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Abstract—Accelerators such as graphics processing units
(GPUs) provide an inexpensive way of improving the per-
formance of cluster systems. In such an arrangement, the
individual nodes of the cluster are directly connected to one
or more accelerator devices via PCI Express. This results
in a static mapping of accelerators onto compute nodes,
where each accelerator can only be accessed from exactly one
compute node. While this static mapping enables efficient data
transfers between a given accelerator and the compute node it
belongs to, differing computational demands across jobs may,
however, produce either underutilized accelerators or nodes
whose computational demands cannot be satisfied with the
number of accelerators available to them. In particular, smaller
numbers of GPUs available per node may enforce explicit MPI
parallelism across compute nodes where it is not necessary.
To address this limitation, we propose a novel accelerator-
cluster architecture in which network-attached accelerators are
dynamically assigned to compute nodes. This allows not only
their optimal utilization but also a more precise match between
application requirements and accelerator hardware. We outline
the general concept of our dynamic architecture and show that
it can offer substantial benefits to certain classes of applications
without significantly harming the performance of others.

I. INTRODUCTION

Once designed exclusively for computer graphics and dif-
ficult to program, today’s graphics processing units (GPUs)
are extremely flexible parallel processors that are often used
to enhance the performance of general-purpose processors.
This is why such devices are often called accelerators.
Being optimized for data-parallel throughput computations
using large numbers of compute cores, their low density of
control logic makes them also extremely energy efficient.
Motivated by growing demand for computational power
and the desire to minimize energy consumption, cluster
architects take more and more advantage of such flexible
graphics-processor designs to improve the performance of
their systems. A prominent example is the Tianhe-1A sys-
tem, which ranks number five among the world’s fastest
supercomputers (Top500 list from Jun 2012).

Accelerators owe much of their success to powerful

programming models such as CUDA and OpenCL. Both
programming models enable the user to define highly par-
allel compute kernels for execution on accelerator devices.
However, since most accelerators are currently PCI Express
(PCIe) devices with their own dedicated memory, data have
to be transferred between the main memory of the host
and the memory of the device. Thus, a given graphics
device in a cluster is directly attached and, therefore, ex-
clusively dedicated to a distinct general-purpose compute
node—typically a shared-memory multiprocessor with sev-
eral general-purpose cores. Since a cluster may provide more
than one accelerator per compute node, we can generally
speak of a N−to−1 mapping between accelerators and
compute nodes. The critical point is the static nature of this
mapping, which requires modifications to the hardware to
be changed.

While facilitating efficient data transfers between hosts
and their accelerators, the static mapping ignores varying
requirements across and potentially even within the jobs
of a given workload. Some applications may require more
than N accelerators per node and some less, others may
require none at all. Load imbalance within an application
may even create varying accelerator needs among the nodes
assigned to the same application. In particular, if the max-
imum number of GPUs available per node is too small,
single-node applications may be required to prematurely
embrace parallelism across compute nodes via MPI at the
expense of higher development effort and lower programmer
productivity. Simply analyzing the job mix and providing
nodes with different numbers of accelerators would ignore
that requirements of the workload as a whole are also
subject to change. For example, after learning how to apply
double buffering, a key user may all of a sudden be able
to efficiently exploit twice the number of accelerators per
node. On the other hand, reconfiguring the cluster hardware
too frequently is not only expensive but also jeopardizes
system stability. Finally, the static mapping complicates the
replacement of broken accelerators, which always affects the



host nodes they are attached to. Overall, the static mapping
is neither able to ensure proper utilization of the available
accelerator devices nor is it guaranteed to equally satisfy
the requirements of all applications in a potentially unstable
workload mix.

Inspired by the evolution from node-attached to network-
attached storage [1], we propose a novel cluster architecture
where the mapping between general-purpose nodes and
accelerators is dynamic. Instead of attaching accelerators
statically to individual nodes, our architecture maintains a
pool of network-attached accelerators that can be assigned to
their hosts on demand. As long as there are still accelerators
available, every host node can acquire as many or as few
accelerators as actually needed. Even among the nodes occu-
pied by the same application, the number of accelerators per
node can vary. The primary advantages of our architecture,
which can be realized using off-the-shelf components plus
a middleware package we have developed, are improved
hardware utilization and increased flexibility with respect to
the number of accelerators available to individual compute
nodes. The primary disadvantage is the bandwidth penalty
of the network transfer, which we keep at a minimum
using an efficient protocol based on MPI and GPUDirect.
In an experiment with linear algebra kernels running on a
single host node, we show that the speedup our architecture
can offer without any cross-node parallelism is up to 2.2
with reference to what could be achieved using a single
accelerator directly attached to this node. On the other hand,
the impact of the reduced bandwidth on a hybrid MPI/CUDA
molecular-dynamics application with one accelerator per
node is almost unnoticeable. In addition, our MPI-based
solution can be deployed on almost any cluster, making as
little assumptions on the underlying platform as possible.

The remainder of the article is organized as follows:
After reviewing related work in Section II, we describe our
dynamic architecture in Section III including the required
commodity hardware components and the execution model.
Section IV is devoted to the middleware needed to assign and
access remote accelerators and its prototypical implementa-
tion. An emphasis is given to the efficient communication
between hosts and accelerators. In Section V, we present
experimental results for communication performance, the
linear-algebra kernels and the molecular-dynamics code.
Finally, we summarize our results and outline future work
in Section VI.

II. RELATED WORK

In this section, we review alternative approaches of using
network-attached accelerators as well as more flexible ways
of connecting accelerators to hosts via PCIe. According to
the focus of our paper, an emphasis is given to efficient
communication and resource-management aspects.

Designed as a GPU virtualization approach based on a
client-server architecture, the rCuda [2] framework enables

the execution of CUDA kernels on remote GPUs. Specif-
ically, rCuda allows clients without GPUs to run CUDA
kernels on servers equipped with CUDA-enabled hardware.
On a more technical level, a client-side wrapper library
intercepts CUDA calls and redirects them to a server which
executes them on its CUDA-enabled hardware. Once the
wrapper library is loaded, it uses the socket API to connect
to a set of servers provided in a client environment vari-
able. After establishing the connection, the communication
between client and server runs over TCP/IP, which may
introduce higher overhead in comparison to our MPI-based
solution. In addition, since clients are not aware of each
other, the current version (v3.2) of rCUDA does not support
coordinated GPU resource management for parallel jobs
with multiple processes. vCUDA [3] is a GPU virtualization
framework designed for CUDA applications running on
virtual machines. Similar to rCUDA, vCUDA is based on
a client-server architecture with clients executing on a guest
operating system and a server executing on a host operating
system with direct access to CUDA hardware. As in rCUDA,
clients are granted access to the CUDA hardware by the
interception of CUDA API calls and their redirection to
the server. Primarily targeting a portable rather than an effi-
cient virtualization mechanism, the communication between
clients and server is performed over XML-RPC. As part
of its GPU-virtualization approach, vCUDA also provides
support for suspending and resuming the client’s virtual ma-
chine. That is, to resume the client session after it has been
suspended, vCUDA automatically restores the latest device
state of the virtual GPU. However, the overhead of running
the client on a virtual machine together with the XML-based
communication protocol makes this solution second choice
for HPC cluster environments, where utmost performance
is crucial. Originally developed for online games, Zillians
Inc. advertize a solution called V-GPU [4] for dynamic
GPU provisioning in clouds. Similar to vCUDA, V-GPU
intercepts GPU API function calls on clients and redirects
them to GPU servers. Like in our architecture, the number
of GPUs that can be used by each VM server is config-
urable. However, whereas our MPI-based protocols offer a
maximum of portability, Zillians’s implementation based on
remote direct memory access (RDMA) on top of Infiniband
or 10 Gigabit Ethernet (10GE) is tied to specific network
fabrics. At the time of writing, neither the software itself
nor any performance results had been published. Moreover,
the Many GPUs Package (MGP) [5] allows compute nodes
to transparently run OpenCL kernels on both local and
remote OpenCL devices in a complete cluster environment.
The (remote) devices are selected at runtime or before
application start with the help of environment variables.
MGP consists of two layers: (i) a MOSIX Virtual OpenCL
(VCL) layer and (ii) an API layer. The MOSIX VCL layer
provides a runtime environment to the API layer in which
all available OpenCL devices are considered local to every



compute node. Based on this assumption, the API layer en-
ables applications to control these OpenCL devices. During
program execution, communication between compute nodes
and remote OpenCL devices is performed over TCP/IP. As
with rCUDA, MGP currently cannot ensure an exclusive
assignment of accelerator devices to compute nodes to avoid
resource sharing. Finally, the additional TCP/IP transport
overhead may again be prohibitive for HPC applications.
Designed as an extension of the CUDA programming model,
CUDASA [6] can be used to distribute computations over
multiple accelerator-equipped compute nodes of a given
cluster. Basically, CUDASA augments the CUDA execution
model by introducing jobs and tasks in addition to well-
known kernels. These higher-level abstractions offer control
mechanisms for a distributed environment with multiple
network-attached GPUs. The extended execution model is
based on a head-node process, which runs the main program,
and compute node processes, which are responsible for run-
ning the actual compute jobs created by the main program.
Within jobs, a data-locality aware scheduler is responsible
for assigning work to GPU-equipped compute nodes, trying
to reduce communication overhead between compute nodes
as much as possible. Data exchange between different nodes
of the same job is accomplished via a distributed shared-
memory model. However, the focus of CUDASA seems to
be directed rather on introducing a programming model for
distributed multi-GPU programming than on enabling the
flexible assignment of GPUs to compute nodes in current
HPC cluster environments.

Given that current accelerators are PCIe devices, solutions
for I/O consolidation represent another avenue towards a
more flexible accelerator-to-compute node assignment. For
example, Dolphin Express [7] describes a PCIe-based switch
interconnect featuring both I/O and clustering capabilities.
In such an ensemble, every compute node uses its PCIe link
for communication with other nodes—just like it uses it to
communicate with local PCIe devices. Another PCIe-based
solution for I/O consolidation was proposed by NextIO [8],
where each compute node in a given rack is connected
through a dedicated PCIe link to the same NextIO switch,
which provides a common pool of I/O resources. Here, every
I/O device can be exclusively assigned to one compute node
on demand. In this way, both NextIO and Dolphin Express
enable a flexible assignment of PCIe devices such as GPUs
to compute nodes. In comparison to a pure software solution,
the I/O consolidation approach induces less communication
overhead. However, I/O consolidation requires new hardware
(e.g., cabling and switches), whereas a software solution like
ours makes use of existing network resources.

III. DYNAMIC ACCELERATOR-CLUSTER ARCHITECTURE

In this section, we introduce our dynamic accelerator-
cluster architecture, which maintains a pool of network-
attached accelerators that can be made appear as locally

attached to any compute node in the network. We start with
an overview, continue with a description of the individual
components, and finally discuss the execution model.

A. Overview

In contrast to the static N−to−1 mapping between accel-
erators and compute nodes in current accelerator-enhanced
clusters, our dynamic architecture couples accelerators with
compute nodes more loosely. Instead of being directly con-
nected to a compute node (e.g., via PCIe), an accelerator
is attached to a high-speed interconnection network which
is shared among all compute nodes and accelerators. This
approach enables compute nodes to share a common set
of accelerators, and avoids an implicit correlation between
compute nodes and accelerators. The primary benefit is
a more precise match between application demand and
accelerators available in the system plus improved hardware
utilization. As a positive side effect, broken accelerators or
compute nodes no longer affect the availability of opera-
tional compute nodes or accelerators, respectively.

Before it can be used by an application, an individual
accelerator is assigned to exactly one compute node. This
assignment can be done either statically before application
start or dynamically while the application is running. For
this purpose, an accelerator resource manager (ARM), which
maintains information on which accelerators are available
or in use by which compute nodes, handles allocation and
deallocation requests. Thus, compute nodes can dynamically
allocate accelerators based on application needs. Given that
the number of compute nodes and accelerators can now
scale independently, every compute node can benefit from
additional accelerators attached to the cluster, for instance,
during a cluster environment upgrade.

To avoid, however, that the network traffic between com-
pute nodes and accelerators becomes a serious competitor
of the traffic between compute nodes for bandwidth, we
recommend to keep the number of accelerators smaller than
the number of compute nodes. Our architecture is ideally
suited for workloads where the number of accelerators
required per node varies greatly and where the ratio of
accelerators to compute nodes is low. This is typically the
case when some but not all applications need accelerators.
Otherwise, traditional static accelerator-cluster architectures
might be more appropriate. Conceivable is also a mix of both
worlds, where a cluster with, for example, one accelerator
attached to each node maintains a pool of network-attached
accelerators as excess capacity for those codes that need
more than one per node. Especially in view of possible
incremental installation, our architecture is therefore most
attractive for sites that started with a traditional cluster
and now want to experiment with accelerators. Below, we
summarize the advantages of our concept:

• Economy—a more precise match between application
demand and available accelerators allows for improved



hardware utilization.
• Flexibility—the number of accelerators assigned to a

given general-purpose node can be modified any time.
• Transparency—access to remote accelerators occurs via

familiar programming models and requires only little
source-code changes. The details of the communication
mechanism between compute nodes and accelerators
are hidden from the programmer.

• Fault tolerance—broken accelerators do not affect the
availability of compute nodes and vice versa.

• Extensibility—the ratio of accelerators to general-
purpose nodes in the cluster as a whole can be easily in-
creased just by attaching extra accelerator nodes to the
cluster-internal network. This gives system providers
the ability to quickly respond to higher demand.

• Performance—efficient communication protocols mini-
mize the overhead of using remote accelerators in terms
of latency and bandwidth.

B. Components

Our dynamic accelerator-cluster architecture can be real-
ized using commodity components found in typical cluster
systems, no specialized hardware is required. As depicted in
Figure 1, the components of our architecture include com-
pute nodes, accelerators, an accelerator resource manager,
and a network. The compute nodes and the network are iden-
tical to their counterparts in current cluster environments.
Nevertheless, given that a single compute node may have to
feed larger numbers of accelerators, we recommend to equip
compute nodes with enough memory. Furthermore, when
choosing a network fabric, it has to be taken into account
that host-device traffic and traffic between compute nodes
share the same network bandwidth. Again, the ratio between
accelerators and compute nodes is an important parameter
to consider in this context.

1) Accelerator: As shown in Figure 2, we consider an
accelerator as being composed of an energy-efficient CPU
plus main memory (RAM), a network adapter (NIC), and
a typical accelerator such as an NVIDIA Fermi GPU. In
contrast to current accelerator types (e.g., GPUs), we define
accelerators as components that can communicate with other
components over an interconnection network. Hence, the
network adapter connects the accelerator to the network
for communication with compute nodes, the accelerator
resource manager, and other accelerators. However, since
current accelerator types are not able to initiate network
communications, an energy-efficient general purpose CPU
runs an operating system which instructs the network adapter
to perform network communications. As can be seen in
Figure 2, the device that is responsible for accelerating
computation is, in this case, a GPU. GPUs are currently
some of the most promising devices to speed up highly
parallel and computationally intensive operations. However,
in principle any other device suitable for computationally
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Figure 1. Dynamic accelerator-cluster architecture with compute nodes
(CN), accelerators (AC), and accelerator resource manager (ARM).
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Figure 2. Schematic view of an accelerator (AC) with CPU, main memory
(RAM), network adapter (NIC), and GPU.

intensive tasks could be used as an alternative.
2) Accelerator Resource Manager: The accelerator re-

source manager is similar to the resource manager in a
cluster environment in that it maintains information on
which accelerators are available or in use and assigns them to
compute nodes upon request. In particular, after assigning an
accelerator to a compute node, the corresponding compute
node can transparently access its accelerator through a
handle as if it was locally attached. The accelerator resource
manager supports both a static as well as a dynamic acceler-
ator assignment strategy. In the static case, accelerators are
assigned to compute nodes at job start and the assignment
(handle) remains active for the duration of the job. With the
dynamic assignment strategy, in contrast, accelerators are
assigned to compute nodes at runtime. This is done in two
steps. First, a compute node requests accelerators from the
accelerator resource manager. In response, the accelerator
resource manager assigns the corresponding number of
accelerators to the compute node, providing one handle per
accelerator. Similar to the static assignment, the dynamically
assigned accelerators are released once the compute job is
finished.

C. Execution Model

The execution model consists of three basic steps: (i)
accelerator allocation, (ii) accelerator usage, and (iii) accel-
erator deallocation. Lacking private accelerators, compute
nodes have to allocate accelerators before computations can
be offloaded onto them. As mentioned above, the allocation
and thus the assignment of accelerators to compute nodes
can be done statically (before job start) or dynamically (at
runtime). In both cases, the accelerator resource manager
provides each process running on a compute node with
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Figure 3. Static (a) and dynamic (b) accelerator assignment. Different
shadings denote different jobs. Dashed lines denote communication before
job start, whereas solid lines denote communication at runtime.

distinct handles, with each handle representing exactly one
exclusive accelerator. This guarantees that different pro-
cesses do not interfere with each other. After the allocation,
each compute-node process can use an API for transparently
offloading computations onto its accelerators over the cluster
interconnection network. This API extends familiar APIs
such as CUDA or OpenCL. For example, direct accelerator-
to-accelerator data transfers over the network are currently
not supported with CUDA (CUDA Toolkit 4.2) or OpenCL
(OpenCL 1.2), however, in our scheme accelerators can
efficiently exchange data without involving their associated
compute nodes. As soon as the compute job is completed,
the accelerators are automatically released and made avail-
able to other jobs by informing the accelerator resource
manager. In the dynamic assignment scenario, compute
nodes may also release their accelerators by contacting the
accelerator resource manager before the compute job is
finished. Note that for the dynamic (de)allocation, compute-
node processes use an extra resource management API
complementing the computation API.

Using the allocation and subsequent usage of one accel-
erator as an example, Figure 3 illustrates the static and the
dynamic assignment strategy. Note that compute nodes and
accelerators from the same job are shaded in a uniform way.
Furthermore, dashed lines represent communication before
job start, whereas solid lines represent communication at
runtime. In addition, circled values indicate the sequence of
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Figure 4. Dynamic accelerator-cluster software architecture with CUDA
back-end.

individual communication steps. For the static accelerator-
to-compute node assignment shown in Figure 3(a), the
accelerator resource manager assigns one accelerator to the
compute node before job start (step 1). The result of this
assignment is a handle delivered to the compute node, which
is eventually used to access the accelerator by means of the
computation API (step 2). For the dynamic accelerator-to-
compute node assignment shown in Figure 3(b), the compute
node uses the resource management API to request acceler-
ators from the accelerator resource manager at runtime (step
1). The accelerator resource manager responds to this request
by assigning one accelerator to the compute node (step
2). Finally, the compute node controls the accelerator with
the help of the computation API, using the corresponding
accelerator handle as a parameter (step 3).

IV. IMPLEMENTATION

As it is the most essential question for the viability of our
approach, this article focuses on its performance character-
istics in comparison to classic static architectures. In the re-
mainder, we therefore concentrate on the implementation of
core communication mechanisms and their evaluation, rather
than on advanced features such as the dynamic accelerator
assignment strategy (Figure 3(b)). A detailed treatment of
the latter will be left to future publications.

Our implementation allows computations to be offloaded
onto accelerators over the network. In the current version,
computations are CUDA kernels, requiring that each accel-
erator is equipped with a CUDA-enabled GPU. The compu-
tation API of our prototype provides basic functionality for
(i) allocating memory on accelerators, (ii) copying data to
or from accelerators, and (iii) launching compute kernels on
accelerators.

The software stack (Figure 4) of our dynamic accelerator-
cluster architecture consists of a front-end on every compute
node and a back-end on every accelerator. The front-end
translates API calls into requests which are redirected to
the back-end, where a daemon receives those requests and
executes them on the CUDA-enabled GPU using the CUDA
driver API. The front-end talks to the back-end using a han-
dle that uniquely identifies an assigned accelerator, enabling
transparent communication between the compute node and
the accelerator. Figure 4 illustrates this software stack, which
is extensible to any accelerator programming interface and



Listing 1. Example CUDA program.

void main(int argc, char **argv) {
...
/* Allocate memory on device */
cudaMalloc(cudaMalloc_args);

/* Transfer memory to device */
cudaMemcpy(cudaMemcpy_args);

/* Execute kernel */
k_name<<<dimGrid,dimBlock>>>(k_args);

/* Transfer memory to host */
cudaMemcpy(cudaMemcpy_args);

/* Free memory on device */
cudaFree(cudaFree_args);
...
}

therefore not restricted to CUDA by design.
Different from rCUDA [2], the actual communication

between compute nodes and accelerators is accomplished
through a distinct communication protocol based on MPI
wherein each request involves two MPI messages. First, the
front-end sends a request message to the back-end. Second,
the back-end sends the results (e.g., error code or data) back
to the front-end. As an example, we consider a copy oper-
ation from host to device. Here, an MPI message carrying
the data is sent to the main memory of the accelerator node.
This data is then copied from main memory to GPU memory.
Finally, the error code of the CUDA copy operation is sent
back to the front-end enveloped in an MPI message. Using
MPI as the underlying communication substrate offers the
following advantages:

• Availability: Given that MPI is the de facto standard
for communication in cluster systems, MPI can be
considered available in those environments our dynamic
accelerator-cluster architecture has been designed for.

• Performance: MPI allows for efficient inter-process
communication over cluster interconnects. In addition,
any application using MPI can immediately, that is
without modifications, benefit from a new high-speed
interconnect as soon as an MPI library supports this
interconnect.

• Portability: MPI specifies an API which hides the
hardware details of cluster systems.

However, to enable MPI communication between a compute
node and its accelerator, the process on the compute node
and the daemon running on the accelerator have to reside in
the same MPI communicator. The creation of this commu-
nicator involves the accelerator resource manager.
It is evident that the additional copy operation from the
accelerator’s main memory to the GPU memory causes more
overhead than a direct data copy to a classic PCIe-attached
GPU. To address this issue, our memory copy operations—
both from host to device and vice versa—leverage NVIDIA’s
GPUDirect v1. This technology allows network adapters,

Listing 2. Example program on our dynamic architecture.

void main(int argc, char **argv) {
...
/* Allocate memory on device */
acMemAlloc(cudaMalloc_args,ac_handle);

/* Transfer memory to device */
acMemCpy(cudaMemcpy_args,ac_handle);

/* Execute kernel */
acKernelCreate(k_name,ac_handle);
acKernelSetArgs(k_args);
acKernelRun(k_name,dimGrid,dimBlock);

/* Transfer memory to host */
acMemCpy(cudaMemcpy_args,ac_handle);

/* Free memory on device */
acMemFree(cudaFree_args,ac_handle);
...
}

such as Infiniband that support memory registration includ-
ing the pinning of memory pages, to share memory-locked
pages with NVIDIA GPUs. Now, the same memory buffer
can be used for communication with the network on the one
hand and with the GPU via direct memory access (DMA) on
the other. We exploited this to implement the memory copy
in a pipeline fashion where the payload is split into blocks.
For example, while some blocks are still being received into
the main memory of the accelerator node, others, which are
already available there, are already being copied further to
GPU memory. Depending on the payload size, this overlap
helps minimize if not eliminate the extra time needed to copy
the data to GPU memory. As shown in the following section,
memory copy operations can now achieve bandwidth results
similar to MPI data transfers of the same size.

To illustrate the usage of our API and to compare it
with the CUDA API, Listing 1 shows the execution of a
kernel using the CUDA API, while Listing 2 shows the same
scenario on our dynamic accelerator-cluster architecture. In
both cases, the kernel is executed after allocating memory on
the device and transferring data from the host to the device.
Upon completion of the kernel, results are transferred back
from the device to the host, where the device memory is
subsequently released. As can be easily seen, our memory
allocation/free and transfer operation calls accept the same
arguments as their corresponding CUDA API counterparts
except for the additional handle used to identify the accel-
erator. Apparently, the kernel execution through our API
includes three steps: (i) the kernel is created before being
executed on the accelerator identified by ac handle, (ii)
the necessary kernel arguments are set individually, and
(iii) the kernel is executed with the specified configuration.
Compared to a pure CUDA program, we can therefore argue,
that the additional programming complexity of our API is
negligible.



V. EXPERIMENTAL RESULTS

In this section, we compare our dynamic architecture
with network-attached accelerators quantitatively to a static
architecture with node-attached accelerators. In particular,
we evaluate the performance impact when a compute node’s
local GPU is replaced by one or more network-attached
GPUs. We start with latency and bandwidth considerations
of memory-copy operations between compute nodes and
remote accelerators. After that, we show how the availability
of multiple network-attached GPUs assigned to a node can
provide speedups to two linear-algebra kernels that are
impossible to achieve with only a single node-attached GPU.
Finally, we demonstrate that the performance of MP2C [9], a
molecular-dynamics application designed for a classic GPU
cluster with one GPU directly attached to each node, is
not significantly harmed. As our architecture is essentially
a software architecture, we emulate it using the hardware
of a typical static GPU cluster available to our team. The
testbed used for this study consists of 4 nodes with 2 Intel
Xeon X5670 processors at 2.93 GHz and with 48 GiB
RAM each. In addition, all the 4 nodes house one NVIDIA
Tesla C1060 GPU (CUDA driver version 270.41.19). The
nodes are connected via QDR Infiniband. All nodes run
GNU/Linux 2.6.18 (RHEL 5.5). As MPI implementation,
we chose Open MPI 1.4.3. Whenever a node was used as
compute node in our dynamic architecture, its local GPU
was ignored.

We concede that this system setup, in which the “acceler-
ator nodes” are equipped with the same powerful CPU and
the same large amount of RAM as the compute nodes, does
not exactly correspond to the more cost-efficient solution
promoted in Section III. Nevertheless, given the low memory
requirements of the pipeline protocol for data transfers and
the fact that the CPU is only used to trigger network and
GPU operations, we expect that both the performance of
the CPU and the amount of RAM collocated with the
accelerator could be reduced without noticeable effect on
our performance results.

A. Bandwidth

Among the computation API operations described in
Section IV, the memory-copy operation between a compute
node and the remote accelerator assigned to it is the one that
is most sensitive to communication performance. Since those
data transfers are usually large in size, typically in the order
of several megabytes, the additional MPI over Infiniband
latency of roughly two µs is negligible. We therefore focus
on the bandwidth of acMemCpy() between a compute node
and a remote accelerator. As a benchmark, we selected
the bandwidthTest from the CUDA SDK 3.2, which was
ported to the dynamic cluster architecture. Since we use
MPI as communication layer in our protocol stack, the upper
bandwidth limit is set by MPI and in our case by Open
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Figure 5. Host-to-device bandwidth for the pipeline protocol with different
block sizes and GPUDirect.
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Figure 6. Device-to-host bandwidth for the pipeline protocol with different
block sizes and GPUDirect.

MPI over Infiniband. To compare the efficiency of our com-
munication protocol with this upper bound, we measured
the pure MPI bandwidth using the PingPong benchmark of
the Intel MPI Benchmarks (IMB). The results in Figure 5
show that transmitting a 64 MiB message with MPI on our
system reaches a peak bandwidth of about 2660 MiB/s. In
addition to this graph, Figure 5 depicts the host-to-device
bandwidth measurements for five different implementations
of acMemCpy(). Among those, the simplest one is called
naive. In the naive implementation, all data is first received
via a blocking MPI receive call before it is eventually copied
to the GPU target buffer. This naive approach requires an
MPI receive buffer of the size of the complete data to be
copied, which increases the necessary main memory size
of the accelerator node. A more efficient approach is the
pipeline protocol described in the previous section. Since
this protocol does not store the whole message in main
memory but only a small fraction of its blocks, the main
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Figure 7. Host-to-device bandwidth comparison between node-attached
and network-attached GPU.

memory requirements are independent of the actual message
size. Moreover, as illustrated in Figure 5, for large messages
all pipeline implementations offer superior bandwidth in
comparison to the naive approach. A closer look at the figure
also reveals that the performance of the pipeline protocol
depends on the size of the blocks into which the message
payload is split. Although a 128 KiB block size yields better
results than larger block sizes for messages ranging from
500 KiB to 8 MiB, increasing the block size improves the
peak bandwidth for messages larger than 8 MiB.

The reason for this is twofold. Compared to large mes-
sages, small messages seem to exhibit a higher overlap
between network transfers and DMA copy operations from
host to device memory. However, for large messages, the
overhead caused by posting many small MPI send and host-
to-device DMA memory copy operations becomes too large.
A simple solution is to adjust pipeline block sizes depending
on the message size. In our testbed, the best results were
achieved when using 128 KiB sized blocks for messages
smaller than 9 MiB and 512 KiB blocks for larger messages.
Of course, these parameters are highly system dependent, but
tuning them has to be done only once. Afterwards, every
user can benefit from better performance. Such initial opti-
mizations are common practice for communication libraries,
with MPI probably being the most prominent example.

Similar to Figure 5, Figure 6 depicts the bandwidth
results for device-to-host data transfers. As with host-to-
device transfers, the pipeline implementation performs better
than the naive approach for large messages. However, for
the device-to-host copy operations, a single block size of
128 KiB provides the best results. Again, considering our
upper bandwidth limit which is determined by MPI, the
typical message sizes used in host-to-device and device-
to-host data transfers achieve close to full MPI bandwidth
performance.

Given our pipeline bandwidth results, the question is now
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Figure 8. Device-to-host bandwidth comparison between node-attached
and network-attached GPU.

how these compare to node-local CUDA results obtained
with cudaMemcpy(). Figure 7 illustrates measurements in
host-to-device direction. As can be seen, the node-local
GPU results are provided for two cases: pageable memory
and pinned memory. Note that the transfers for pageable
memory are performed by the CPU through programmed
I/O (PIO), whereas the pinned-memory transfers are done by
the GPU through direct memory access (DMA) operations.
For a 64 MiB payload, the node-local GPU achieved a peak
bandwidth of about 5700 MiB/s and about 4700 MiB/s with
DMA and PIO, respectively. When we compare this to our
architecture with approximately 2600 MiB/s, we notice a
clear bandwidth advantage of node-local GPUs. A similar
picture is shown for device-to-host memory copy operations
in Figure 8. Nevertheless, as we will show farther below,
the impact on the overall performance of applications can
be quite small.

B. Linear-Algebra Kernels

The advantage of our architecture is that the number
of accelerators per compute node is not hardwired. Thus,
compute nodes can be assigned more or less accelerators—
matching the computational demand much more precisely.
We demonstrate the benefits of this feature using two ker-
nels from the MAGMA library, which offers dense linear
algebra routines for heterogeneous/hybrid architectures [10].
To enable seamless porting of LAPACK-dependent software
components to MAGMA, the design of MAGMA closely
follows that of LAPACK. This applies to functionality, data
storage, and the interface. MAGMA version 1.1 provides
support for distributing computations among multiple GPUs.
The following two multi-GPU routines were considered:

• magma dgeqrf2 mgpu(): Computes a QR factorization
of a real M-by-N matrix.

• magma dpotrf mgpu(): Computes the Cholesky factor-
ization of a real symmetric positive definite matrix.



We ported these two routines to our architecture by sub-
stituting our remote API calls for the CUDA calls originally
used in the code. We conducted our measurements with
MAGMA 1.1-RC1 and used the provided testing routines as
benchmark. We executed each routine on a single compute
node, either using the local GPU or up to three network-
attached GPUs. Figure 9 and Figure 10 present the results
for the QR and the Cholesky factorization, respectively.
It can be seen that both routines suffer slightly from the
bandwidth penalty. Comparing one local GPU with one
network-attached GPU, QR is shown to be more sensitive
to communication bandwidth than Cholesky. Furthermore,
it can be observed that, depending on the problem size, the
flexibility of our architecture to assign as many accelerators
to compute nodes as needed, can be exploited to deliver
results faster than would be possible with just a single node-
attached accelerator. For example, with problem size 10240
and three network-attached GPUs, the QR factorization
achieved a speedup of about 2.2 in comparison to one
local GPU. Running this kernel equally fast on a static
cluster with one GPU per node would require using multiple
compute nodes in parallel, presumably via MPI. However,
this extra parallelism comes at a significant cost in terms of
development effort.

Of course, being detached from compute nodes, dynamic
accelerators have to be allocated separately before they
can be used. In a production environment, a user would
therefore specify the number of accelerators requested per
node in his or her batch script. The job would start once
the requested number of compute and accelerator nodes
becomes available. This corresponds to the static assign-
ment strategy described in Section III. However, since no
application uses more accelerators than it actually needs, the
availability of accelerators is maximized. Thus, the flexibility
of our architecture has also economic advantages from the
perspective of the system provider.

C. MP2C

In the remainder of this section, we investigate how the
bandwidth limitation of using remote GPUs impacts the per-
formance of a real-world application that is designed for only
a single GPU per node and, thus, can hardly benefit from
the dynamic nature of our scheme. The molecular-dynamics
simulation MP2C is a highly scalable multi-scale code,
which couples a mesoscopic fluid method based on multi-
particle collision dynamics with molecular dynamics. MP2C
leverages message-passing parallelism through MPI and ge-
ometrical domain decomposition. It consists of a molecular-
dynamics part and a multi-particle collision dynamics part,
which implements the stochastic rotation dynamics method
(SRD) [11], a highly local algorithm, in CUDA. For the
measurements with our architecture, the CUDA calls were
replaced by the corresponding calls to our API. The CUDA
measurements were performed with two processes running
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Figure 9. MAGMA QR factorization comparing node-local GPU with
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Figure 10. MAGMA Cholesky factorization comparing node-local GPU
with network-attached GPUs.

on separate nodes and using their local GPUs. Instead of
using local GPUs, in measurements emulating our dynamic
architecture each process used its own dedicated remote
GPU. We ran MP2C with three different numbers of particles
(5120000, 7290000, 10000000). The number of particles per
collision cell is 10 and the SRD method is executed in
every 5-th step of 300 steps in total. Figure 11 illustrates
that for all three different input configurations, our dynamic
cluster architecture prototype prolongs execution by at most
4%. This shows that while providing clear benefits to some
applications, our architecture does not necessarily harm the
performance of others whose GPU demand can be satisfied
well in more traditional environments.
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Figure 11. MP2C real-world application.

VI. CONCLUSION AND OUTLOOK

In current accelerator-enhanced clusters, graphics devices
are directly attached and, therefore, exclusively dedicated
to a distinct general-purpose compute node. However, this
static N−to−1 mapping between accelerators and com-
pute nodes may lead to underutilization and a mismatch
between available hardware and application requirements.
In this paper, we have proposed a dynamic accelerator-
cluster architecture that overcomes these limitations by
supporting the dynamic allocation of accelerators over a
network. In our scheme, an accelerator is attached to a high-
speed interconnection network and can be assigned to each
compute node in the cluster on demand. Although initially
implemented for CUDA, the architecture is extensible to any
accelerator programming interface. For instance, our generic
software stack would also easily allow Intel’s emerging
Many Integrated Core (MIC) architecture to be supported.

Our experimental evaluation indicates that, depending
on the input problem size, some applications can exploit
the increased flexibility of our approach to achieve addi-
tional speedup per node. This lifts the threshold beyond
which explicit MPI parallelism across multiple compute
nodes becomes necessary, avoiding premature and expensive
hybridization. However, this flexibility also comes along
with an extra network-transfer overhead, whose performance
impact is application dependent. To account for both the
higher flexibility and the additional network-transfer over-
head, cluster systems could, on the one hand, offer a pool of
compute nodes with local GPUs for applications highly sen-
sitive to communication performance and, on the other hand,
provide an additional pool of network-attached accelerators
available to all compute nodes. In the near future, we plan
to further investigate the dynamic accelerator assignment

strategy and how it can help speed up applications with
phases of differing computational demand.
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