A Tool Framework for Static and Dynamic Analysis
of Object-Oriented Software with Templates

Kathleen A. Lindlan, Janice CynAllen D. Malory, Sameer Shende
Department of Computer and Information Science
University of Orgon, Eugene, OR 97403
{klindlan, cury, malory, sameer}@cs.uogeon.edu

Bernd Mohr
Zentralinstitut fir Angeandte Mathematik
Forschungszentrum Julich GmbH, D-52425 Jiilich, Geyman
B.Mohr@fz-juelich.de

Reid Rivenlurgh, Computer Research and Applications Group
Craig Rasmussengdvanced Computing Laboratory
Los Alamos National Laboratarizos Alamos, NM 87545
{reid, rasmussn}@lanl.go

Abstract technology (including object-oriented frawarks,

The deelopers of high-performance scien- scalable run-time systems, and component architec-
tific applications often wrk in comple& computing tures) to deelop a rolbist programming efronment
environments that place hea demands on program for computationally-intense scientific simulations.
analysis tools. The dgelopers need tools that interop- Software deelopers at &L need program
erate, are portable across machine architectures, ananalysis tools that pvide, at a minimum, the static
provide source-leel feedback. In this papemwe and dynamic analysis capabilities (compilatiewifi-
describe a tool frameork, the Program Database ties, delbiggers, profilersetc.) found in traditional
Toolkit (PDT), that supports the @idopment of pro- sequential erironments. Thg must also function
gram analysis tools meeting these requirements. PDTacross a derse set of application programs, and inte-
uses compile-time information to create a completegrate easily with ne tools as thg are deeloped. Port-
database of highdel program information that is ability across a ariety of platforms is important.
structured for well-defined and uniform access by Further program analysis should be performed at a
tools and applications. PDS’current applications level of abstraction that matches the programming
make heay use of adanced features of C++, in par- models used and \@s feedback in terms of source
ticular, templates. W describe the toolkit, focussing code constructs.

on its most important contriiion -- its handling of In this papgrwe describe a tool infrastructure,
templates -- as well as its use xisting applications. the Program Databasedikit (PDT), that supports the
development of program analysis tools satisfying these
1 Intr oduction requirements. PDT uses compile-time information to
Increasingly high-performance scientific create a complete database of higreleprogram
applications are being deloped for compbecomput- information that is structured for well-defined and uni-

ing ervironments where parallel and distrtbd code form access by tools and applications. The higitle
executes across heterogeneous platforms. The proprogram information enables the construction of tools
grams may use multiple languages, frameks, that operate at an appropriatedeof abstraction. The
libraries, and run-time systems, andytioften depend use of compile-time, machine-independent intermedi-
on state-of-the-art hardwe and softare configura- ate representations enables the construction of tools
tions that are constantly changing. The Adeed that are portable. The uniform access mechanisms
Computing Laboratory (BL) [2] at Los Alamos enable the construction of tools that can interoperate
National Laboratory (LANL) is typical of such @n with other tools and applications.

ronments. Its researchers are usingaaded softare PDT is tageted to the current-generation pro-

0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

template <class Object> template <class Object>
class Stack { void Stack<Object>::push(const Object & x) {
public: if(isFull())
explicit Stack(int capacity =10); throw Overflow();
theArray[++topOfStack] = x;
bool isEmpty() const; }
bool isFull() const;
const Object & top() const; template <class Object>
Object Stack<Object>::topAndPop() {
void makeEmpty(); if(iISEmpty())
void pop(); throw Underflow();
void push(const Object & x); return theArray[topOfStack--];
Object topAndPop(); }
private: int main() {
vector<Object> theArray; Stack<int> s;
int topOfStack;
h for(inti=0;i<10; i++)
s.push(i);
template <class Object> while(!s.isEmpty())
bool Stack<Object>::isFull() const { cout << s.topAndPop() << endl;
return topOfStack == theArray.size() - 1; return O;
} }

Figure 1. C++ template definitions for an array-be8edk class and some member functions [19].

gramming languages commonly used in scientific that works not only for single instantiations of arbi-
computing: C++, Brtran 90, and Ja. The use of C++ trarily comple types, It also for multiple instantia-
for the deelopment of AL software framevorks pre- tions and specializations.
sented a critical test case for POhus, the first er- Knowledge of template class definitions is
sion of PDT includes analysis of the adeed object- useful for certain static source analyses,diher anal-
oriented constructs of C++, such as multiple inherit- yses will need to kne howv templates are instantiated.
ance, namespaces, and template instantiations and spenless the front end or compiling system esikhis
cializations. ®mplates posed challenging analysis information &ailable, it will be dificult for tools to
problems, and their treatment is a focus of this paper determine the instantiation results from object code.
In Section 2, we discuss thefdifilties in sup- Unfortunately because templates are one of the more
porting C++ template analysis. In Section 3, we recent and compke C++ features, their support by
describe the toolkit and its handling of templates. compilers and analysis toolkits is frequently missing
Existing applications of PDT are presented in Sectionor inadequate [9]. In addition, most compilers do not
4. In Section 5, we discuss research related to PDTprovide easy access to intermediate program informa-
and, finally in Section 6, we assess the results of ourtion.

work and outline future directions. The Edison Design Group (EDG) [1][12] C++
Front End is production-quality sofare that is nearly
2 Challenges of Emplate Analysis up-to-date with the C++ standard [6][18] in its support

Templates are important constructs for object- of templates, namespacessception handling, and
oriented software because thiepermit compile-time pragmas. The EDG Front End outputs a higlelle
polymorphism and generic programming. Consider intermediate language (IL) that presesyvthe informa-
the templated code (sha in Figure 1) that defines a tion available in source code, including original names
Stack class to be created withyabasic or user and locations. By dafilt, the EDG Front End instanti-
defined typed.g., double orlinteger) by substitu- ates templates with an automatic scheme. Compiling
tion of theObject parameterEach instantiation of a source files generates object files and template infor-
template yields object code that handles one particulamation files indicating potential instantiations. At link
type. Creation of template entities requires handlingtime, when the prelirde encounters references to

Application/
Library

Program
Documentation

FORTRAN

PDBhtml

Call Graph,
Class Hierarchy

PDBtree

lication
ég&punent Glue

SILOON

J TALU
PDB 1

Figure 2. Source code is parsed by compiler front ends.PDRnalyzers process the resulting intermediate language trees.
PDT's DUCTAPE library males the contents of PDB filesalable to applications. Existing applications arevaidn the
right half of the figure.

Performance
Instrumentation
are

undefined template entities in object files, instantia- 3 Program Database ®©olkit
tions are assigned to instantiation request files. The PDT provides applications easy access to
source files needed for instantiation are then re-com+igh-level language constructs used in source code. It
piled. These steps continue until all templates areaccomplishes this by filtering and rganizing the
instantiated. Unfortunatglythis process does not information represented in the intermediate language
record and instantiate templates in the IL, where infor-trees produced during compilation by the EDG C++
mation is accessible by an analysis tool. The EDGFront End. Figure 4] shavs the PDT framgork and
Front End does, heever, provide additional mecha- its primary components. The first component, the IL
nisms for more precise control of the instantiation pro- Analyzer [3][14], walks the IL tree, xracting the
cess. The “used” instantiation mode, enabled via ahigh-level interface and outputting item descriptions to
command-line option, puides the alternate needed a program database. These descriptions characterize
by PDT. All template entities used in the compilation the prograns functions and classes, including tem-
are instantiated and represented in the IL; unusedlate instantiations, as well as templates, other types,
member functions and static data members are nohamespaces, macros, and source files. The second
instantiated unnecessarilyminimizing compilation component, the DUGNPE (C++ program Database
time and the size of the IL. @in the access to needed Utilities and Cowmersion Dols APplication Ewiron-
information for e@en the adanced language features, ment) [3] library provides an API to the database.
the EDG IL preides a useful starting point for PDT PDT is designed to support fdifent program-
ming languages by utilizing multiple language-specific
front ends and IL Analyzers. The program database

Item Type Attributes of Item Prefix

all ITEMs source position
HEADER <PDB 1.0>
SOURCE FILES files included by source file SO
ROUTINES template from which instantiated, parent class or namespace, access mode, ro
signature, functions called, characteristics specifying linkage, storage class,
virtuality, etc.
CLASSES template from which instantiated, parent class or namespace, access mode, direct bese

classes, friend classes and functions, characteristics, member functions, information on
other members, including access, kind, and type

TYPES parent class or namespace, access madieus characteristics, depending on typg; | ty
for function types, return type, parameter types, presence of ellipsisiamtien class
IDs
TEMPLATES parent class or namespace, access mode, kxafteemplate te
NAMESPFACES members of namespace or alias na
MACROS kind, text of macro ma

Table 1: Program Database (PDB) Iteypds, Attritutes, and Prefes

format is intended to support common structuresIL was designed as input to a compiler back end, not
across languages as well as language-specific corthe IL Analyzer Locations for some constructs are
structs. The PDT architecture as xists for C++ is maintained in supplemental data structures that must

described further in this section. be scanned, since thare not directly connected to the
IL constructs being processed.
3.1 IL Analyzer Templates must be handled carefuliy EDG

The IL Analyzer processes an IL file to pro- instantiation mode that forces instantiation at compile
duce a human-readable “program database” (PDB}time is used so that instantiation information can be
containing information on high+el source constructs ~available to PDT IL subtrees are incorporated in the
(including source code locations).o Tdo this, it IL tree for each instantiated class and routine, which
traverses the IL tree, reporting information on desig- are then accessible to the IL AnalyZEne IL subtrees
nated, high-leel constructs as tlgeare encountered. indicate that an entity has been instantiated, not the
Separate treersals for source files, routines, types, template from which it is dered. 1o compensate for
classes, namespaces, templates, and macrog allothis, the IL Analyzer creates a list of templates in
selection of the constructs to be reported, and prependadwance, and then scans it to determine the template
ing of distinguishing prefess for common item corresponding to an instantiatisriocations. Because
attributes. the location of a specialization is not within the associ-

In processing a node, all related nodes are pro-ated template’ definition, it is currently not possible
cessed as well, so that a constauattrihutes are com- to determine the originating template for a specializa-
pletely summarized in one entfor example, in order tion. To remedy this, template IDsowld have to be
to report the functions a routine calls with other infor- included in the IL constructs for instantiations and
mation on the routine, the fil'IL tree is traersed specializations, which euld require modification of
until a routine declaration is encountered, at whichthe EDG Front End.
time traversal switches to that routisgree. Consider-
able processing is required for some constructs. Calls3.2 Program Database
for constructors and destructors are not treated as stan- The IL Analyzer outputs item descriptions for
dard routine calls by the Front End, since these rou+elevant programming language entities: source files,
tines are associated with objectsving “lifetimes” routines, classes and other types, templates,
PDT must process all comts in which the lifetimes namespaces, and macros. Each description identifies
are handled in order to determine the calling locations.an item and lists its features. The identifier prefix indi-
In some casesxga processing is needed because thecates the type of language construey., “ro#7 "

<PDB 1.0> 1) rlink C++ cmem theArray
rstore NA cmloc so#66 38 28
so#66 StackAr.h) rvirt no cmacs priv
sinc so#71 rtempl te#566 cmkind var
sinc so#72 rcall ro#32 no so#73 74 17 cmtype cl#63
sinc so#73 rcall ro#33 no so#73 76 21 cmem topOfStack
rpos so#73 72 9 so#73 72 52 cmloc so#66 39 28
so#71 /pdt/include/kai/vector.h SO#73 73 9 so#73 77 9 cmacs priv
?3) cmkind var
So#72 dsexceptions.h (4) ro#32 isFull (10) cmtype ty#5
rloc so#73 27 29 Cpos So#66 23 9 so#66 23 19
So#73 StackAr.cpp 5) rclass cl#8 SO#66 24 9 so#66 40 9
racs pub
so#75 TestStackAr.cpp (6) rsig ty#2054 ty#9 bool (13)
sinc so#66 rlink C++ ykind bool
rstore NA yikind char
te#559 Stack () rvirt no
tloc so#66 23 15 rtempl te#562 ty#14 void (14)
tkind class rcall ro#31 no so#73 29 43 ykind void
ttext template <class Object> rpos so#73 27 9 so#73 27 43
class Stack {...}; So#73 28 9 so#73 30 9 ty#49 const int & (15)
tpos so#66 22 9 NULL 0 0 ykind ref
So#66 23 9 so#66 40 9 ty#5 int (11) yref ty#439
ykind int
te#566 push (8) yikind int ty#439 const int (16)
tloc so#73 72 14 ykind tref
tkind memfunc cl#8 Stack<int> (12) ytref ty#5
ttext template <class Object> cloc so#66 23 15 yqual const
void Stack <Object>:: ckind class
push(const Object & x) {...} ctempl te#559 ty#2054 bool () const 17)
tpos so#73 71 9 NULL OO cfunc ro#6 so#73 7 24 ykind func
SO#73 72 9 so#73 77 9 cfunc ro#8 so#73 17 29 yrett ty#9
cfunc ro#32 so#73 27 29 yqual const
ro#7 push 9) cfunc ro#766 so#66 30 28
rloc so#73 72 29 cfunc ro#767 so#66 32 18 ty#2058 void (const int &) (18)
rclass cl#8 cfunc ro#768 so#66 33 18 ykind func
racs pub cfunc ro#7 so#73 72 29 yrett ty#14
rsig ty#2058 cfunc ro#9 so#73 85 31 yargt ty#49 F

Figure 3. Excerpts from the PDB file for tiack code. The header filStackAr.h (so#66 at (2)) “includes” the
implementation filéStackAr.cpp (so#73 at (5)), so that templates are instantiated in the PDB file. These files define the
class templatestack (te#559 at (7)). (Strings containing template definitionsehdeen partially deleted here.) The
Stack<int> class €I#8) instantiatese#559 . Attributes and members of the class axegiat (12). Th&tack<int>
functionpush() (ro#7) instantiates a function template (te#566 at (8)). Attdb ofpush() , and the routines it calls, are
specified at (9). The function signatutg#058) reveals return and parameter types at (18).

specifies routine 7. The subsequent sequence of line8.3 DUCTAPE Library
specifies the alues of pertinent characteristics: for DUCTAPE is a C++ library that pwides an
example, attrintes of a routine include parent class, object-oriented API to PDB files produced by the IL
signature, the template from which iasvinstantiated, ~ Analyzer Each item type of the PDB format is repre-
and the routines it calls. Attuibes for the dferent sented by a class Viag a corresponding name. All
item types are summarized irale 1.The program information about these items is accessible through
database is stored in a relaly compact and portable member functions of the DUGPE classes. Common
ASCII format. Figure 3 shws excerpts from the PDB attributes were dctored out into generic base classes,
file for the template&tack code in Figure 1. resulting in the class hierarglshavn in Figure 4. The
root class of the hierarghis pdbSimpleltem
pdbSimpleltem s hae two attritutes, their name

| pdbSimpleltem |

.

pdbFile		pdoitem		
Z	>			
pdbMacro		pdbType		pdbFatitem
Z	>			
pdbTemplate		pdbNamespace	pdbTemplateltem	

B

| pdbClass | |pdbCIassFieId | | pdbRoutine

Figure 4. DUCRPE Class Hierargh

and PDB ID. Dened from pdbSimpleltem s are
pdbFile s and more compte pdbltem s, which
have a source code location, possibly a parent class oimplemented in DUCAPE by pointers to the corre-

templates, macros, and namespaces. Ate® of

items representing references to other entities are

namespace, and an access mpdbltem s arepdb-
Macro s, pdbType s, or so-called ‘dt” items. pdb-
Fatltem s hare a header and a bqdynd attrilntes
describing the source location of these paptih-

sponding objects, alang easy neigation through
the available program information.

With the DUCTPE library PDT praides
useful static analysis toolspebconv, pdbhtml, pdb-

Fatltem s include pdbTemplate s, pdb- merge, and pdbtree Their functionality is summa-
Namespaces, and pdbTemplateltem s. rized in Table 2. These applications also seras
pdbTemplateltem s are entities that can be instan- examples of programming with the DUBFE library

tiated from templates. The internal base classes ar@he primary routine thgbvdbtr ee uses to display call
useful in DUCRAPE application programs when heter- graphs, for gample, is gren in Figure 5. In relately
ogeneous lists of items must be processed or storefew lines of code, a tool of some comyity was eas-
(for example, list<pdbTemplateltem> can ily implemented using the DUGWPE API.
store a list of all template instantiations).

In addition, there is a cla®&DBthat represents 4 Applications Using PDT
an entire PDB file. It pmades methods to read, write, To demonstrate PD3’range of utility and
and mege PDB files, and to get the source file inclu- ease of use, we report onawlifferent applications --
sion tree, the static call tree, and the class hieyalfch the TAU (Tuning and Analysis Ultilities) frameork
provides a list of all items contained in the PDB file as [17] and the SILOON (Scripting Intexfe Languages
well as lists of all defined types, files, classes, routinesfor Object-Oriented Numerics) toolkit [16] -- that uti-

Table 2: DUCRPE Utilities

Utility Functionality
pdbconv corverts files in the compact PDB format into a more readable format
pdbhtml automatically creates web-based documentation that enablgatien of code via HTML links
pdbmerge meges PDB files from separate compilations into one PDB file, eliminating duplicate template instantia-
tions in the process
pdbtree displays file inclusion, class hieraygland call graph trees

static void printFuncTree(const pdbRoutine *r, int level) {
r->flag(ACTIVE);
pdbRoutine::callvec ¢ = r->callees();
for (pdbRoutine::callvec::iterator it=c.begin(); it'=c.end(); ++it) { (1)
const pdbRoutine *rr = (*it)->call();
if (level !=0 || rr->callees().size()) {
cout << setw((level-1)*5) << ",
if (level) cout << "-->";
cout << rr->fullName(); 2)
if ((*it)->isVirtual()) cout << " (VIRTUAL)";
if (rr->flag() == ACTIVE) {
cout<<".."<<endl
}else {
cout << endl;
printFuncTree(rr, level+1); ?3)

}
}
r->flag(INACTIVE);
}

Figure 5. Source code from DUBPE's pdbtr ee utility displays the static call graph. Tier loop (at (1)) iteratesver
functions called by the current function, reporting them (at (2)) as well as the functions yhetltheecursiely (at (3)).
Functions instantiated from templates are automatically included iretier\of called functions.

lize PDT TAU uses PDT to generate information macro, which returns a string containing the type of
needed to automatically instrument C++ source codethe objectobj . For each template, AU determines if
SILOON uses PDT in the generation of glue anel-sk the given routine belongs to a class and that it is not a
eton code required in priing scripting language static member function, as st in Figure 6. If these

access to scientific libraries. conditions are satisfied, then AU inserts
CT(*this) , which returns the type of the object
4.1 TAU Performance Profiling with which the member function is associated. The

TAU provides performance instrumentation, unique instantiation of the class can therefore be incor-
measurement, and analysis tools for the C/Co¥; F porated in the name of an instantiated template, as in:

tran, and Jaa languages. Its profiling and tracing tool- template<class T>
kit currently uses PDT for automatic instrumentation class vector {
of C++ source code. TheAU instrumentor iterates public:

vector(int size) {
TAU_PROFILE(*vector::vector()",
CT(*this), TAU_USER);

through the PDB descriptions of functions and tem-
plates to rerrite the original source file, annotating the
functions with AU measurement macros. The trans-

lated source code can subsequently be compiled and }

linked with the RU library. When the gecutable is

run, complete run-time statistics are collected, ana- The Program Databasedkit has been in use
lyzed, and displayed viaAU. by TAU since early dll 1998, when it \as applied to

~ Templates posed eral problems in source- the POOMA (Rrallel Object-Oriented Methods and
level instrumentation. A sourcevel instrumentation Applications) [5] framaiork. POOMA uses templates
strat@y for templates that is portable and independenteytensiely to provide array-related algorithms and
of compiler instantiation schemes requires generationmanage allocation of system and netkvresources.
of a unique string for each template instantiation thatysing PDTs predecessor (Sage++ [9]), automatic
identifies, if possible, the type information of the tem- jnstrumentation of POOMA code had been attempted
plate parameters and returalve along with the tem- ith TAU, but difficulties were encountered in parsing

plate name. AU accesses C++ type information for poomAs complicated template entities. PBTise of
instantiated templates at run time via @&(obj)

/I Get the list of templates.
PDB::templatevec u = pdb.getTemplateVec();

if ((*te)->location().file() == file) {
pdbltem::templ_t tekind = (*te)->kind();
if ((tekind == pdbltem::TE_MEMFUNC)
(tekind == pdbltem::TE_STATMEM) ||
(tekind == pdbltem::TE_FUNC)) {

/I Templates need some processing.

}else {

}
}

sort(itemvec.begin(), itemvec.end(), locCmp);

for(PDB::templatevec::iterator te = u.begin(); te != u.end(); ++te) {

/I The target helps identify if we need to put a CT(*this) in the type.

if ((tekind == pdbltem::TE_FUNC) || (tekind == pdbltem::TE_STATMEM)) {
/I There's no parent class. No need to add CT(*this).
itemvec.push_back(new itemRef(*te, true));

/I It is a member function, so add CT(*this) via “false” argument
itemvec.push_back(new itemRef(*te, false));

(€0

@

®

Figure 6. Using PD;Tthe TAU instrumentor ascertains that a template is a class member function before using run-time type
loop iterates eer all templates (at (1)). The condition filters out non-function templates (at
statement specializes the processing of member and non-member functions (at (3)).

information (R'TI). Thefor
(2)). Theif-else

the EDG Front End eliminated the C++ parsing prob- a natural and caenient interace to the C++ library

lems. Figure 7 shws profile displays of time spent in
POOMASs Krylov Soler routines that were generated
with TAU automatic instrumentation.

4.2 SILOON

SILOON prorides scientists with toolkits and
run-time support for tilding easy-to-use xternal
interfaces to wisting high-performance libraries. The

external interbces are orchestrated via scripting lan-

The wrapper functions call thewerlevel bridging
functions written in C++ and accessible across all
scripting languages. These functiongiséer usedes-
ignated library routines with SILOOB!’routine man-
agement structures, and process function calls from
the scripting languages.

With PDT, users simply gie their C++ source
code as input to SILOON, rather than specify their
interfaces in an inteaice definition language (IDL).

guages to create domain-specific problem-solvingWhile there are applications similar to SILOON

ervironments. © achiee this, SILOON automatically
generates bridging code that alkusers to inteaice
Perl and Python scripts with C++ libraries, asvahn
Figure 8.

(SWIG [8] being the most well-kmm), none diers
the same Ml of support for C++. Because PDT uses
an ANSI-compliant C++ parseSILOON is able to
handle man of the complgities of C++ correctly

The SILOON toolkit uses PDT to parse source including:

code from wisting object-oriented class libraries and
extract information rgarding the intedces to func-

tions and class methods. This information is then used
to generate bridging code, which, when compiled, pro-
vides the run-time support for linking user scripts with
back-end computational engines. The code generation
builds language-specific wrapper functions and lan-
guage-independent bridging code. The wrapper func- ¢

tions are written in the scripting language, and/jol®

» templated classes and functions,

» virtual and static member functions,
constructors and destructors,

» overloaded operators and functions,
e default function aguments,
references,

* enumerations,

typedef s, and

» the Standardd@mplate Library (STL).

Fle Value

operator() Engine<2, double, BrickView <2, true>>

1188% [|mean
11.88% [|n,ct000

Functions |

B | nc.to00 T T

! n,c,t0,00 E
| 23.79% [r<ad Engine<2, double, BrickView<2, trues>>
! 19.39% KernelEvaluator<inlineKernelTag »::evaluate vi

16.17% int calcBrickViewOfisetO(int, int, Wrappedint<1:
11.88% operator() Engine«2, double, BrickView«<2, true
File Order 7.41% [l int main(int, char **)
4.38% [l DomainTraits<Interval<1> »::setDomain
stine msec total msec 3.20%[|Evaluator<MainEvaluatorTagq >::evaluate /|
.6 2,502 5,286
g6.4 2,027 10, 021
16.2 2,442 2,442 1
17.2 1,794 %, 602 ey
100.0 1,118 15, 099 1 42423
7.0 660 1,050 115308 216248
o014 483 13,795 1134 189972
1.8 265 265 147126 0
1.5 224 224 124450 0 2
13 14614 42670

Figure 7. AU automatically instrumented POORSAKrylov solver using PDT

Without PDTS capabilities, manof the abge fea- The Sage++ class library enables construction and
tures vould not be aailable in SILOON. insertion of profiling objects at the dianing of rou-
Templates are treated the same as other entitine structures during the second step. dswsed in
ties by SILOON, with thexxeption that non-alphanu- previous \ersions of AU, but does not adequately
meric characters in the name are mangled, (support templates. The ASTLOG [10] languagasw
transformed to include information on types and quali- developed for an analysis and dejging tool. Lile the
fiers), so that thecan be accessed in scripting lan- IL Analyzer, this tool etracts high-leel interfaces
guages. & handle templates in SILOON, it is from C++ code, accessing the syntax tree via-user
necessary to instantiate and compile into the SILOONdefined node treersal and pattern matching predi-
library ary templates that the userants to be \aail- cates, and accumulating query results using the under-
able. Currently the user mustxplicitly instantiate lying set predicates of Prolog. Unfortunatelhe
such templates in the parsed code; only these instantisBASTLOG tool does not pxide information about
tions are included in PD3 output. A usefulxension source code locations. In the Concert [7] distieiol
to PDT would be to preide access to all templates, system, compilation produces an intermediate repre-
whether instantiated or not. SILOON could then sentation that is an intede definition language. Pro-
present a template list to the ysand automatically grammers annotate C orofran code (without

generate instantiations of selected templates. templates), enabling the Concert front end towveeri
interfaces that become input foravback ends, a stub
5 Related Work compiler and an interpreter that “generate” marshal-
Other systems that concentrate on higielle ling and unmarshalling of message signatures. The
language intedces in softare deelopment gist. resulting interbces ensure the interoperability of dif-

The four with a focus most similar to the Program ferent languages in a distted setting, and can
Database dolkit are discussed here. Sage++ [9] is an describe implementation-related information, such as
object-oriented compiler toolkit that assists in con- order and memory layout of parameters. SUIF (Stan-
structing source-to-source translation tools. It uses aord University Intermediate érmat) [20] and its
three-step process: source code is parsed, the parggtension OSUIF (Object SUIF) [11] priole compiler
tree restructured, and the restructured tree unparsednfrastructure toolkits that enable optimization.

Code Interface

Analysis Generation
Source Code Generated
*C ®C++ H—- Interface
® Fortran PDT SILOON Codei
Script Code Library
® Perl r *C ®Ci+
® Python ® Fortran

Dispatcher

Figure 8. Using PDTSILOON automatically generates code that links scripting languages with user libraries.

Whereas SUIE goal vas deelopment of techniques the C++ PDB constructs can be reused, and wheye the
for parallelization, OSUIK focus is on compilation of must be gtended to preide language-specific sup-
object-oriented languages. In OSUhkgh-level infor- port. For instance, AU must knev the locations of
mation on object-oriented source language constructd-ortran routine entry andki points to insert profiling

is accessible. Hoever, OSUIF eforts are not aimed at instrumentation. A értran 90 IL Analyzer is currently
providing an infrastructure for tool gelopment in the being implemente&l,and the structure of the program
manner of PDTAIl of these systems had limitations database modified, to handlertfan 905 constructs.
precluding their use in compleapplications: limited Fortran dewed types and modules will correspond to
support for recent features of C++, lack of source loca-C++ classes/structs/unions, whil@rffan interhces
tion information, manual specification of inteces, or will correspond to routines with aliasesrfan array

lack of an appropriate infrastructure for tools. features will be specified with weattributes DUC-
TAPE will be enhanced to accommodate these
6 Conclusions and Futue Work changes to the program database.ahé also planning

Version 1.3 of the Program DatabasmolKit to develop a Jaa IL Analyzer based on ED&Jaa
for C++ has been released [3]. The disttidn Front End, with the PDB and DUBPE enhanced to
includes the C++ Front End, the IL Analyzemd accommodate ¥a’s constructs. In general, if the Pro-
DUCTAPE, all of which process templates and instan- gram Databasedblkit can mak a language-specific
tiations. In addition, the AU performance instrumen- parse tree accessible in a uniform mansetic analy-
tation tool, SILOON analysis support, andrious sis tools and other applications can hétkhat pro-
PDT processing toolgpdbmerge, pdbconv, pdbtree cess diferent languages in a uniform and consistent
andpdbhtml) are aailable for use with PDT 1.3. All way.
handle template entities. The inclusion of KA[13]
3.4c standard library header files has significantly 7 Acknowledgments
improved PDTS rolustness of parsing and analysis, This work has been supported by DOE2000
while increasing the scope of supported platforms andgrant #DEFC0398ER259986 and ASCIiveE3 grant
simplifying configuration. #03588-001-994R from the Department of Eyer
Support for multiple programming languages
is crucial in the high-performance vémnments in

which the Program Databasedlkit is used. W plan 1 This IL Analyzer is desied from the Brtran 90
to extend PDTS scope to support theofiran 90 and Front End distribited by Mutek [15], which as
Java languages. The challenge is to determine where based on thed¥tran 77 Front End distritbed

by EDG [12].

8 Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
J. S. Adamczyk and J. H. Spicefemplate
Instantiation in the EDG C++ Front End. Edison
Design Group &chnical Report, 1995.

Advanced Computing Laboratory/LANL. GL [12]
Research. http://wwcl.lanl.gw/research/,

1999.

Advanced Computing Laboratory/LANL. PDT [13]
Program Database odlkit. http://

www.acl.lanl.ge/pdtoolkit/, 1999. [14]

Advanced Computing Laboratory/LANL. PDT

Program Databaseo®lkit. Supercomputing ‘99

flyer, Los Alamos National Laboratory Publica-
tion, LALP-99-204, Neember 1999.

Advanced Computing Laboratory/LANL. [15]
POOMA: Rarallel Object-Oriented Methods and
Applications. http:/imwwwacl.lanl.ge/pooma/,

1999. [16]

ASC X3. International Standard: Programming
Languages - C++. ISO/IEC 14882. Information
Technology Council (ITI), 1998.

J. S. Auerbach and J. R. Russell. The Concert{17]
Signature Representation: IDL as Intermediate
Language. SIGPLAN Noticespl 29, no. 8, pp.

1-12, August 1994.

D. M. Beazlg. SWIG: Simplified Wrapper and
Interface Generatohttp://wwwswig.og/, 1998.

18
F. Bodin, P Beckman, D. Gannon, S. Narayana, [18]

S. Srinvas, and B. Winicka. Sage++: A Class
Library for Building Fortran 90 and C++
Restructuring ®ols. Proceedings OONSKI94,
the Second Annual Object-Oriented Numerics
Conference, pp. 122-138, April 1994.

[19]

[20]

R. E. Crev. ASTLOG: A Language for Examin-
ing Abstract Syntax fees. Proceedings of the
Conference on Domain-Specific Languages, pp.
229-242, October 1997.

A. Duncan, B. Cocosel, C. lancu, H. Kienle, R.
Rugina, U. Hoelzle, and M. Rinard. OSUIF:
SUIF 2.0 with Objects. Second SUIF Compiler
Workshop, August 1997.

Edison Design Group. Compiler Front Ends for
the OEM Marlet. http://wwwedg.com/, 1998-
1999.

Kuck & Associates, Inc. KA

www.kai.com/, 1999.

K. Lindlan, J. Cumg, A. D. Malory, S. Shende,
and P Beckman. An IL Coverter and Program
Database for Analysisobls. Proceedings of 2nd
SIGMETRICS Symposium ondpallel and Dis-

tributed ols, p. 153, August 1998.

http://

Mutek. Fortran 90 Front End Documentation.
http://www.mutek.com/, 1999.

R. D. Rventlurgh, C. E. Rasmussen, K. A. Lind-
lan, B. Mohr and P H. Beckman. Automatic
Generation of Perl Extensions to C++ arat-F
tran 90 Class Libraries. O'Reilly Open Source
Software Cownention, July 2000.

S. Shende, A.D. MalgnJ. Cum, K. Lindlan, P
Beckman, and S. Karmesin. Portable Profiling
and Tracing for Rirallel, Scientific Applications
Using C++. Proceedings of 2nd SIGMETRICS
Symposium on &allel and Distribted Tols,
pp. 134-145, August 1998.

B. Stroustrup. The C++ Programming Lan-
guage, Third Edition. Addison-¥¢ley, 1997.

M. A. Weiss. Data Structures and Algorithm
Analysis in C++. Benjamin Cummings, 1994.

R. Wilson, R. French, C. Won, S. Amaras-
inghe, J. Anderson, S. Tjiang, S.-Wao, C.-W
Tseng, M. Hall, M. Lam, and J. Hennegse
SUIF: An Infrastructure for Research oar&-
lelizing and Optimizing Compilers. @M SIG-
PLAN Notices, wl. 29. no. 12, pp. 31-37,
December 1994.

