FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fir Angewandte Mathematik

D-52425 Jilich, Tel. (02461) 61-6402

Interner Bericht

Specification Techniques for
Automatic Performance Analysis Tools

Michael Gerndt, Hans-Georg ERer

FZJ-ZAM-IB-9921

Dezember 1999
(letzte Anderung: 17.12.99)

Preprint: Proceedings of the Eighth International Workshop on Coenpifor Parallel Computers CPC
2000, Ecole Normale Supérieure Lyon, January 2000, Augspid-11

Specification Techniques for
Automatic Performance Analysis Tools

Michael Gerndt, Hans-Georg Efler
Central Institute for Applied Mathematics
Research Centre Juelich
{m.gerndt, h.g.esser }@Qfz-juelich.de

December 17, 1999

Abstract

Performance analysis of parallel programs is a time-consuming task and requires a lot of
experience. It is the goal of the KOJAK project at the Research Centre Juelich to develop an
automatic performance analysis environment. A key requirement for the success of this new
environment is its easy integration with already existing tools on the target platform. The
design should lead to tools that can be easily retargeted to different parallel machines based
on specification documents. This article outlines the features of the APART Specification
Language designed for that purpose and demonstrates its applicability in the context of the
KOJAK Cost Analyzer, a first prototype tool of KOJAK.

1 Introduction

Current performance analysis tools for parallel programs assist the application programmer in
measuring and interpreting performance data. But, the application of these tools to real programs is
a time-consuming task which requires a lot of experience, and frequently, the revealed performance
bottlenecks belong to a small number of well-defined performance problems, such as load balancing
and excessive message passing overhead. It is the goal of the KOJAK project (Kit for Objective
Judgement and Automatic Knowledge-based detection of bottlenecks) at the Research Centre Juelich
to develop an environment that automatically reveals well-defined typical bottlenecks [www.fz-
juelich.de/zam/kojak].

We designed KOJAK [6] such that it is not implemented for a single target environment only, e.g.
the Cray T3E currently installed at our center, but can easily be ported to other target platforms
as well. KOJAK will use specification documents to interface to existing performance data supply
tools and to specify potential performance problems of the target programming paradigm.

In parallel with the development of KOJAK automatic performance analysis techniques are
investigated in the ESPRIT IV Working Group on Automatic Performance Analysis: Resources
and Tools (APART) [www.fz-juelich.de/apart]. This article demonstrates the main features of
the APART Specification Language (ASL) [3] within the context of the KOJAK Cost Analyzer
(COSY) (Section 3). The performance data analyzed in COSY are specified as an ASL object
model (Section 4.1) and represented at runtime via a relational database scheme. The performance
problems COSY is aiming at are specified as ASL performance properties (Section 4.2) based on
the performance data model and are implemented via SQL queries (Section 5).

2 Related work

The use of specification languages in the context of automatic performance analysis tools is a new
approach. Paradyn [8] performs an automatic online analysis and is based on dynamic monitor-
ing. While the underlying metrics can be defined via the Metric Description Language (MDL)

[9], the set of searched bottlenecks is fixed. It includes CPUbound, EzcessiveSyncWaitingTime,
FEzcessivel OBlockingTime, and TooManySmallIOQOps.

A rule-based specification of performance bottlenecks and of the analysis process was developed
for the performance analysis tool OPAL [5] in the SVM-Fortran project. The rule base consists of
a set of parameterized hypothesis with proof rules and refinement rules. The proof rules determine
whether a hypothesis is valid based on the measured performance data. The refinement rules
specify which new hypotheses are generated from a proven hypothesis [4].

Another approach is to define a performance bottleneck as an event pattern in program traces.
EDL [1] allows the definition of compound events based on extended regular expressions. EARL
[10] describes event patterns in a more procedural fashion as scripts in a high-level event trace
analysis language which is implemented as an extension of common scripting languages like Tcl,
Perl or Python.

3 Overall Design of the KOJAK Cost Analyzer

COSY [7] analyzes the performance of parallel programs based on performance data of multiple
test runs. It identifies program regions, i.e. subprograms, loops, if-blocks, subroutine calls, and ar-
bitrary basic blocks, with high parallelization overhead based on the region’s speedup. It explains
the parallelization overhead by identifying performance problems and ranking those problems ac-
cording to their severity.

COSY is integrated into the CRAY T3E performance analysis environment. The performance
data measured by Apprentice [2] are transferred into a relational database. The implementation of
the interface between COSY and Apprentice via the database facilitates the integration with other
performance data supply tools on CRAY T3E as well as the integration with other environments.

The database includes static program information, such as the region structure and the program
source code, as well as dynamic information, such as execution time, number of floating point,
integer and load/store operations, and instrumentation overhead. For each subroutine call the
execution time as well as the pass count with the mean value and standard deviation, as well as
the minimum and maximum values are stored.

After program execution Apprentice is started. Apprentice then computes summary data for
program regions taking into account compiler optimizations. The resulting information is written to
a file and transferred into the database. The database includes multiple applications with different
versions and multiple test runs per program version. The data model is outlined in Section 4.1.

The user interface of COSY allows to select a program version and a specific test run. The tool
analyzes the dynamic data and evaluates a set of performance properties (Section 4.2). The main
property is the total cost of the test run, i.e. the cycles lost in comparison to optimal speedup,
other properties explain these costs in more detail. The basis for this computation is the test run
with the smallest number of processors. The performance properties are ranked according to their
severity and presented to the application programmer.

4 Performance Property Specification

COSY is based on specifications of the performance data and performance properties. The speci-
fications are presented in ASL in the next two subsections. ASL supports the following concepts:

Performance property: A performance property characterizes one aspect of the performance
behavior of an application. A property has one or more conditions that can be applied to
identify this property. It has a confidence expression that returns a value between zero and
one depending on the strength of the indicating condition. Finally it has a severity expression
that returns a numerical value. If the severity of a property is greater than zero, this property
has some negative effect on the program’s performance.

Performance problem: A performance property is a performance problem, iff its severity is
greater than a user- or tool-defined threshold.

Bottleneck: A program has a unique bottleneck, which is its most severe performance property.
If this bottleneck is not a performance problem, the program does not need any further
tuning.

The entire specification consists of two sections. The first section models performance data
while the second section specifies performance properties based on the data model.

4.1 Data Model

The performance data can be easily modeled via an object-oriented approach. ASL provides
constructs to specify classes similar to Java with single-inheritance only. Classes in the data model
have attributes but no methods, since the specification will not be executed. The ASL syntax is not
formally introduced in this article due to space limitations, instead, we present the performance

data model used in COSY.

class Program { class ProgVersion {
String Name; DateTime Compilation;
setof ProgVersion Versions; setof Function Functions;
¥ setof TestRun Runs;
SourceCode Code;
}

The Program class represents a single application which is identified by its name. COSY can
store multiple programs in its database. An object of that class contains a set of ProgVersion
objects, each with the compilation timestamp, the source code, the set of functions (static infor-
mation) and the executed test runs (dynamic information).

class TestRun { class Function {
DateTime Start; String Name;
int NoPe; setof FunctionCall Calls;
int Clockspeed; setof Region Regions;

} ¥

A TestRun object determines the start time and the processor configuration. A Function
object specifies the function name, the call sites; and the program regions in this function. All this
information is static.

class Region { class TotalTiming {
Region ParentRegion; TestRun Run;
setof TotalTiming TotTimes; float Excl;
setof TypedTiming TypTimes; float Incl;
} float Ovhd;
}

The Region class models a program region with its parent region and its performance data
gathered during execution. Performance data are modeled by two classes, according to the internal
structure of Apprentice. The TotalTiming class contains the summed up exclusive and inclusive
computing time as well as the overhead time. As there may be several test runs, there are also
possibly several TotalTiming objects for a region.

The TypedTiming class determines the execution time for special types of overhead such as
I/0O, message passing and barrier synchronization — Apprentice knows 25 such types. As with the
Total Timing objects, there is a set of TypedTiming objects for every test run, but for each region
there i1s at most one object per timing type and per test run.

class TypedTiming { class FunctionCall {
TestRun Run; Function Caller;
TimingType Type; Region CallingReg;
float Time; setof CallTiming Sums;
} }

TypedTiming objects have three attributes: The TestRun attribute Run codes the specific test
run of the program, Type (an enumeration type) is the work type that is being considered in this
object and Time is the time spent doing work of this type.

property is PROPERTY pp-name '(* arg-list ') '{’
[LET def * IN]
pp-condition
pp-confidence
pp-severity

7};7
arg is type ident
pp-condition is CONDITION ’:’ conditions ’;
conditions is condition
or condition OR conditions
condition is ['(’ cond-id)’ Jbool-expr

pp-confidence is CONFIDENCE ':’ MAX '(’ confidence-list ')’ 'y
or CONFIDENCE .’ confidence 'y

confidence is ['(cond-id’)’ ->’] arith-ezpr

pp-severity is SEVERITY ':' MAX (' severity-list ')’ '}’
or SEVERITY .’ severity 'y

severity is ['(’ cond-id)’ ->"] arith-ezpr

Figure 1: ASL property specification syntax.

Call sites of functions are modeled by the FunctionCall class. A function call has a set of
CallTiming objects which store the differences of the individual processes. A CallTiming object
is composed of the TestRun it belongs to, the minimum, maximum, mean value, and standard
deviation over a) the number of calls and b) the time spent in the function. For the four extremal
values the processor that was first or last in the respective category is memorized.

Due to the design of Apprentice, the data model does not make use of inheritence. More
complex data models can be found in [3].

4.2 Performance Properties

The property specification (Figure 1) defines the name of the property, its context via a list of
parameters, and the condition, confidence, and severity expressions. The property specification is
based on a set of parameters. These parameters specify the property’s context and parameterize
the expressions. The context specifies the environment in which the property is evaluated, e.g. the
program region and the test run.

The condition specification consists of a list of conditions. A condition is a predicate that can be
prefixed by a condition identifier. The identifiers have to be unique in respect to the property since
the confidence and severity specifications can refer to the conditions via those condition identifiers.

The confidence specification is an expression that computes the maximum of a list of confidence
values. Each confidence value is computed via an arithmetic expression resulting in a value in the
interval of zero and one. The value can be guarded by a condition identifier introduced in the
condition specification. The condition identifier represents the value of the condition. The severity
specification has the same structure as the confidence specification. It computes the maximum of
the individual severity values of the conditions.

The following example properties are checked by COSY. They demonstrate the ASL language
features. Most of the property specifications make use of the following two functions:

TotalTiming Summary(Region r, TestRun t) = UNIQUE({s IN r.TotTimes
WITH s.Run==t});
float Duration(Region r, TestRun t) = Summary(r,t).Incl;

The first function Summary takes a Region r and a TestRun object and returns the unique
Total Timing object which is a member of r.TotTimes belonging to that test run. The second
function Duration uses Summary to extract the total execution time of the specified region in the
specified test run. Note that all timings in the database are summed up values of all processes.

The first property SublinearSpeedup determines the lost cycles in relation to the test run with
the minimal number of processors.

Property SublinearSpeedup(Region r, TestRun t, Region Basis) {
LET TotTimes MinPeSum = UNIQUE({sum IN r.TotTimes WITH sum.Run.NoPe ==
MIN(s.Run.NoPe WHERE s IN r.TotTimes)});
float TotalCost = Duration(r,t) - Duration(r,MinPeSum.Run)
IN
CONDITION: TotalCost>O0; CONFIDENCE: 1;
SEVERITY: TotalCost/Duration(Basis,t);

The property is based on the total costs, i.e. the lost cycles compared to a reference run with
the smallest number of processors. If TotalCost is greater than zero, the region has the Sublinear-
Speedup property. The confidence value, which is one in all examples here, might be lower than
one if the condition is only an indication for that property. The severity of the SublinearSpeedup
property is determined as the fraction of the total costs compared to the duration of Basis in that
test run.

Property MeasuredCost (Region r, TestRun t, Region Basis) {
LET float Cost = Summary(r,t).0vhd;
IN CONDITION: Cost > O; CONFIDENCE: 1;
SEVERITY: Cost / Duration(Basis,t);

The total costs can be split up into measured and unmeasured costs. The MeasuredCost
property determines that more detailed information might be available (Summary(r,t).Ovhd is
the overhead measured by Apprentice). If the severity of its counterpart, the UnmeasuredCost, is

much higher, the reason cannot be found with the available data.

Property SyncCost(Region r, TestRun t, Region Basis) {
LET float Barrier = SUM(tt.Time WHERE tt IN r.TypTimes AND tt.Run==t
AND tt.Type == Barrier);
IN CONDITION: Barrier > O; CONFIDENCE: 1;
SEVERITY: Barrier / Duration(Basis,t);

The SyncCost property determines that barrier synchronization is a reason for overhead in
that region. Its severity depends on the time spent for barrier synchronization in relation to the
execution time of the ranking basis.

Property LoadImbalance(FunctionCall Call, TestRun t, Region Basis) {
LET CallTiming ct = UNIQUE ({c IN Call.Sums WITH c.Run == t});
float Dev = ct.StdevTime;
float Mean = ct.MeanTime;
IN CONDITION: Dev > ImbalanceThreshold * Mean; CONFIDENCE: 1;
SEVERITY: Mean / Duration(Basis,t);

The LoadImbalance property is a refinement of the SyncCost property. It is evaluated only
for calls to the barrier routine. If the deviation is significant, the barrier costs result from load
imbalance.

5 Implementation

The design and implementation of COSY ensures portability and extensibility. The design requires
that the performance data supply tools are extended such that the information can be inserted
into the database. This extension was implemented for Apprentice with the help of Cray Research.
The database interface is based on standard SQL and therefore, any relational database can be
utilized. We ran experiments with four different databases: Oracle 7, MS Access, MS SQL server,
and Postgres. For all those databases, except MS Access, the setup was in a distributed fashion.
The data were transferred over the network to the database server. While Oracle was a factor of
2 slower than MS SQL server and Postgres, MS Access outperformed all those systems. Insertion
of performance information was a factor of 20 faster than with the Oracle server.

COSY is implemented in Java and is thus portable to any Java environment. It uses the
standard JDBC interface to access the database. Although accessing the database via JDBC is a
factor of two to four slower than C-based implementations, fetching a record from the Oracle server
takes about 1 ms, the portability of the implementation outweighs the performance drawbacks.
The overall performance depends very much on the work distribution between the client and the
database. It is a significant advantage to translate the conditions of performance properties entirely
into SQL queries instead of first accessing the data components and evaluating the expressions in
the analysis tool.

6 Conclusion and Future Work

This article presented a novel design for performance analysis tools. As an example, COSY, a
prototype component of the KOJAK environment, was presented. The design enables excellent
portability and integration into existing performance environments. The performance data and
the performance properties are described in ASL and can therefore easily be adapted to other en-
vironments. For this prototype, the specification is manually translated into a relational database
scheme and the evaluation of the conditions and the severity expressions of the performance prop-
erties is transformed into appropriate SQL queries and ranking code by the tool developer. In the
future, we will investigate techiques for the automatic generation of the database design from the
performance property specification and the automatic translation of the property description into
executable code.

References

[1] P. Bates, J.C. Wileden: High-Level Debugging of Distributed Systems: The Behavioral Ab-
straction Approach, The Journal of Systems and Software, Vol. 3, pp. 255-264, 1983

[2] CRAY Research: Introducing the MPP Apprentice Tool, Cray Manual IN-2511, 1994, 1994

[3] Th. Fahringer, M. Gerndt, G. Riley, J.L. Traff: Knowledge Specification for Automatic Per-
formance Analysis, to appear: APART Technical Report, Forschungszentrum Julich, FZJ-
ZAM-IB-9918, 1999

[4] M. Gerndt, A. Krumme: A Rule-based Approach for Automatic Bottleneck Detection in Pro-
grams on Shared Virtual Memory Systems, Second Workshop on High-Level Programming
Models and Supportive Environments (HIPS ’97), in combination with IPPS ’97, IEEE, 1997

[6] M. Gerndt, A. Krumme, S. Ozmen: Performance Analysis for SVM-Fortran with OPAL,
Proceedings Int. Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA’95), Athens, Georgia, pp. 561-570, 1995

[6] M. Gerndt, B. Mohr, F. Wolf, M. Pantano: Performance Analysis on CRAY T3E, Euromicro
Workshop on Parallel and Distributed Processing (PDP ’99), IEEE Computer Society, pp.
241-248, 1999

[7] A. Lucas: Basiswerkzeuge zur automatischen Auswertung von Apprentice-Leistungsdaten,
Diploma Thesis, RWTH Aachen, Internal Report Forschungszentrums Julich Jul-3652, 1999

[8] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Trvin, K.L.. Karavanic, K.
Kunchithapadam, T. Newhall: The Paradyn Parallel Performance Measurement Tool, TEEE
Computer, Vol. 28, No. 11, pp. 37-46, 1995

[9] Paradyn Project: Paradyn Parallel Performance Tools: User’s Guide, Paradyn Project, Uni-
versity of Wisconsin Madison, Computer Sciences Department, 1998

[10] F. Wolf, B. Mohr: EARL - A Programmable and Extensible Toolkit for Analyzing Event Traces
of Message Passing Programs, 7Tth International Conference on High-Performance Computing
and Networking (HPCN’99), A. Hoekstra, B. Hertzberger (Eds.), Lecture Notes in Computer
Science, Vol. 1593, pp. 503-512, 1999

