,par).sums.duration -

summary(r,par).sums.comm_time -
summary(r,par).sums.sync_time -
summary(r,par).sums.idle_time -
summary(r,par).sums.compiler_ovh_time -
summary(r,par).sums.io_time;

IN
CONDITION: par_comp_costs > (duration(r,seq) * loop_serial_threshold)
CONFIDENCE: 1;
SEVERITY: par_comp_costs / (duration(rank_basis,par);

}

Property uneven_work_distribution (HPFRegion r, Experiment seq, Experiment par,
Region rank_basis) {

LET
int nr_processes = COUNT(procs WHERE procs IN summary(r,par).processes);
float opt_duration = duration(r,seq)/nr_processes;
float deviation = SQRT(SUM (EXP(proc_sum.duration -

proc_sum.comm_time -
proc_sum.sync_time -
proc_sum.idle_time -
proc_sum.compiler_ovh_time -
proc_sum.io_time - opt_duration, 2)

WHERE proc_sum IN summary(r,par).proc_sums))
IN
CONDITION: (deviation / opt_duration) > uneven_threshold
CONFIDENCE: 1;
SEVERITY: summary(r,par).sums.duration / duration(rank_basis,par)

}

float inspector_time(RegionSummary rs) = rs.sums.inspector_time;
PROPERTY costs <inspector_time> inspector_costs;

END

76 APPENDIX D. HPF PROPERTY SPECIFICATION

Appendix E

OpenMP Property Specification

//***
// APART Example Property Specification
//
// Shared Memory Paradigm Performance Data Model
//
//***

PERFORMANCE DATA

//***
//SMP static information
//***

class SmRegion extends Region { //Region subclass for SM regions
Dependence deps[]; //Dependence information

}

//Sequential regions

class SequentialRegion extends SmRegion {
//Common information for
// sequential regions go here

}

//Examples for sequential regions

class FunctionCall extends SequentialRegion {

}

class Function extends SequentialRegion {

}

class IfBlock extends SequentialRegion {

77

78 APPENDIX E. OPENMP PROPERTY SPECIFICATION

}

class BasicBlock extends SequentialRegion {

}

//Parallel regions

class ParallelRegion extends SmRegion {
//Common information for
// sequential regions go here

boolean no_wait_exit; //Region is not terminated by barrier
}

//Examples for parallel regions

class PDo extends ParallelRegion {
SMTypes.scheduling_type scheduling_strategy;

//Static, Dynamic, Guided ...
}
class PSection extends ParallelRegion {

}
class PRegion extends ParallelRegion {

}

class SMTypes {
enum scheduling_type {Static, Dynamic, Guided};

}

class DSMMachine extends Machine { //Properties of target machine
int remote_access_time; //Remote access time

}

//***
//SMP dynamic information: summary data
//***

class SmRegionSummary extends RegionSummary {
//Summary information for region

SmSums sums; //Sums for whole execution
setof SmInstanceSums instance_sums; //Sums per region instance
int nr_executions //Number of instances

}

class SmSums {
float duration; //Execution time of master
float non_parallelized_code; //Sequential time (duration -

// duration for parallel regions)
fload seq_fraction; //Seq_time / duration
int nr_remote_accesses; //Number of remote memory accesses
float scheduling; //Compiler and or user scheduling time
float additional_calc; //Time for additional calculations

79

float cross_thread_dep_crtl; //Synchronization except entry and exit
// barrier and except waiting time
// in locks etc.

float cross_thread_dep_wait; //Synchronization waiting time except
// waiting in entry or exit barrier

float region_wait; //Waiting in entry or exit barrier
float region_ctrl; //Time for instructions at master

// e.g. barriers and organization
int nr_cache_misses; //Number of cache misses
setof SmThreadSums thread_sums; //Thread specific summary data
setof VariableRemoteAccesses

accessed_variables; //These objects determine the number of
// remote accesses for variables
// accessed in that region

}

class SmThreadSums {
int thread_no; //Thread id
float region_wait;
int nr_remote_accesses;
float additional_calc;
float cross_thread_dep_crtl;
float cross_thread_dep_wait;
int nr_cache_misses;
setof VariableRemoteAccesses

accessed_variables; //These objects determine the number of
// remote accesses for variables
// accessed in that region

}

class SmInstanceSums {
int nr_threads; //Number of threads executing the region
float duration; //Execution time of master
float non_parallelized_code;
fload seq_fraction;
int nr_remote_accesses;
float scheduling;
float additional_calc;
float cross_thread_dep_crtl;
float cross_thread_dep_wait;
float region_wait;
float region_ctrl;
int nr_cache_misses;
setof SmThreadInstanceSums thread_sums;

//Thread specific instance information
setof VariableRemoteAccesses

accessed_variables; //These objects determine the number of
// remote accesses for variables
// accessed in that region

}

class SmThreadInstanceSums {
int thread_no; //Thread id

80 APPENDIX E. OPENMP PROPERTY SPECIFICATION

float region_wait;
int nr_remote_accesses;
float additional_calc;
float cross_thread_dep_crtl;
float cross_thread_dep_wait;
int nr_cache_misses;
setof VariableRemoteAccesses

accessed_variables; //These objects determine the number of
// remote accesses for variables
// accessed in that region

}

class VariableRemoteAccesses {
String var_name; //Name of a variable accessed in region
int nr_remote_accesses; //Number of remote accesses via

// references to this variable
int size; //Size in bytes
setof PageRemoteAccesses; //For each page of this variable the

// number of remote accesses
}

class PageRemoteAccesses{
int page_no; //Page number related to

// virtual address space
int nr_remote_accesses; //Number of remote accesses

}

//***
// APART Example Property Specification
//
// Shared Memory Paradigm Performance Properties
//
//***

PERFORMANCE PROPERTIES
LET

SmRegionSummary summary(Region r, Experiment e)=
UNIQUE({s IN e.profile WITH s.region==r});

float sync(Region r, Experiment e)=summary(r,e).sums.region_wait +
summary(r,e).sums.region_ctrl +
summary(r,e).sums.cross_thread_dep_wait +
summary(r,e).sums.cross_thread_dep_ctrl ;

float duration(Region r, Experiment e)=summary(r,e).sums.duration;

float remote_access_time(Region r, Experiment e)=
summary(r,e).sums.nr_remote_accesses
* e.system.remote_access_time);

IN

81

PROPERTY TEMPLATE costs <float cost_func(Region r, Experiment e)>
(Region r, Experiment e, Region RankBasis){

LET
cost = cost_func(r,e)

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(rank_basis,e);

}

PROPERTY TEMPLATE rel_costs
<float cost_func(Region r, Experiment seq,Experiment par)>
(Region r, Experiment seq, Experiment par, Region RankBasis){

LET
cost = cost_func(r,seq,par)

IN
CONDITION: cost > 0;
CONFIDENCE: 1;
SEVERITY: cost/duration(rank_basis,par);

}

float par_costs(Region r, Experiment seq, Experiment par) = duration(r,par) -
(duration(r,seq)/par.nr_processors);

PROPERTY rel_costs <par_costs> costs;

float par_costs(Region r, Experiment e) =
summary(r,e).sums.non_parallelized_code +
sync(r,e) +
remote_access_time(r,e) +
summary(r,e).sums.scheduling +
summary(r,e).sums.additional_calc;

PROPERTY costs <par_costs> measurable_costs;

Property unmeasurable_costs(Region r, Experiment seq, Experiment e, Region rank_basis){
LET

float total_costs = duration(r,e) - (duration(r,seq)/e.nr_processors);
float costs = summary(r,e).sums.non_parallelized_code +

sync(r,e) +
remote_access_time(r,e) +
summary(r,e).sums.scheduling +
summary(r,e).sums.additional_calc;

IN
CONDITION: total_costs-costs>0;

CONFIDENCE: 1;

SEVERITY: total_costs(r,e)/duration(rank_basis,e);
}

82 APPENDIX E. OPENMP PROPERTY SPECIFICATION

float non_parallel_code(Region r, Experiment e) =
summary(r,e).sums.non_parallelized_code;

PROPERTY costs <non_parallel_code> non_parallelized_code;

PROPERTY costs <sync> synchronization;

Property irregular_sync_across_instances
(Region r, Experiment e, Region rank_basis){

LET
float inst_sync(SmInstanceSums sum)=sum.region_wait +

sum.region_ctrl +
sum.cross_thread_dep_wait +
sum.cross_thread_dep_ctrl ;

IN
CONDITION: stdev(inst_sync(inst_sum)

WHERE inst_sum IN summary(r,e).instance_sums)
> irreg_behaviour_threshold * sync(r,e)/r.nr_executions;

CONFIDENCE: 1;
SEVERITY: sync(r,e)/duration(rank_basis,e);

}

float load_imb_cost(Region r, Experiment e) =
summary(r,e).sums.region_wait;

PROPERTY costs <load_imb_cost> load_imbalance;

PROPERTY costs <remote_access_time> remote_accesses;

Property remote_access_to_variable
(Region r, Experiment e, String var, Region rank_basis)

{
LET

VariableRemoteAccesses var_sum =
UNIQUE({info IN summary(r,e).sums.accessed_variables

WITH info.var_name==var});
IN

CONDITION: var_sum.nr_remote_accesses > 0;
CONFIDENCE: 1;
SEVERITY: var_sum.nr_remote_accesses * e.system.remote_access_time

/duration(rank_basis,e);
}

Property multiple_transfer_of_same_data
(Region r, Experiment e, String var, Region rank_basis)

{
LET

VariableRemoteAccesses var_info =
UNIQUE({info IN summary(r,e).sums.accessed_variables WITH info.var_name==var});

IN

83

CONDITION: (Cond1)
(var_info.nr_remote_accesses * e.nr_processors > var_info.size
/ e.system.cache_line_size*summary(r,e).nr_executions)

OR
(Cond2)

(var_info.nr_remote_accesses * e.nr_processors
> 0.5 * var_info.size / e.system.cache_line_size * summary(r,e).nr_executions);

CONFIDENCE: MAX((Cond1)->1, (Cond2)->0.5);

SEVERITY: var_info.nr_remote_accesses * e.system.remote_access_time
/duration(rank_basis,e);

}

Property wrong_page_distribution_for_variable
(Region r, Experiment e, String var, Region rank_basis)

{
LET

VariableRemoteAccesses var_sum(String var,setof VariableRemoteAccesses info_set) =
UNIQUE({info IN info_set WITH info.var_name==var});

IN
CONDITION:

EXISTS
thr_sum IN summary(r,e).thread_sums,
thr_psum IN var_sum(var,thr_sum.accessed_variables).page_sums,
glo_psum IN {s IN var_sum(var,summary(r,e).accessed_variables).page_sums

WITH s.page_no==thr_psum.page_no}
SUCH THAT

thr_psum.nr_remote_accesses!=0
AND

thr_psum.nr_remote_accesses==glo_psum.nr_remote_accesses;

CONFIDENCE: 0.5;
SEVERITY: var_sum(var,summary(r,e).accesses_variables).nr_remote_accesses

* e.system.remote_access_time/duration(rank_basis);
}

Property parallel_organization(Region r, Experiment e, Region rank_basis) {

CONDITION: typeof(summary(r,e).region)==ParallelRegion
AND summary(r, e).nr_executions > 1 ;

CONFIDENCE: 1;
SEVERITY: summary(r,e).nr_executions *

e.system.parallel_region_cost / duration(rank_basis,e);
}

END

